
Unsupervised Shape Correspondence
Estimation for Anatomical Shapes

Master ’s Thesis

Computational Engineering Science
TU Berlin

Faculty V - Mechanical Engineering and Transport Systems
Institute for Medical Engineering

Author: Lisa Bautz
Matriculation Number: 372855

First Examiner: Prof. Dr. Marc Kraft
Second Examiner: Steven Mücke, M.Sc.
Advisors Zuse Institute Berlin: Dr. Stefan Zachow

Tamaz Amiranashvili, M.Sc.
Submission Date: April 6, 2023



Sworn Affidavit

in accordance with section § 60 Abs. 8 AllgStuPO:

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig
sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der
aufgeführten Quellen und Hilfsmittel angefertigt habe.

Berlin, 6.4.2023

Lisa Bautz

i





Abstract

The concept of shape correspondence describes a relation between two or more shapes
of the same class. It often consists of a mapping between points on semantically similar
locations of all shapes. One possible application for shape correspondence in medicine
is the automatic location of anatomical landmarks. Another popular application is the
construction of statistical shape models. These models are an established way to represent
geometric variation of anatomical shapes in a compact way. Possible applications range
from the generation of shapes and reconstruction tasks to disease classification.

This thesis aims to investigate unsupervised methods that can be used to estimate such a
correspondence on anatomical shapes. While most methods used in the medical domain fo-
cus on classical optimization algorithms to establish correspondence, the broader computer
vision domain developed a versatile field of data-driven methods. Recently, the new shape
model FlowSSM was introduced, which does not require predefined correspondences for
training as it generates them itself. As the performance of the shape model is quite com-
petitive, it is natural to assume that the generated correspondences are of high quality as
well.

For this reason, we evaluate the quality of the correspondences generated by FlowSSM
within this thesis. Furthermore, we modify the method by adding a second loss term that
minimizes geodesic distortions. This is done to favor isometric deformations which can lead
to better correspondences. We compare the results with two established methods from the
medical domain, LDDMM and Meshmonk. Furthermore, we investigate the performance
of a fourth method called Neuromoph. This data-driven method comes from the wider
computer vision field and was not tested on anatomical data yet.
All methods are evaluated with a set of different metrics. This includes metrics to assess the
quality of the resulting meshes, a sparse correspondence error on anatomical landmarks,
and metrics to measure the quality of the resulting shape models. Furthermore, we test
all methods on three datasets with different degrees of geometric variation, namely liver,
distal femur and face.

We show that FlowSSM produces correspondences with state-of-the-art quality. Moreover,
our modification further improved the quality of correspondences at a global level. Never-
theless, there is no clear ranking between all methods, as the results differ between metrics
and datasets. Thereby, we can show that there are different qualities to a proper correspon-
dence which are reflected in the different metrics. It is therefore strongly recommendable
to choose a correspondence estimation method specifically for the problem at hand.
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Zusammenfassung

Das Konzept der Formkorrespondenz zwischen 3D-Objekten einer Klasse beschreibt eine
Beziehung zwischen den Instanzen (oft Punkten) der unterschiedlichen Objekten. Hierbei
werden Punkte, die an semantisch gleichwertigen Orten liegen, miteinander in Verbindung
gebracht. Eine mögliche Anwednung der Formkorrespondenz im medizinischen Bereich
ist daher die automatisierte Lokalisierung von anatomischen Landmarken. Eine weitere
Anwendung ist das Erstellen von statistischen Formmodellen. Mit diesen kann die ge-
ometrische Variation anatomischer Formen kompakt abgebildet werden. Medizinische
Anwendungen reichen dabei von der einfachen Formgenerierung zu komplexeren Rekon-
struktionsaufgaben und der Klassifizierung von gesunden und pathologischen Formen.

In dieser Arbeit werden unterschiedliche Methoden zur Erzeugung von Formkorrespon-
denzen untersucht. Die entsprechende Literatur im medizinischen Bereich verwendet hi-
erzu meist Methoden, die das klassische Optimierungsproblem einer nichtrigiden Trans-
formation lösen. Im Computer Vision Bereich wurden in den letzten Jahren auch einige
datengetriebene Methoden zur Korrespondenzgenerierung veröffentlicht. Im letzten Jahr
wurde außerdem die Methode FlowSSM zur Erstellung statistischer Formmodelle vorgestellt,
die nicht auf korrespondierenden Oberflächen basiert, sondern diese selbst erzeugt. Da
FlowSSM trotzdem konkurenzfähige Ergebnisse erzielt, ist naheliegend, dass auch die
zugrundeliegenden, selbst generierten Korrespondenzen von hoher Qualität sind.

Innerhalb dieser Arbeit wird daher die Qualität der von FlowSSM erzeugten Korrespon-
denzen evaluiert. Außerdem wird die Methode um eine zusätzliche Kostenfunktion er-
weitert, die geodetische Verzerrungen verhindern soll. Dadurch sollen nichtisometrische
Deformationen vermieden werden, wodurch die Qualität der resultierenden Korrenspon-
denzen gesteigert werden kann. Die Ergebnisse von FlowSSM werden mit zwei etablierten
Methoden aus dem medizinischen Bereich, LDDMM und Meshmonk, verglichen. Außer-
dem wird NeuroMorph, eine aktuelle, datengetriebene Methode aus dem Bereich des
maschinellen Sehens getestet. Letztere wurde bisher noch nicht auf medizinischen Daten
evaluiert. Die Bewertung aller generierten Korrespondenzen basiert auf ausgewählten in-
direkten Metriken. Hierzu gehört auch die Performance bei konkreten Anwendungsfällen
wie der Lokalisierung von Landmarken und dem Erstellen von statistischen Formmod-
ellen.

Im Rahmen der Arbeit wird gezeigt, dass FlowSSM Korrespondenzen produziert, deren
Qualität dem aktuellen State-of-the-art entspricht. Durch das Hinzufügen der zweiten
Kostenfunktion wird die Qualität der Korrespondenzen auf einem globalen Level noch
weiter gesteigert. Prinzipiell lässt sich jedoch keine Hierarchie zwischen den Methoden
ableiten, da die Performance stark innerhalb der untersuchten Metriken und Datensätzen
schwankt. Die Auswahl einer passenden Methode sollte sich daher vor allem am Anwen-
dungsfall orientieren.
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1 Introduction

Due to the widespread use of tomographic image data and advances in image processing
methods as well as available computing capacities, an ever growing variety of 3D shapes
is captured. These three-dimensional measurements of anatomical shapes contain valuable
information regarding geometric shape and size. A logical conclusion is the need to com-
pare two or more shapes with each other. In order to do so, a relation between semantically
similar points of two shapes is needed. A concept to describe such a relation is the concept
of shape correspondence. This consists of a mapping that matches points on shape X to
semantically similar points on shape Y . On the human face, this could be a mapping be-
tween the tip of the nose from person X to the tip of the nose from person Y . An example
is visualized in Figure 1.1, where semantically similar points of two faces are matched. This
thesis aims to investigate different methods that can be used to establish such a relation.

Figure 1.1: Corresponding points (red) between two faces. As the points are placed on
anatomical landmarks such as the tip of the nose, it is easy to determine their
correct location. For points on the forehead or on the cheeks the correspondence
estimation task is more complex.

One possible application of shape correspondence is the automatic localization of anatom-
ical landmarks or measurements between them. Furthermore, as shape correspondence
enables us to compare two shapes with each other, it also enables us to compare shapes
of a whole population. This opens the field to population wide statistical analyses and
classification of e.g., pathological shapes. An established way to capture the geometric
variance of a whole population is the use of Statistical Shape Models (SSMs). Hereby, the
geometric variability of a shape population is modeled as a combination of (mean) template
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1 Introduction

and a hierarchical set of modes to capture the variability [Coo+95]. Therefore, SSMs can be
utilized for generative modeling i.e., the generation from a learned population-based shape
space. This opens a large field of applications in the medical domain whenever pathological
shapes or shapes with sparse data have to be reconstructed ([Alo+22], [SWZ14]). Another
area of application emerges from the potential to represent the whole population in a low
dimensional parameter space. When clustering or classification algorithms are applied to
this space, the results therefrom can be utilized for diagnosis ([AZT21], [SWZ14]).

Most methods used for SSM construction rely on 3D shape representations that are homol-
ogous and in semantic correspondence towards each other. While there are newer methods
that do not require corresponding shapes (i.e., [Lüd+22]), the classical SSM approach is
still popular, as it is an easy and computationally efficient method that yields robust and
well understood results. As different authors (e.g., [HM09], [Lam08]) mentioned, the esti-
mation of this correspondence is the hardest part of SSM construction and yields the most
influence on the resulting quality.

Methods for correspondence estimation in the medical domain often solve the classic op-
timization problem of a non rigid registration between different shapes. With the rise of
deep learning methods during the last years, there was a steep growth of data-driven meth-
ods for correspondence estimation in the broader computer vision community. Especially
unsupervised methods such as [Eis+21] are of interest, as they do not require a predefined
correspondence for training. Most of these methods have not been tested on anatomical
data yet. As medical data differs from data typically used in the computer vision field, it is
unknown how these methods would perform.

Recently, the new shape model FlowSSM ([Lüd+22]) was introduced, which does not re-
quire shapes with a predefined correspondence for training as it generates the correspon-
dences itself. As the shape model itself has a strong performance, the hypothesis that the
generated correspondences are of high quality is natural. This hypothesis is therefore of
research interest and the subject of this thesis. These are its major contributions:

1. We show that FlowSSM is able to generate correspondences with state-of-the-art
quality by comparing it to different other methods. This includes established methods
from the medical domain ([Dur+14], [Whi+19]).

2. We evaluate how NeuroMorph [Eis+21], a method from the wider computer vision
domain, performs on anatomical shapes.
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1 Introduction

3. We investigate how the implementation of an additional loss term referring to geo-
metrical constraints can help to improve the correspondence quality of FlowSSM.

