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Description

We give coordinate-minimal geometric
realizations in general position for 17 of the 20
vertax-minimal triangulations of the orientable
surface of genus 3 in the Sxbxb-cube.

By Heawood's inequality from 18520 [E;b auety
triangulation of a (closed) surface M of Euler
characteristic chilMj has at keast

nz 12 (7 +sqrti43-24*chi{M}))

vertices. The tighthess of this bound was
proved by Jungerman and Ringel [12] for all
orientable surfaces (with the exceaption of the
orientable surface of genus 2, where an extra
vettex has to be added).

A first vertex-minimal triangulation of the

orientable surface of genus J with 10 vertices

can be found oh po 24 in the book of Ringel on

the Map Color Theoram [15]. Polyhedral models for five different 10-vertex
trian%glatiﬂns of the arientable surface of genus 3 were given by Brehm [3], [6]
and Bokowski and Brehm [£].

Altogether, there are 4 2426 triangulated surfaces with 10 vertices; ¢f [1d] and
see [14] for a list of facets of the triangulations. In particular, there are exactly 20
combinatorially distinct vertex-minimal 10-vertex triangulations of the orientable
surface of genus 3.

By Bteinitz' theorem (cf. [17, Ch. 4]y, every triangulated Z-sphere is realizable
dqeometrically as the boundary complex of a convex 3-dimensional polyvtope. For
tnana;f’lulatmns of arientable surfaces of genus ‘g = it was asked by Grinbaum

[7, Ch. 13.2]) whethet they can always be  resiZed geometrically 85 & polyhedron

in Fl . L& with straight edges, flat triangles, and without self intersections? In
general the answer turned out to be  NO: Bokowski and Guedes de Oliveira [4]
showeed that there is a non-realizable triangulation of the orientable surface of
denus 6, and, recently, Schewe [16] was able to extend this result to all surfaces
of genus g =5 However, for surfaces of genus 1 = g = 4 the problem remains

OpEN.
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Seometric realizations for all BG5S vertex-minimal 10-vertex friangulations of the
orientable surface of genus 2 were obtained by Bokowski and Lutz [1], [13].
Based on a random search and geometric intuition.

With a more sophisticated simulated anhealing approach, it was also possible to
realize surfaces of genus J:

Theorem (Hougardy, Lutz, and Zelke [11]): All 20 vertex-minimal 10-vertex
triang ulations of the orientabrle surface of genus d can be realzed geometrica lly

in R™.

For most of these examples there even are realzations with rather small
coordinates.

Thegram: At least 17 of the 20 vertex-minimal 10-vertex triangulations of the
orientable surface of genus d have realizations in genetral position in the
Sxbxbcube, but none of the 20 triangulations can be realized in general position
inthe 4 x4x4-cube.

To obtain this result, we completely enumerated for increasing n all sets of 10
verticaes in Qeneral position in the nxnxn-cube that are compatible with a given
triangulation; cf. [¥] and [10]. To speed up this enumeration we made use of the
symmetry of the nxknxn-cube, enumerated anly lexicodra phic minimal vertex sets,
and checked compatibility with a given triangulation for partially generated vertex
sets. The search for realizations in the 5xbx5—cube was run [in totaly for 2 CPU
yearson a d.b GHz processor. Herebvy, roudghly 1/5th of the possible vertex sets
in the 5x5x5-cube was processed.

Remark: The displayed example Polyhedron_2 101454 2 has one Clearly visible
hiole, while all other tunnels are hidden. In the tfransparent display of the
polyhedron we have highlighted the link of a vertex. The number 14542 indicates
the position of the example in the catalog of the 4 2426 triangulated surfaces with
10 vertices from [14].
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