As there is no proper ground truth for shape correspondence, we have to use different
indirect metrics to assess the quality of the generated correspondences. This includes the
evaluation of sparse correspondences from anatomical landmarks as well as the quality of
resulting SSMs. In order to ensure a better generalization of the results, different datasets
with individual challenges were used. On basis of this evaluation setting, we can report
that there is no clear ranking between the different investigated methods. It is therefore
important to choose a suiting method with regard to the use-case at hand. Furthermore,
we can show that the additional loss term implemented in FlowSSM is able to improve the
resulting correspondences on most metrics used in this thesis.

Thesis Structure This thesis is structured in the following way:
In Chapter 2 we provide the reader with the theoretical background needed for this thesis.
We start with a short introduction on 3D shape representation. Afterwards, we review
methods used for correspondence estimation with a focus on data-driven, unsupervised
methods. Lastly, we take a look at statistical shape modeling and give a brief overview
regarding methods for construction, possible applications and metrics used to assess their
quality.

Chapter 3 describes the the methods and materials used in this thesis. At first, we char-
acterize the methods selected for a further investigation. Afterwards, we explain how
an additional loss term is added to FlowSSM in order to improve the resulting corre-
spondences. Lastly, we describe the datasets and metrics used for the evaluation of the
correspondences.

The performance of all methods is discussed in Chapter 4. First we state the plain results
on each dataset and each experiment. Afterwards, we discuss their meanings and place
them in a wider context.

The last chapter of this thesis summarizes our findings and gives suggestions for future
work.

3



2 Background and Related Work

The main goal of this chapter is to present the state-of-the-art regarding methods used for
correspondence estimation and to give some background information on Statistical Shape
Models (SSMs).
It starts with some basic information on the digital representation of 3D shapes. The
vocabulary learned here is useful for large parts of this thesis. Afterwards, we take a
look on classical methods for correspondence estimation, as well as the state-of-the-art
regarding unsupervised methods. This is necessary to gain an understanding of the variety
on different approaches but also their similarities. Lastly, since the construction of SSMs
is an important application for shape correspondence in medicine and a good proxy of its
quality, a broad overview of construction and applications of SSMs is given. This deepens
the understanding of the need for corresponding shapes, as well as measurements to
evaluate the quality of SSMs.

2.1 Three Dimensional Shapes

This section gives a short summary of concepts and methods needed throughout this thesis
regarding 3D shapes and their digital representations. The aim of this chapter is therefore to
provide background information and understanding on secondary methods and concepts
used in this thesis, as a more comprehensive overview would be beyond the scope of this
thesis.

Shape Representation A 3D object may be represented by its outer boundary which
often refers to the shape of an object. In order to represent a surface in a digital format,
many methods and representations have been developed. All representations can at least
approximately be converted into each other. Since most representations come with cer-
tain (dis-)advantages, the choice of a suitable representation is still important. Figure 2.1
visualizes the different representations, using the lower jaw bone (med. mandible) as an
example.

Most anatomical shapes result from segmentations of volumetric data, such as Computer
Tomography (CT)-scans and Magnetic Resonance Imaging (MRI) data. Therefore, the initial
representation is usually voxel-based [HM09]. Since voxel data consists of a 3D grid of

4



2 Background and Related Work

(a) Discretization by a regular
hexahedral grid (i.e. voxel
representation)

(b) 3D pointset representation
of the outer boundary of
the shape.

(c) Triangulation of the 3D ob-
ject boundary(i.e. surface
mesh representation)

Figure 2.1: Possibilities for digital representation of 3D objects, visualized on the lower jaw
bone (e.g. mandible).

values, it requires a lot of memory to store data in a high resolution [Par+19]. Another form
of representation that is closely related to the raw data of sensors are point clouds, which
are sampled on the surface of an object. Unfortunately this representation lacks topology
information [Par+19]. If a point set gets expanded by a connectivity information, we call
it a mesh [HM09]. In meshes the vertices are connected by edges to form faces. The normal
vectors associated to each face give information on the in- and outside direction of a shape.
According to Ambellan et al. [Amb+19b] the most common representations for building
SSMs are meshes and point sets. Throughout this thesis, shapes will be represented as
cursive and upper case variables, such as X . The points or vertices of this shape will be
represented as a bold and upper case variable of the same letter, e.g. X and the coordinates
of one single point as a bold and lower case variable x.

Shape Transformations During this thesis the transformation of shapes is a recurring
task, especially the deformation of shapes. Therefore, it is important to define the relevant
terminology beforehand.

A rigid transformation preserves the shape information and can therefore be used to align
shapes towards each other. The deformation can be decomposed in reflection, rotation and
translation [Kai+11]. This transformation sustains the pairwise distance between points on
the surface.

An isometric transformation only preserves the geodesic distances between points on the
surface. The geodesic distance is defined as the shortest distance between two points along

5



2 Background and Related Work

the surface [KS98]1. Thereby, an isometric transformation also allows to bend the shape
[Sah20].

If stretching or squeezing is involved, the deformation is non-isometric. Since the shape
information gets altered, the term deformation can be used as a synonym for all non-rigid
transformations.

A homeomorph transformation is bijective and continuous in both directions. If it is also
differentiable in both directions, it is called diffeomorph [Lam08].

Metrics for Shape Comparison In order to evaluate a shape transformation it is often
useful to measure the distance between the surfaces of two shapes, e.g. the distance between
source and target shape. While there are a lot of metrics found in literature, we focus on the
Chamfer Distance as it does not rely on predefined correspondences. It finds corresponding
points simply based on the smallest distance. Therefore, it is only a suitable metric for
comparing shapes that are rather similar to each other.

When applied to point sets, the metric searches for pairs of points from set X and Y
with minimal distance and averages over the Euclidean distances between these pairs
[Lüd+22]:

CDPP (X, Y) =
1

2 |X| ∑
x∈X

min
y∈Y

∥x − y∥F +
1

2 |Y | ∑
y∈Y

min
x∈X

∥x − y∥F (1)

Here, ∥·∥F denotes the Frobenius norm. The Chamfer distance can also be evaluated be-
tween two surfaces. Instead of point-pairs with minimal distance, we search for the point
on surface Y which is closest to a vertex x from shape X and vice versa. The surface metric
is more exact, but also computationally expensive since we search for the nearest points
within a triangle as opposed to the nearest points within a set of discrete points. We denote
the surface-to-surface Chamfer distance as CDSS. If the distance from X to Y and from Y
to X are evaluated, as above, the metric can be called symmetric.

Methods for Shape Alignment In order to compare two or more shapes, it is often neces-
sary to remove all rigid transformations, as they do not carry any relevant shape informa-
tion. This is often done by rigidly aligning these shapes towards each other.
In this thesis, two popular methods are used for this purpose: the Iterative Closest Points
(ICP)-method and the Procrustes Analysis (PA). The PA can only be used if the points are

1Whenever the geodesic distance is computed within these thesis, we use the following python library:
https://pypi.org/project/pygeodesic/

6
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2 Background and Related Work

in correspondence and is computed in a closed form, whereas the ICP works on correspon-
dence free shapes in an iterative manner.
The PA aims to minimize the least-square distance between a source shape X and a target
shape Y by the application of a transformation matrix T [Gow10]:

min ∥XT − Y∥2 (2)

If no constraints are opposed on T , the solution is given by

T = (XTX)−1XTY (3)

The aligned source shape XT is then given by XT = XT. A special case of the PA is the
Generalized Procrustes Analysis (GPA), where the classical PA is expanded in order to
align more than two shapes. Hereby, a mean shape is computed in an iterative manner
[Gow75].

The ICP method was proposed by Besl and McKay [BM92] to align two point sets. It
consists of the following steps:

1. Match the closest source point to each reference point.
2. Compute the rigid transformation that minimizes the average Euclidean distance

between the point pairs.
3. Apply the transformation to the source point set.
4. Start at 1. or finish if the Euclidean distance between the matched point pairs is below

a predefined threshold.

Note, that the ICP can end in a local minimum and therefor fail, if the shapes are not
roughly aligned beforehand.

7



2 Background and Related Work

2.2 Correspondence Estimation

According to Kaick et al. [Kai+11] the correspondence estimation task can be stated as the
search for a meaningful relation between the elements of a set of shapes. The outcome is a
mapping for each element of one shape to a semantically similar element of another shape.
In order to find a meaningful relation it is necessary to understand the local as well as
the global geometry of each shape and sometimes even the functionality of some shape
parts. The nature of the elements mapped to each other depends on the representation
of the shape. If the shapes are depicted as meshes or point clouds, the elements used for
correspondence are usually (vertex-)points or the faces of the mesh.

If the output of a correspondence estimation includes only a set of selected elements (e.g.
landmarks such as the tip of the nose and the corners of the eye), the correspondence
is called sparse. If, on the other hand, the output includes all elements of the shape (e.g.
all points on the surface of a face) we call it a dense correspondence ([Kai+11], [Sah20]).
The concept of dense and spare correspondence is visualized in Figure 2.2. This thesis
focuses on the estimation of dense correspondence for a set of (vertex-)points. Therefore,
all other variants are neglected in the following pages. Meanwhile, Kaick et al. [Kai+11] and
Sahillioğlu [Sah20] review a broader set of methods used for correspondence estimation.Recent advances in shape correspondence 1711

Fig. 3 Sparse (a, b) and dense (c) correspondences computed by
Sahillioğlu and Yemez [87]

Fig. 4 Deformation in its most basic form using Laplacian coordinates
(a). Data terms on two points at fingers under the Laplacian regulariza-
tion perform the deformation (b)

Fig. 5 Parameterization in its most basic form using uniform (b) and
cotangent (c) weights to flatten the 3D surface (a) to a disk. In d, the
toy 2D example at left is parameterized using the solution to the linear
system at right

In the most basic disk parameterization scheme, boundary
vertices of the surface (green ones in Fig. 5a) are first mapped
to the boundary of a disk. Then, the remaining interior ver-
tices are positioned in such a way that each one lands in the
center (uniform—Fig. 5b) or weighted average (harmonic—
Fig. 5c) of its immediate neighbors, the latter being more
respectful to the input geometry. We can solve two linear
systems for two coordinates separately to achieve this place-
ment:

Wx = bx and Wy = by (5)

where bx ∈ Rn×1 stores the x-coordinates of the boundary
positions at its top k rows when there are k boundary ver-
tices. Remaining n − k rows, which are set to 0, move the
interior vertices accordingly based on the multiplication of
the bottom n − k rows of W ∈ Rn×n with x (Fig. 5d). The
y-coordinates are computed similarly.

Wi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wi j vi , v j neighbs, vi interior,

−∑
k �=i wik i = j, vi interior,

1 i = j, vi boundary,

0 otherwise.

(6)

Discussing the shortcomings of this basic model and
extending it to non-disk topologies are beyond the scope of
this survey. We refer to [53] for a comprehensive reading on
the subject.

3.5.2 Similarity-based solution

Wenow investigate the alternative scheme to the registration-
based solution, which we call the similarity-based solution.
Here, the geometry of the input shapes is not altered in
any manner. Instead, we compute geometric invariants, or
descriptors, under the appropriate deformation model. Such
descriptors can be defined on vertices or between a pair of
vertices, the latter being more distinctive and effective. A
combination of both pointwise and pairwise terms leads to
an energy function whose minimum gives the desired corre-
spondence, or map, φ∗ : S → T :

E(φ) = w1

∑

vi

||dS(vi ) − dT (φ(vi ))||

+ w2

∑

vi ,v j

|eS(vi , v j ) − eT (φ(vi ), φ(v j ))|
(7)

where dS(.) and eS(., .) denote the descriptor values on a
vertex and between two vertices of the shape S, respectively.
Descriptor choice depends on the deformation type, e.g., for
isometric deformations a commonchoice for e is the geodesic
distance (Fig. 6a). Once Eq. 7 or a similar energy function
is ready, similarity-based solutions strive to minimize it via
efficient optimization tools. Similarity of real-valued func-
tions over surfaces (Fig. 6b) has also been a trending topic
since 2012 (Sect. 4.2).

3.5.3 Learning-based solution

Recent popularization of deep learning techniques has
affected the shape correspondence field significantly. We
report a work as learning-based if it learns some sort of prior

123

Figure 2.2: Sparse (left and middle image) and dense correspondence (right image). Images
taken from [Sah20].

This chapter gives a brief overview of the classical methods used to establish shape corre-
spondence and their strategies. Later, we focus on recent advances in unsupervised deep
learning methods used for correspondence estimation. Both is important, as it generates a
pool from which the methods used in this thesis are chosen. Last but not least, we discuss
different criteria for the evaluation of such methods and possible applications.
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2 Background and Related Work

2.2.1 Methods for Correspondence Estimation

Methods for correspondence estimation can be distinguished in two categories and their
combination: those based on the similarity of elements ("feature mapping") and meth-
ods using the proximity between the points of aligned shapes ("registration") [Kai+11].
Similarity-based methods use descriptors to find matching elements. Descriptors can be
simple characteristics such as geodesic distances [Kai+11] or more complex, such as func-
tions based in the Laplace-Beltrami base [Ovs+12]. The descriptors get matched to each
other with a so called functional map. Registration-based methods use deformations to
align shapes to each other. One classical approach is the use of the ICP algorithm and its
variants (e.g. [BM92], [BT00]). Affine transformations, such as the ICP method, pose a large
restriction for possible deformations. This can lead to inadequate correspondences and
non-homeomorphic mappings for shapes with high variances [HM09]. In order to avoid
this problem, non-rigid methods have been developed, such as [BR07] and [Whi+19].

Another important distinction lies between pair-wise and group-wise approaches. While
pair-wise methods consecutively match one shape to another, group-wise methods take
the whole population into account when establishing correspondence. As Ravikumar et al.
[Rav+18] states, group-wise methods are preferable since they are less biased, less prone
to outliers and therefore more robust in general.

(a) Target shape (b) Template shape (c) Deformed template

Figure 2.3: Possible learning objective for unsupervised correspondence estimation: De-
form template shape (b) to match the surface of the target shape (a), while
preserving the mesh structure of the template (c). The goal is the minimization
of the surface distance between deformed template and target.

Unsupervised deep learning methods Recent advances in deep learning have influenced
the shape correspondence field [Sah20]. All learning-based methods are trained on a set
of shapes and therefore are group-wise methods. This leads to the advantages mentioned
above. Learning-based methods can be divided into supervised and unsupervised methods.
Supervised methods require large datasets consisting of corresponding shapes. Since the
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2 Background and Related Work

Feature extraction

Feature extraction

Deformation

Shape 𝛸

Shape 𝛶

Shape 𝛸𝑑𝑒𝑓

Figure 2.4: Common framework for unsupervised correspondence estimation: Firstly, fea-
tures from shape X and shape Y get extracted. Based on those features, shape
X is deformed to match the surface of Y .

generation of this data is tedious and time-consuming, it is favorable to circumvent this
problem by applying unsupervised methods. Hence, this section focuses on recent advances
in unsupervised learning-based methods for correspondence estimation.

Since unsupervised methods assume that there are no labels given at all, the only infor-
mation available is the geometry of the set of training shapes. But arguably a few labels
are utilized, since data is often roughly aligned (e.g. top/down, left/right) or cut to the
relevant shape part (e.g. only distal femur) beforehand. Most methods strive to deform one
mesh into the geometry of another target mesh. This is essentially based on the assumption
that each point moves to a semantically similar location, generating a global correspon-
dence. One can distinguish between target-to-target deformations, where random shapes
are deformed into each other, and template-to-target deformation, where only a template
shape gets deformed.
The template usually has to be defined in advance, a common choice is the average shape
of the training set (e.g. in [Whi+19]). Lebrat et al. [Leb+22] generate their template by
taking and remeshing the convex hull of all surfaces. Thereby, most methods for template
generation require some kind of correspondence beforehand, since the shapes have to be
aligned towards each other. Lüdke [Lüd22] use a hub-and spokes approach for template
generation that does not require a correspondence. Figure 2.3 shows the template-to-target
deformation process: The objective is to deform the template shape (b) to match the surface
of the target shape (a). The resulting deformed template (c) clearly has the surface of the
target and the mesh structure of the template.

A typical framework used by many approaches is the one pictured in Figure 2.4. It com-
bines the similarity-based strategy with the deformation-based strategy mentioned above:
At first, features get extracted from one or both shapes, and afterwards the shapes get
deformed. Differences lie in the tools and architectures used for both tasks and the terms
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for the loss function. Most loss functions consist of a Chamfer distance between deformed
shape and target in combination with different regularization terms (e.g. [Gro+18], [Uy+],
[Lan+21], [Tra+21]).
Groueix et al. [Gro+18] were one of the firsts to employ this framework. Here, an encoder
network is used for feature extraction of only the target and a decoder is trained to deform
the template into the target shape, based on the extracted features. The method "Neu-
roMorph" proposed by Eisenberger et al. [Eis+21] is quite similar. It is based on neural
networks and uses the extracted features of both shapes to build a correspondence matrix
which feeds into the network used for deformations. Both networks for feature extrac-
tion and the deformation network share the same architecture based on EdgeConv-Layers
([Wan+19b]) and a simple Multi Layer Perceptron (MLP). While Neuromorph works with
meshes, Zeng et al. [Zen+21] utilize only point clouds and an even simpler network archi-
tecture, but otherwise their method is quite similar to NeuroMorph. Lang et al. [Lan+21]
also use a neural network for feature extraction. But afterwards they utilize the features for
cross- and self-construction instead of a simple deformation.

Other authors took on the idea of functional maps and transferred it to a deep learning
framework. Roufosse et al. [RSO19] employ a neural network to learn descriptor functions
in the Laplace Beltrami space. Afterwards a functional map is optimized to minimize the
difference between the descriptor functions. The functional map then can be viewed as cor-
respondence matrix. Halimi et al. [Hal+19] follow a similar approach but start with SHOT
descriptors [STD14] of the initial meshes. Aygün et al. [ALC20] expand this approach with
geodesic distances as features and compute these distances using heat kernels. Eisenberger
et al. [Eis+20] combine functional maps with extrinsic deformations in their Deep Shells
Framework. Starting with SHOT descriptors as well, they use a neural network to learn
features of both shapes.

Jiang et al. [Jia+21] use an entirely different approach following a hub-and-spoke model: At
first the source and target shape get projected into a learned latent space. Here, they search
for nearest template-neighbors and thereby a possible deformation from source to target is
found. Another important characteristic of their "Shapeflow" method is the application of a
continuous flow-field to compute the deformations. This leads, according to the authors, to
smoother results with less intersections. Uy et al. [Uy+] also utilize a hub-and-spoke model
in the way Shapeflow does, however they simply train their deformations on a neural
network. Trappolini et al. [Tra+21] employ an attention mechanisms for template-target
registration in an auto-encoder setting. Deng et al. [DYT21] use an auto-decoder setting
but base their training on implicit fields instead of meshes or point clouds.
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Both, deformation- and similarity-based approaches have limitations regarding very dis-
similar shapes [Gro+19]. The concept of cycle-consistency tries to address this challenge.
In order to enforce cycle-consistency, a point has to be mapped to its original location after
a cycle of deformations [Che+21]. Zhou et al. [Zho+16] apply this concept to 2D images
and Groueix et al. [Gro+19] for 3D point clouds.

Shape Correspondence in Medicine The methods mentioned above are applied to general
computer vision tasks. The objects under examination are usually human bodies in different
poses or everyday items such as chairs, cars or different animals. These objects can have a
lot of dissimilarities (think of chairs with or without armrests, with three or four legs etc.).
Most medical shapes have a higher degree of similarity. This paragraph therefore focuses on
methods used to estimate correspondences of anatomical shapes, such as different organs
or bones.

For the sake of constructing SSMs, there are some off-the-shelf tools for correspondence
estimation. According to Goparaju et al. [Gop+22], Deformetrica, SPHARM-PDM and
Shapeworks are widely used today. Deformetrica is based on the Large Diffeomorphic De-
formation Metric Mapping (LDDMM) framework proposed by Durrleman et al. [Dur+14].
SPHARM-PDM utilizes the SPHARM method developed by Brechbühler et al. [BGK95]
and Shapework apply their own particle-based method [CEW17]. The mathematical back-
ground of these papers is beyond the scope of this thesis and can on interest be explored
in the cited works.
There are a lot of other classical approaches used to bring anatomical shapes in correspon-
dence. However, there is a significant loss of group-wise methods. A lot of works focus on
the registration of 2D images, which is not the scope of this thesis. Mambo et al. [MDH18]
reviews these methods. Some works base their training on images (mostly CT and MRI
data) and output 3D data such as point clouds ([Rav+18], [Agi+20], [Dal+19], [Bay+19]).

2.2.2 Applications for Correspondence

A big field of application for shape correspondence is the field of virtual reality, where
correspondence can be used to transfer detected motions onto the avatar or other objects
[ALC20]. Since shape correspondence is a classical problem in computer vision in general,
it is needed for a lot of downstream tasks [DYT21]. This includes the morphing of shapes
([Kai+11], [Eis+21]), the editing of shapes [DYT21], or information transfer. The latter in-
cludes the transfer of deformations [SP04], style [Xu+10] and texture ([KS04], [DYT05],
[DYT21]). Other possible utilizations include mobility analysis [Wan+19a] and robotic
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grasping [Mil+03]. The biggest field of application in a medical context is the use for SSMs
and their various applications mentioned in Section 2.3.2. But shape correspondence can
also be utilized for change detection, as done e.g. by Nguyen et al. [Ngu+14] for the skeletal
changes of the mandible.

2.2.3 Evaluation of Dense Correspondence

The easiest way to evaluate correspondence is the use of a so called ground truth correspon-
dence. According to Kaick et al. [Kai+11] this can be achieved with two different metrics:
The Hamming loss (number of correctly matched points) and the endpoint error (distance
from matching point to its known ground truth). Especially in the medical field, the use of
ground truth correspondence is controversial, since it is generally not known and results
of handmade correspondence are often not reproducible [HM09].
Kaick et al. [Kai+11] also offer a set of other (indirect) metrics to assess the quality of
a correspondence. As we lack ground truth information for the data used in this thesis,
some of these metrics are applied later on. Note, that most metrics rely on the datasets at
hand. Some, like the previously mentioned ground truth, even require special annotations,
so-called labels.

One possible metric is the use of the output of the objective function used to generate
the correspondence. The underlying assumption is that this metric is proportional to the
accuracy of the estimated correspondence. Obviously, this can only be applied when the
methods under observation use similar objective functions.
Especially in cases where a comparison between different methods for correspondence
estimation is desired, the ground truth correspondence on benchmarking datasets can be
utilized for evaluation. Standard datasets used for this purpose include FAUST [Bog+14]
and SHREC’20 [Dyk+20].

According to Kaick et al. [Kai+11], it is common to assess the quality of generated corre-
spondences on anatomical data on behalf of the quality of resulting SSMs. Metrics to do
so are covered in Section 2.3.3.
Another possibility is the evaluation of the performance of the application itself. Depend-
ing on the use-case, the evaluation is often only qualitative e.g., the quality of transferred
textures. As this thesis focuses on anatomical data, the construction of SSMs is an im-
portant application. Another possible application is the automatic location of anatomical
landmarks. The evaluation of such a sparse correspondence requires appropriate labels for
the whole dataset.
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2.3 Statistical Shape Models

Statistical Shape Models are used to describe a class of semantically similar objects in a
compact way. They capture the average shape as well as the geometric variations that
occur in the training population, the latter usually in the form of eigenmodes [HM09].
Figure 2.5 shows parts of an SSM of the liver. While (a) shows the mean shape, (b) and (c)
visualize possible variations imposed by the first two eigenmodes. This section covers the
construction of SSMs as well as a broad overview of medical applications and metrics to
evaluate the quality of different SSMs.

(a) Mean shape

(b) First eigenmode (c) Second Eigenmode

Figure 2.5: Statistical Shape Model of the liver: Mean shape (a) and first two eigenmodes
(b and c) of the Principal Component Analysis (PCA). The first eigenmode has
a large impact on the size of the left part of the liver, whereas the second mode
mainly effects the size of the right part.

2.3.1 Construction of SSMs

Most methods for the construction of surface based SSMs rely on training shapes with dense
correspondence. Methods to establish dense correspondence are discussed in Section 2.2.
In order to find the shape variations based on the actual geometry and not on the position
in Euclidean space, it is necessary align the shapes beforehand. The rigid transformations
applied for shape alignment are usually rotation and translation and sometimes even re-
scaling. Depending on the medical application, size is an important biological variation
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and should therefore be preserved during shape alignment [HM09]. The most popular
method to align corresponding shapes is the GPA mentioned above [SWZ14].

Point Distribution Models In 1995 Cootes et al. [Coo+95] introduced Point Distribution
Models (PDMs), which are still the most common SSMs in use today ([Ber+17], [Li+21],
[Tót+20], [Amb+19a]). PDMs are based on a PCA to reduce the dimensionality of the shape
representation and result in a mean shape M and a set of sorted eigenmodes em to capture
the variations of the population. Each (un-)seen shape can now be approximated by a linear
combination of weighted eigenmodes.
The mean shape M of N training shapes is defined as the average of the coordinates of
each of the k vertices X i over all training meshes:

M =
1
N

N

∑
i=1

X i ∈ R3k. (4)

Here it is important to note that this formula only applies if the training shapes are in dense
correspondence, i.e. if each vertex is at a semantically similar position on every shape. With
the mean shape M it is possible to compute the covariance matrix Σ:

Σ =
1

N − 1

N

∑
i=1

(X i − M)(X i − M)T. (5)

The eigendecomposition of Σ leads to the eigenvectors em and -values λm needed to rep-
resent the shape variations. The s = min(3k, N) − 1 eigenvalues have to be sorted in
descending order: λ1 ⩾ λ2 ⩾ . . . ⩾ λs, as higher eigenvalues correspond to more important
variations in shape. The sum of all eigenvalues can be interpreted as the total variance VT

of the model:
VT = ∑

m
λm (6)

An important aspect in the design of a PDM is the number of eigenvectors t used to build
the model. The parameter t is often chosen in order to capture an accumulated variance
that represents a defined ratio pt of the total variance [Coo20]:

t

∑
m=1

λm = ptVT. (7)

Common values for pt range between 0.9 and 0.98. Other strategies for the selection of t
are mentioned in Heimann and Meinzer [HM09]. The linear combination of t eigenvectors
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used to describe unseen shapes can be written as:

Y i = M +
t

∑
m=1

bmem, (8)

with shape weights b ∈ Rt:
b = QT(Y i − M) (9)

and
Q = (e1, e2, . . . ,et) ∈ R3m×t. (10)

When all eigenvectors are used, the training shapes can be represented perfectly. Equa-
tion (8) can also be used to generate new shapes by varying the shape weights bm. In
order to get realistic shapes similar to the training set, the range for bm has to be limited.
A popular way for doing so is to limit bm within the range of three standard deviations
around the mean [Coo+95]:

−3
√︁

λm ≤ bm ≤ 3
√︁

λm (11)

Other Methods for SSM Construction While the PDM proposed by Cootes et al. [Coo+95]
is the most popular SSM to this date, there are other linear and non-linear methods for
SSM construction available.
PDMs face a lot of challenges when applied to medical data. One challenge regards the
global nature of the PCA: variations are captured on a global level. Meanwhile a lot of
medical use-cases are interested in local shape anomalies, indicating diseases and other
pathologies. Among others Lecron et al. [Lec+12] try to solve this issue with a multilevel
part-based PCA approach. Another way to solve this issue is the use of sparse mode PCAs,
as applied by Sjöstrand et al. [SSL06] or the use of Independent Component Analysis (ICA)
[Sui+04]. Here it is important to note that methods which are not PCA-based usually do
not allow for an ordering of modes which hinders a compact model representation.

Another challenge is the limitation on possible deformations of the mean shape since twist-
ing and bending cannot be captured with linear statistical methods [HM09]. An obvious
solution to meet this problem is to expand the linear PCA to a non-linear version. This is
often done using kernel PCA ([Wan14], [Ma+19], [RDT06], [KBW11]). A downside of the
kernel PCA is the choice of a suiting kernel, which is often non-trivial and dependent on
the application. Other non-linear approaches make use of the so called Principal Geodesic
Analysis (e.g. [Fle+04], [Tyc+18]) which considers geodesic distances between the shapes
instead of Euclidean distances [Bru+14].
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In contrast to all the other methods mentioned above Lüdke et al. [Lüd+22] do not require
training shapes in predefined dense correspondence. It is sufficient, if all shapes are roughly
aligned according to the principal axes. Their method "FlowSSM" uses a neural network to
estimate correspondence and performs a PCA in latent space to construct an SSM. A more
detailed description is given in Section 3.1.1, as it is part of the comparison in this thesis.

2.3.2 Medical Applications for the Use of SSMs

While PDMs initially were developed to locate (anatomical) shapes in 2D images [Coo+95],
today there is a wide range for medical applications of SSMs. Therefore, this section gives
only a broad overview of possible applications.

Segmentation and Reconstruction As mentioned above, SSMs can be used to generate
plausible unseen shapes. This generative capability can be used in segmentation and re-
construction tasks, where SSMs serve as a so-called geometric prior that regularizes the
deformation to stay within the respective shape space of the learned population. Heimann
and Meinzer [HM09] give an overview of SSMs used in segmentation tasks. Shape com-
pletion is needed, when the underlying data is sparse or erroneous. SSMs can be used to
interpolate the data in accordance with the known population. Another possible recon-
struction task is the generation of a healthy version of a pathological shape. Sarkalkan
et al. [SWZ14] gathered various examples for SSM-based bone reconstructions. Lecron et al.
[Lec+12] fit SSMs to a spine with instruments installed to deform and straighten the spine.
The resulting model gives insights on the geometry of the spine without these instruments.
Ma et al. [Ma+19] use SSMs to deal with erroneous data of kidneys and ankle bones. As
Ambellan et al. [Amb+19b] pointed out it is also possible to approximate 3D shapes based
on only a few 2D images. This can lead to a significant reduction of radiation exposed to
the patient.

Shape Analysis and Diagnosis The compact encoding of SSMs can be used to capture
characteristic alterations of shapes. In combinations with Machine Learning (ML) methods
this can be utilized for a better analysis of the shapes. As outlined by Ambellan et al.
[Amb+19b] unsupervised methods can be used to cluster the data into different subgroups.
This can be diseases-specific groups, but also groups based on demographic features such
as age and sex. Supervised methods on the other hand can train a classifier for disease
classification tasks. In literature SSMs were applied to classify osteoarthritis ([Tyc+18],
[AZT21], and papers mentioned in [SWZ14]) and Alzheimer’s disease [AZT21]. On the
other hand Bruse et al. [Bru+17] use an SSM to cluster different aortic arch shapes.
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Other Applications Sarkalkan et al. [SWZ14] and Goparaju et al. [Gop+22] show multiple
ways where SSMs can be used for surgery planning and implant design. And as Ambellan
et al. [Amb+19b] pointed out, SSMs can also be utilized for education as it could help
students to get a better understanding of the variations of "normal" anatomical structures.
Tang et al. [Tan+19] have used SSMs for data augmentation.

2.3.3 Evaluation of the Quality of SSMs

Later on, we compare different methods used for correspondence estimation of anatomical
shapes. As discussed previously, we use the quality of the emerging SSMs as a proxy to
evaluate the quality of the underlying correspondences. It is therefore important to be
able to evaluate the quality of the resulting SSMs as an indirect metric to measure the
underlying correspondence quality.

According to Davies et al. [DCT01] an ideal shape model has the following properties:
generalization ability, specificity and compactness. These intrinsic criteria are the ones most
often used for the evaluation of SSMs:

• Generalization Ability: The ability of the SSM to represent unseen shapes. In order
to compute this measure, a previously unseen shape is projected into the PCA-space
and reconstructed. Now we compute the Euclidean distance between the original and
reconstructed points [Bru+14].

• Specificity: The ability of the SSM to generate new and valid instances of the shape
family. Specificity can be quantified by randomly generating a large number of sam-
ples and computing the Euclidean distance to the corresponding points of the closest
training shape [Gop+22].

• Compactness: The number of parameters needed to model the variability of the
model. This criterion mirrors Occam’s razor principle "a simple explanation is more
likely to be better than a complicated explanation" [Gop+22], indicating that fewer
parameters (eigenvectors) are preferable. The compactness can be computed as the
sum of all eigenvalues whose corresponding eigenvectors were used to build the
model ([Gop+22]).

Unfortunately, Ericsson and Karlsson [EK07] proved that a low-quality correspondence
can still lead to excellent results in the standard metrics used to measure the quality of
SSMs mentioned above. In order to reduce this risk, Ravikumar et al. [Rav+18] proposed
other metrics to evaluate the quality of SSMs and of the underlying correspondence. One
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possibility is the use of anatomical landmarks defined by a medical expert. The underlying
assumption is that a good correspondence on these points indicates a good correspon-
dence on all other points and that the ground truth of the sparse annotations holds truth.
Another option is the evaluation of the SSM performance of an actual application, such
as a clustering or classification task. Munsell et al. [MDS08] try to circumvent the risk of
good SSM results based on a low quality correspondence by applying the correspondence
estimation method to an synthetic 2D dataset with known ground truth correspondence.
But as Ravikumar et al. [Rav+18] pointed out, it is not feasible to expand this approach to
the 3D medical domain.

2.4 Summary

Shape correspondence can be described as a semantically meaningful mapping between
instances of two or more shapes. Methods used for correspondence estimation are either
similarity-based, deformations-based or a combination of both. Affine registrations, such as
the ICP, fail to generate adequate results for shapes with high variations. Recent advances
in computational power and deep learning methods opened the field to data-driven meth-
ods. Those methods are trained on the whole population of the training set and therefore
called group-wise methods. It is assumed that these group-wise methods are preferable
to classical pair-wise methods [Rav+18]. Since the manual generation of ground truth cor-
respondence labels is quite tedious and not reproducible, unsupervised learning-based
methods are favorable as they do not need these labels. Most of these methods deform
shapes into each other and use the Chamfer distance in combination with regularization
terms as a loss function. Advances in unsupervised learning based methods have not been
evaluated on the medical data yet.
The evaluation of correspondence is quite complicated, since the ground truth is generally
unknown. Metrics used in literature include the evaluation towards handmade correspon-
dence, the evaluation of arbitrary metrics such as the Chamfer distance or the evaluation
of performance on the application. The main applications for correspondences of anatomi-
cal shapes are hereby the construction of SSMs and automatic landmark localization. The
quality of SSMs is mostly evaluated in terms of generality, specificity and compactness.
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The goal of this thesis is the estimation of shape correspondences for anatomical shapes.
This is done with two experiments: a comparison of a selection of existing methods used
for correspondence estimation and the further development of FlowSSM. The methods
selected for the comparison are presented in Section 3.1, the modification of FlowSSM is
described in Section 3.2.

In order to evaluate the resulting correspondences, an experimental set-up is needed and to
ensure a better comparability, the set-up for both experiments is the same. The datasets used
in this set-up are described in Section 3.3. Afterwards, we take a look at the metrics that
can be used to evaluate the resulting correspondence in Section 3.4. A proper assessment
is quite a challenging task, as there is no ground truth available.

3.1 Methods from Literature considered for Comparison

We presented a wide field of different approaches to estimate shape correspondences in
Section 2.2.1. In this section we select a few of these methods to investigate their perfor-
mance on anatomical data. As stated before, there is no reproducible ground truth for
correspondence on anatomical shapes. Thereby, all methods selected in this section do not
require such a ground truth and are therefore unsupervised.

In order to ensure a better comparability, all methods investigated follow the template-to-
target deformation approach. The goal of these methods is therefore to input randomly
meshed target shapes and output a deformed template which fits to the surface of the
target. It is then assumed that the templates consist of vertices which are in correspondence
to the vertices of all other deformed templates and this correspondence is evaluated and
discussed in the next chapter.

3.1.1 FlowSSM

The first method chosen for the comparison is "FlowSSM" by Lüdke et al. [Lüd+22]. The
method was initially proposed to construct SSMs, but can also be used to generate dense
correspondences. Since the resulting SSMs were of high quality, it is a promising approach
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to evaluate the underlying correspondence. It is also one of the only data-driven and there-
fore group-wise methods that can be used for correspondence estimation in the medical
field known to the author. Furthermore, the method is closely related to "ShapeFlow" by
Jiang et al. [Jia+21], as both methods rely on the integration of a deformation flow. In
the broader computer vision domain, ShapeFlow attained good results when compared
to other unsupervised methods used for correspondence estimation (see e.g. [Eis+21],
[DYT21], [Jia+21]). This raises expectations on the quality of the correspondences estimated
by FlowSSM.

FlowSSM takes meshes as input, but works with points evenly sampled on the surface. The
idea is to deform each point on a template x0 to represent the surface of the target shape.
The deformation function Φ describes the deformation trajectory of each point x0 during
the time τ ∈ [0,1]:

Φ(x0, τ) = x0 +

τ∫︂
0

vθ(x(t))dt (12)

Here v(·) represents the velocity field, which can be described as

vθ(x(t), t) = f θ(x(t), t · z) · ∥z∥2. (13)

The flow function f is parametrized by an MLP and z represents a shape-specific latent
vector. In order to the broaden the deformation’s frequency spectrum, the process is divided
into a global and a local deformation, each with their own MLP. The global deformation
uses global latent vectors, whereas the local latent vectors are defined by a sum of M
weights zk:

z(x) =
M

∑
k=1

zk φk (∥ck − x∥2)

φk(r) = e−(εk ·r)2

(14)

where ck are control points and εk is an inverse Gauss kernel width. While zk and ck are
learned in training, εk has to be determined by the user. The loss function used for training
is the pointset to pointset Chamfer distance.

After training, an SSM is build with the common PDM approach. In contrast to the common
versions, the PCA is performed on the latent vectors and not the vertices of the deformed
template. However, this thesis uses only the deformed template meshes and neglects the
resulting SSM. This enables us to only evaluate the quality of the resulting correspondences
and not the (possible) advantage of performing a PCA in latent space. Furthermore, the
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SSM build by FlowSSM requires unseen shapes to be processed in an inference-step in
order to optimize the latent vectors. This additional step is time-consuming and requires a
Graphics Processing Unit (GPU). It can be avoided when only the learned correspondences
are used for SSM construction as done in this thesis.

Implementation The python implementation used in this thesis is a predecessor of the
version publicly available on Github1. As the method was already used with the distal
femur and liver dataset, we reused the recommended settings. The faces dataset lacks this
advantage. We re-used the settings from the liver data, as parameter-tuning is a time and
energy intensive task. As we gain results comparable to other state of the art methods
such as Grewe and Zachow [GZ16] (see Section 4.1.3), we argue that the parameter choice
is appropriate. All deviations from the default settings can be found in Table 3.1. The
parameter εk refers to the inverse Gauss kernel width mentioned in equation (14) while the
acronym LOD represents the level of detail of the local and global deformer, respectively.

3.1.2 NeuroMorph

Another groupwise method with competitive results when compared in literature is "Neu-
roMorph" by Eisenberger et al. [Eis+21]. Since it has never been applied to anatomical
data, it holds great potential for this comparison. Furthermore, its structure is related to
FlowSSM, which simplifies the comparison.

The method itself is not template-based but strives to deform random shapes (e.g. X and
Y) into each other. As a first step, a neural network is used to extract features based on
the vertices of each shape (e.g. X and Y respectively). A correspondence matrix Π matches
the pairs with most similar features using a softmax operator. Afterwards, an interpolator
network is used to compute the deformation. The input variables for the interpolator
are the vertices X, the correspondence based offset ΠY − X and a time variable t. The
output consists of the deformed vertices XT. The neural networks for feature extraction
and interpolation are of the same architecture, which consists mainly of five EdgeConv-
Layers [Wan+19b] and an MLP. The loss term used for training is composed of three
different loss functions:

1. The registration loss: ∥ΠY − XT∥2
2.

2. The as-rigid-as-possible loss, which strives to restrict the interpolation to possible
sequences by minimizing distortions (see [SA07] for more details).

1https://github.com/davecasp/flowssm
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3. The geodesic distance preservation loss: ∥ΠDYΠT − DX ∥2
2, where DX and DY are

geodesic distance matrices which have to be computed before training.

The output of the method consists of deformed vertices on every step of the interpolation
and the correspondence matrix Π. If the vertices are used for further downstream tasks, it
is recommended to apply the post-processing method "Smooth Shells" by Eisenberger et al.
[ELC20].

Implementation We use the python implementation of NeuroMorph found on Github2

and apply the default settings. As the pre-processing is implemented in Matlab, we re-
implemented it in python. For the post-processing we used the Matlab implementation of
SmoothShells3 with the default settings.

When applied to the use-case of building corresponding meshes for SSMs, it is only nec-
essary to deform a template towards varying targets. Therefore, the method was adapted
to only train deformations of the template and not all training shapes. Both versions are
tested within this thesis.

NeuroMorph deforms every possible data combination in each training epoch. If a dataset
has n targets, this results in 2n possible combinations. Since the version with the template
has a reduced variability of training data as there are only n possible combinations, we
increased the number of training epochs to account for this disadvantage. Furthermore,
the training procedure of NeuroMorph changes some settings during the training. The
parameter ninc determines when these changes are applied and was adjusted towards
the increased number of epochs. As the time needed for training increases dramatically
with the number of training shapes and therefore possible combinations, we limited the
maximum training time to one week. This leads to the reduced number of epochs of the
distal femur training. The changed settings are summarized in Table 3.1.

3.1.3 LDDMM

The third method chosen for comparison is the LDDMM Framework as used by Deformet-
rica [Dur+14]. Since this method is already established in the medical domain, it serves as a
baseline for the state of the art in use today. In contrast to the other two methods, LDDMM
is not data-driven but rather a simple optimization problem. It is therefore a pair-wise

2https://github.com/facebookresearch/neuromorph
3https://github.com/marvin-eisenberger/smooth-shells

23

https://github.com/facebookresearch/neuromorph
https://github.com/marvin-eisenberger/smooth-shells


3 Materials and Methods

method. The goal is to minimize the Varifold distance dW between target Y and deformed
template X :

min dW(ϕ(X ),Y) = min(⟨ϕ(X ), ϕ(X )⟩W∗ + ⟨Y ,Y⟩W∗ − 2 ⟨ϕ(X ),Y⟩W∗) (15)

The inner product between two meshes is given as:

⟨︁
S ,S ′⟩︁

W∗ = ∑
p

∑
q

KW
(︂

cp, c′q
)︂ (︂

nT
p n′

q

)︂2

⃓⃓
np

⃓⃓ ⃓⃓⃓
n′

q

⃓⃓⃓ (16)

where KW is a kernel with width σW and cp and np denote the centers and normals of the
faces.

The diffeomorphism ϕ in equation (15) represents the deformation applied to the template
and is defined for a point x on the surface as ϕ(x) = x + v(x). The velocity field v at a
given time t ∈ [0,1] is defined as:

Ẋ(t) = vt(X(t)) = K(X(t), c(t))α(t) with X(0) = X0 (17)

where K represents a kernel. It is dependent on the control points c and weights α. There-
fore, this method is again based on the integration of a deformation flow.

Implementation The implementation used in this thesis is Deformetrica4. Only the kernel
width σW was altered to gain better results on each dataset and use the default parameters
otherwise. The chosen values are listed in Table 3.1.

3.1.4 Meshmonk

Last but not least we evaluate the performance of Meshmonk [Whi+19]. Meshmonk was
developed to provide a publicly available tool for dense correspondence estimation which
is even for non-experts easy to use. This low-level usability in combination with promising
results on anatomical shapes reported in literature were the reason for its selection in this
thesis.

Meshmonk strives to deform a template towards a target by applying both, an ICP and a
Non-rigid Iterative Closest Points (NICP) algorithm. It is therefore a pairwise method. The
ICP is used to roughly align both shapes. The NICP starts with a symmetrical weighted

4https://www.deformetrica.org/
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k-nearest neighbor search to initialize the correspondence. Afterwards possible outliers are
detected and removed. Finally, a visco-elastic transformation is applied. This process is
repeated in a iterative manner, until either a pre-defined surface distance between template
and target is reached, or a pre-set number of iterations was performed.

Implementation We used the C++ implementation available on Github5. As all shapes are
already aligned towards the template with an ICP, we did not repeat this step and applied
only 80 iterations of NICP. Other than this adjustment, we used the default settings on all
other options.

Table 3.1: Parameter used on each dataset for each method.

Method Parameter Distal Femur Liver Face

FlowSSM
εk 0.8421233433207136 0.4615228342424673 0.4615228342424673

LOD [1,7] [1,5] [1,5]
nsamples 15000 12000 12000

Neuromorph
# epochs 240 600 600

ninc 150 300 300

Neuromorph on
temp.

# epochs 1200 1200 1200

ninc 600 600 600

LDDMM σW 7 2 7

Meshmonk nit 80 80 80

5https://github.com/TheWebMonks/meshmonk
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3.2 FlowSSM with Geodesic Distance Preservation Loss

FlowSSM has a few advantages when compared to NeuroMorph. For one, there is no
need for elaborate pre- and postprocessing methods. Furthermore, it generates smooth,
intersection-free meshes due to the flow integration. As FlowSSM was initially not con-
ceived to learn shape correspondence, there is still some potential to improve its results. For
these reasons, the following section examines an attempt to improve the correspondences
generated by FlowSSM.

3.2.1 Methodology

There are not many shape features in the literature that can be used for unsupervised
training of correspondence estimation. One approach commonly followed is the usage of
the Geodesic Distance Preservation Loss. Since it is not yet implemented for FlowSSM, we
want to test this approach.

The idea behind the Geodesic Distance Preservation Loss (GDPL) is to promote correspon-
dences that generate isometric maps between template and target shapes. This is done
by the minimization of the difference between the pairwise geodesic distances between
points on the template and the target under a given correspondence. The loss term can
lead the neural network to prefer isometric deformations to non-isometric ones, as geodesic
distances are maintained during isometric deformations (see Section 2.1). In an extreme
example, the loss function causes a transformation of the vertices of the nose to a new
location rather than flattening the nose on the originally location and recreating it some-
where else on the face. As such the loss can encourage a good correspondence, as the
original "nose vertices" will stay on the nose. Furthermore, FlowSSM does not directly
optimize any correspondence-specific properties. This loss function fills this gap by adding
the optimization of a correspondence matrix Π to the training objective.

Regarding the implementation of the loss function, we apply a formulation frequently
found in literature (e.g. [Eis+21], [Hal+19]):

Lgeod = ∥ΠDYΠT − DX ∥2
2, (18)

where DX and DY represent the pairwise geodesic distance matrices of shape X and Y ,
respectively. In our implementation the shape X represents the template, while the shape
Y denotes the different target shapes.
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Figure 3.1: Illustration of the general procedure to estimate Π: at first, the k nearest neigh-
bors of template vertex xi on the target yl , ym, yn are found. Π is initially filled
with zeros. In the i-th row of Π, the indices of the nearest neighbors l, m and n
are filled with the inverse distances between the template vertex and nearest
neighbors on the target mesh.

In order to be able to use Equation 18 as a loss term, it has to be differentiable. As the
geodesic distance matrices are pre-computed, the differentiability only depends on the
correspondence matrix Π.

Estimation of the Correspondence Matrix The matrix Π can be interpreted as a correspon-
dence matrix, e.g. a matrix mapping each vertex of shape X to its corresponding vertex on
shape Y . In literature the correspondence matrix is often based on extracted features. Since
FlowSSM does not use feature extraction directly, we approximate a soft correspondence
matrix based on the k nearest neighbors of the deformed templates vertices on the target
surface:

We initialize Π as a n × m zero matrix to define the mapping between n template vertices
and m target vertices. Afterwards, we enter values for the k nearest neighbors of each
template vertex in order to approximate each point on the deformed template by its nearest
neighbors on the target. In order to do so, we fill in the inverse distance to the nearest
neighbors, e.g. if vertex yj of the target is one of the k nearest neighbors of vertex xi on the
template shape, we fill Π the following way:

Πi,j =
1

(∥xi − yj∥F)σ
(19)
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Here, ∥·∥F represents the Frobenius norm and the parameter σ can be used to shift more
weight to the closest neighbor. Finally, we normalize each row of Π to get a sum of one.
The process for the estimation of Π is illustrated in Figure 3.1.

It is important to note, that this loss function can never reach zero. That is, because the
correspondence matrix is not one-hot but maps each vertex of X to its k nearest neighbors.
Furthermore, even with a perfect mapping the difference between the geodesic distance
matrices cannot be zero unless they are exactly the same. This would only be the case if
X is an isometric mapping of Y , which is highly unlikely for anatomical shapes of two
different patients.

We use the GDPL in combination with the previously applied Chamfer distance loss LCD

of FlowSSM and utilize the parameter α to adjust the weight of the GDPL:

Ltotal = LCD + αLgeod (20)

3.2.2 Implementation

The implementation of the GDPL faces a few challenges. While FlowSSM originally samples
points on the surfaces of each mesh, the GDPL requires a (fixed) set of vertex points with
a pre-computed pairwise geodesic distance matrix. FlowSSM benefits from the sampled
points as they differ in each epoch and therefore increase variation within the training set.
In order to keep this advantage, we apply the Chamfer distance loss LCD to the sampled
points, and use the vertices of the original meshes to compute the GDPL:

For the calculation of Π we utilize the deformed sampled points of the template and search
for the nearest neighbors between the original target vertices. Since Π is now defined
towards the sampled points of the template and not its vertices we cannot use the pairwise
geodesic distance matrix of the template DX as originally intended. Instead, we have to
adapt it by using another correspondence matrix ΠX :

D̂X = ΠX DX ΠT
X (21)

The matrix ΠX is similarly computed as Π and therefore mainly relies on the nearest
vertices of each sampled point on the surface of the template. Contrary to Π, the compu-
tation of ΠX always relies on the 3 nearest neighbors. The adapted distance matrix D̂X is
computed in the dataloading step and therefore never alters during training.
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Another advantage of the use of points sampled on the surface is the independence to the
numbers of vertices on the mesh. As data is often processed batch-wise during training, it
is important that all matrices have the same size for every target mesh. Therefore, when
using the GDPL we have to decrease every mesh to the size of the smallest mesh in the
dataset. The vertices to be removed are randomly selected in each epoch. The number of
vertices used for every dataset is listed in Table 3.2.

The number of gradients used for backpropagation is increased by the GDPL dramatically,
as Π is a n ×m matrix. This is beyond the computing capacity used in this thesis, especially
for the liver and distal femur dataset. An obvious action would be to decrease the batch
size. However, it was observed that this alteration decreases the quality of the training
results significantly. Therefore, we choose another strategy and decrease the number of
points sampled on the template surface by 75% when the liver and distal femur datasets
are used. Unfortunately, this still leads to a small decrease in the training results. Therefore
we use this setting without the active GDPL to compute a new baseline model for each
dataset.

Selection of Hyperparameters The employment of the GDPL leads to five new data-
specific hyperparamters. The first is the number of vertices of the smallest mesh in the
dataset nsamples. The second is the weight α of the GDPL in the total loss term. This param-
eter is chosen in order to bring the GDPL approximately to the same level as the Chamfer
distance loss. Similar to Eisenberger et al. [Eis+21] it was observed that the GDPL can re-
strict necessary non-isometric deformations. This effect can be reduced by deactivating the
loss after a certain amount of epochs. The parameter nepochs defines for how many epochs
the loss function is active. The last two parameters are the number of nearest neighbors
between deformed template and target k and the "temperature" σ used to adapt the weight
of the closest neighbor (see Equation 19). Those are chosen based on different training
results with alterations of the parameter. In order to evaluate the results of the GDPL in
a unsupervised manner, metrics based on labels were not taken into account during this
evaluation. Table 3.2 summarizes the hyperparameter used for each dataset. As the valida-
tion data was utilized for hyperparameter tuning, we report the final results based on the
test data split.
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Table 3.2: Hyperparameter used for the geodesic distance preservation loss on every
dataset.

Parameter Distal Femur Liver Face

nsamples 11942 12974 1827

α 0.5 1 0.5
nepochs 300 250 250

k 15 10 15

σ 1 2 1

3.3 Data

This section presents the datasets used in this thesis. As we want to find the limits of each
correspondence estimation method, the objective here is to find challenging datsets that
cover a wide range of possible use-cases. Furthermore, Section 2.2.3 showed that some
evaluation metrics for dense correspondence require annotations, i.e. labels of some kind.
As these labels relate to the data, we need datasets with different types of labels to increase
the number of metrics that can be used for evaluation.
Every dataset was split in approximately 70% training data, 10% validation and 20% test
data. The datasets used in this thesis and their associated labels are briefly described below.
All characteristics of the datasets are summarized in Table 3.3. After the presentation of
the datasets we take a look at the origin of the templates and the preprocessing applied to
each dataset before usage.

3.3.1 Datasets

Distal Femur The distal femur region refers to the part of the femoral bone, which com-
prises the knee joint. As a rigid tissue structure, the exhibited variability is limited. The
round prominence at the end of the bone, called condyle, shows the most variation [Tyc+18],
especially in pathological samples. As the dataset is cut just above the knee joint, the sur-
faces are bordered.

The data used in this thesis is a subset of the data generated by Ambellan et al. [Amb+19a]
on basis of the Osteoarthritis Initiatives data6. It consists of segmented MRI scans of healthy
samples and those affected from varying degrees of arthritis. Since the data was initially

6https://nda.nih.gov/oai/
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Figure 3.2: Patch borders (a and b) and anatomical landmarks (c) in red defined on the
template surface of each dataset.

processed to build SSMs, the triangulation of these meshes is parametrized to represent a
semi-automatically generated correspondence.

The process of semi-automated establishment of correspondences between a set of femoral
shapes includes the manual annotation of sparse landmarks, the construction of patch
borders connecting these landmarks and a supervised post-processing to mesh the sur-
face parts between the patch borders. All of this was done by Ambellan et al. [Amb+19a].
Figure 3.2 (a) shows the template shape of the distal femur data set as well as the patch
borders used for the semi-automatic correspondence definition. The semi-automatic cor-
respondence can be understood as some kind of correspondence ground truth. Therefore,
it can be used as a label for evaluation throughout this thesis. The vertices placed on the
patch borders can be comprehended as a set of sparse landmarks. Since most of those
vertices were not placed manually on anatomical landmarks, they lack the significance
of landmarks placed on actual anatomical features. Therefore, they are marked as (✓) in
Table 3.3.
For the application of methods used for correspondence estimation it is obviously neces-
sary to get meshes without correspondence. Therefore, we use the remeshed version from
Lüdke [Lüd22] for training and evaluation.

Liver The liver is a soft tissue organ with a high degree in geometric variability. This can
even include twisting and bending [Fas+98]. The liver dataset is the only dataset used in
this thesis, where the surfaces have no boundary.
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We use the dataset from Kainmuller et al. [KLL07]. Just as the distal femur dataset, this
data was initially used to build an SSM. The required correspondences have been created
using a method similar to the one that was applied to the distal femur data. Figure 3.2 (b)
shows the surface of the template shape and the patch borders used for correspondence
estimation. Again, we use the shapes with predefined correspondence as ground truth
labels and the remeshed versions from Lüdke [Lüd22] as training and evaluation data.
Once more, we can comprehend the vertices placed on the patch borders as a set of sparse
landmarks with reduced meaning.

Faces The human face allows for an easy location of many anatomical landmarks. The
set of available landmarks is one of the reasons why this dataset is included in the thesis.
Furthermore, it is the dataset with the lowest resolution and lowest number of samples
used in this thesis. Even though faces are no typical "anatomical shapes", there are possible
reconstruction tasks for SSMs (e.g. [Alo+22]) apart from the classical computer vision
applications. The dataset represents only the facial area of the head. Thereby, the surfaces
have a boundary, just like the distal femur data.

The facial data was originally recorded by Prof. Dr. Dr. Bernd Lapatki and Dr. med. dent.
Johanna Radeke at the University of Ulm and consists of 100 different faces with neutral
expressions. Grewe and Zachow [GZ16] utilized the dataset to establish a correspondence
in an automatic manner beforehand. Since we need medhes without correspondece, we
use a remeshed version of the meshes from Grewe and Zachow [GZ16]. Contrary to the
other two datasets, we do not use the correspondences generated by [GZ16] as a ground
truth label, because they were generated fully automatically.
The sparse landmarks were annotated by experts from the University of Ulm. We use
the landmark locations averaged over the nine expert ratings as the ground truth labels.
Since some labels are not located on the facial area used in this thesis, we only use 29 of
the originally 32 annotated landmarks. Figure 3.2 (c) shows the template shape and the
location and abbreviation for every landmark in use. The exact definition of each landmark
location can be found in the appendix at Table A1.

3.3.2 Pre-processing and Template Generation

Since all datasets have already been used for SSM construction, the mean shapes of the
previously built SSMs are used as templates for all datasets in this thesis. This is arguably
a controversial choice, since this mean shape is not available in a real world use-case.
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However, this choice will reduce the effects that a poor template could have on the corre-
spondence estimation. Furthermore, the annotated landmarks are already available for the
different mean shapes, which simplifies the evaluation process. Last but not least, we can
use the semi-automatically generated correspondences to build SSMs and compare their
quality to those of automatically generated correspondences. For future applications where
a template is not available beforehand, we refer to the related work (e.g. [Dur+14], [Lüd22],
[Leb+22], [Whi+19]).

As a result of the recording process, all shapes are already roughly aligned regarding the
principal axes. In order to equalize the starting conditions, all shapes were additionally
aligned towards their template shape. This was done using the ICP algorithm mentioned
in Section 2.1. The prior alignment and the prior cutting of some shapes (e.g. femur to
distal femur, region of the face) can be seen as a kind of weak label used by the training
methods later on. This would contradict to the definition of unsupervised methods. However,
almost all methods found in literature that call themselves unsupervised, are trained on
data that is at least roughly aligned. Even the datasets used for benchmarking, for instance
the shapes of FAUST [Bog+14], are oriented in a similar way. Furthermore, most medical
data originated from either CT or MRI scans where orientation of the patient is always
known and saved during recording.

Table 3.3: Overview of different features of all datasets. This includes the split between
train, validation and test data as well as the available labels for each dataset.

Dataset Distal Femur Liver Face

Avg. number of vertices 11,968 12,974 1,969

Number of training meshes 177 78 67

Number of validation meshes 25 11 10

Number of test meshes 51 23 19

Semi-automatic correspondence ✓ ✓ -
anatomical landmarks (✓) (✓) ✓
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3.4 Evaluation of Dense Correspondence

Since a single, unambiguous ground-truth dense correspondence cannot be defined for
anatomical shapes, there is no proper ground truth that can be used for evaluation in this
thesis. Therefore, we have to identify indirect ways of estimating the quality of generated
correspondence between shapes. Therefore, it is important to include multiple metrics and
datasets in the evaluation, since individual metrics can be misleading and draw an incom-
plete picture. In Section 2.2.3 we already covered a lot of possible metrics. The following
section justifies the choice of metrics used in this thesis and covers their implementation.

3.4.1 Selection of Criteria

The selection of criteria highly depends on the available data. Some metrics mentioned
in Section 2.2.3, such as the evaluation on a benchmarking dataset with ground truth,
could therefore not be included in this thesis. This section summarizes the reasons for the
selection of criteria used in this thesis.

Ground truth / Semi-automatic Correspondence Literature often refers to semi-automatically
generated correspondences as a "ground truth" used for evaluating correspondences (e.g.
[Amb+19a], [AZT21], [Tyc+18], [KLL07]). Since there is data available that has semi- au-
tomatically generated correspondence labels and due to the lack of a better alternative,
we want to follow this example. Nevertheless, the procedure which was used to generate
these correspondences included an automated meshing part which was applied on the
areas between the patch borders. Since the correspondences in this area therefore contain
a certain degree of ambiguity, their meaningfulness is reduced. Therefore, we refrain from
calling it "ground truth" and use the term "semi-automatic" instead.

Landmarks This metric is particularly important, as it enables us to directly evaluate
a sparse correspondence. Furthermore, the location of landmarks is an application of
shape correspondence in itself and therefore recommended for evaluation by Kaick et al.
[Kai+11]. As mentioned in Section 2.3.3, the localization of landmarks can also help us to
detect whether the standard metrics used for SSM evaluation are misleading. Therefore,
all landmarks available will be used for evaluation. This includes the patch borders used
to generate semi-automatic correspondences as well as the actual anatomical landmarks of
the face dataset.
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Shape Approximation Accuracy As all methods strive to deform a template into different
targets, it is important to assess the quality of these deformations. Therefore, we evaluate
the Chamfer distance between deformed templates and targets. Furthermore, we take a
look at the number of self-intersections on the resulting meshes, as self-intersections are
unnatural on anatomical shapes and therefore undesirable.

Quality of Resulting SSMs As mentioned before, the construction of SSMs is an impor-
tant application for shape correspondence as well as a good indicator for its quality. In
accordance to the standard of literature, we evaluate the resulting SSMs on the terms of
generality, specificity and compactness. Depending on the application of the SSM later on,
it is also important that the meshes generated by the SSM exhibit certain qualities. There-
fore, we also take a look at the self-intersecting faces on meshes projected into the SSM and
on meshes generated by the SSM.

3.4.2 Metric Details

All automatic methods investigated in this thesis provide correspondence by deforming a
template towards a target shape. As a first step, we align the resulting deformed templates
to their original targets using the ICP algorithm (see Section 2.1). Furthermore, the test
data split is used for the evaluation. This section describes details of all applied criteria
and also coins the terms for different evaluation metrics used in this thesis.

Surface Error The "Surface Error" used to measure the quality of the deformation is
computed as the symmetric surface to surface Chamfer distance between the deformed
template X and its target shape Y . We compute the distances and average over all M
shapes of the test split:

Surface Error :=
1
M

M

∑
i=1

CDSS(X ,Y) (22)

Self-intersections The intersections within each deformed template mesh are evaluated
with two metrics: percentage of Self-Intersecting Meshes (SIM) and number of Self-Intersecting
Faces (SIF).
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Semi-automatic Correspondence The "Correspondence error" measures the distance
between deformed template and their corresponding points on the shapes with semi-
automatic correspondence. In order to compute it, the vertices of the deformed template
were projected onto the surface of the target mesh in correspondence. Now the Euclidean
distance between the projected points X proj and their corresponding points on the target
Y corr is measured and averaged over all M shapes with the Frobenius norm ∥·∥F:

Correspondence Error :=
1
M

M

∑
i=1

∥X proji − Y corri∥F (23)

Landmarks The anatomical landmarks are located on the surface of the template. Most
landmarks are not defined on a vertex, but are rather located anywhere on a triangular face
of the surface mesh. Therefore, a barycentric coordinate system7 can be used to transfer the
points from the location on the original face to the corresponding location on the deformed
face. Afterwards, the landmarks of the deformed template are projected onto the surface
of the target. The "Landmark Error" describes the averaged Euclidean distance between
the projected landmark locations on the deformed template Lproj and the ground truth
locations Lgt:

Landmark Error :=
1
M

M

∑
i=1

∥Lproji − Lgti∥F (24)

Since the patch borders of the liver and distal femur dataset are defined on the vertex
positions, they can be seen as sparse correspondence. Therefore, they are evaluated in the
same way as the semi-automatic correspondence.

SSM Quality In order to only evaluate the underlying correspondence and not the method
to build an SSM, all SSMs are build in the same way. Thereby, we use the standard pro-
cedure proposed by Cootes et al. [Coo+95] and summarized in Section 2.3.1. At first, all
corresponding meshes will be aligned towards the template using the Procrustes Analy-
sis (see Section 2.1). Here we use the deformed training meshes of each method as this
increases the number of eigenmodes. Afterwards, a PCA is applied to these meshes, and
the resulting SSM consists of its eigenmodes. Figure 3.3 visualizes the different algorithms
and data used in the evaluation process for an SSM.

7When applied to triangles, barycentric coordinates make use of the fact that any point on the triangle can
be expressed as a linear combination of the vertices which span the triangle. The weights of this linear
combination are the barycentric coordinates, which can be applied to any triangle [YS19].
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Embedding

Training data
with learned
correspondence

Test data
(without
correspondence)

Procrustes Analysis
towards template

PCA

ICP Generality

SSM Compactness

Surface generation ICP Specificity

Nearest neighbor

CD*

CD*

*CD = Chamfer Distance

Figure 3.3: Flowchart for SSM evaluation. The training data with learned correspon-
dences is used to build the SSM and for the evaluation of the specificity. The
correspondence-free test data is used for the generality evaluation, whereas the
compactness stems from the SSM itself.

In literature, the generalization ability is often computed as a leave-one-out test of all
shapes. Since this would lead to a lot of computationally demanding re-trainings of all
correspondence estimation methods examined in this thesis, we refrain from this approach.
Instead we compute this metric as a hold-out study, which is commonly used in deep
learning. To evaluate the generality, we use the test dataset without correspondence. In
contrast to the shapes with trained correspondence, this reduces the bias towards smoother
deformations and creates the same conditions for all methods under examination. The
shapes get embedded into the SSM and afterwards aligned to their original shape with the
ICP algorithm. The latter is done to reduce the influence of rigid motion. Afterwards, the
symmetric surface to surface Chamfer distance between the embedded Xproj and original
shape Xorg is computed and averaged over all M shapes of the test split:

Generality :=
1
M

M

∑
i=1

CDSS(Xorgi ,Xproji) (25)

The poses of the face-shapes have a high variability. This can lead to problems during the
generality experiment. In order to reduce this risk, we add an ICP alignment step after
every 5 projection steps. This is only done for the face dataset.

In order to evaluate the specificity, 2000 random meshes are sampled based on the SSM.
Again, the sampled meshes get aligned towards every training shape, using the ICP al-
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gorithm. Afterwards, we compute the pointset to pointset Chamfer distance between the
generated mesh Xgen and its closest match in the training set Ynn. We refrain from using
the surface to surface Chamfer distance and use the pointset to pointset Chamfer distance
instead, since it is faster to compute. Finally, we average the Chamfer distances over all
2000 shapes:

Specificity :=
1

2000

2000

∑
i=1

CDPP(Xgeni ,Ynni) (26)

The compactness is evaluated in the following way: We sum the eigenvalues and plot the
variance over the number of eigenmodes needed. It is therefore computed as

Compactness(K) =
K

∑
i=1

λi. (27)

Here K represents the number of eigenvectors used to build the model, and λi indicates
the eigenvalue of the i-th eigenvector [Gop+22].

The intersections within each generated mesh are evaluated with two metrics already men-
tioned above: percentage of SIM and SIF. We compute these metrics for all embedded
shapes of the generality experiment and all generated shapes of the specificity experi-
ment.
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3.5 Summary

The main goal of this thesis is to examine different methods used for shape correspondence
estimation of anatomical shapes. This is done with two experiments: the comparison of
different methods found in literature and the further development of one method. All
methods strive to deform a template towards the targets surface. The underlying assump-
tion is that points are deformed to semantically similar locations, which ensures a proper
correspondence.

Four methods were chosen for the comparison: Meshmonk and LDDMM, which follow
classical optimization problems, as well as the two group-wise methods FlowSSM and Neu-
roMorph. The method FlowSSM is also used in the second experiment, as we implemented
an additional loss term, the GDPL. This loss term prefers isometric, distortion-free defor-
mations and can therefore help to improve the correspondence quality. As the loss-term
increases the memory usage, other minor changes from the original FlowSSM had to be
implemented, resulting in new baseline models.

All methods are evaluated with the same experimental set-up, consisting of datasets and
evaluation metrics. Three different datasets are used, namely distal femur, liver and face.
The datasets differ in resolution and geometrical variance in order to expand the challenge.
As there is no ground truth available, different indirect metrics were chosen to evaluate
the correspondence. This includes metrics based on labels such as the correspondence and
landmark error, metrics based on the quality of the resulting meshes (surface error and
self-intersections) as well as metrics to asses the quality of the resulting SSMs, namely
generality, specificity and compactness.
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In this chapter we present the results of all experiments and discuss their meanings. The
goal of this chapter is to answer the following questions:

• Which methods produce good shape correspondences and why?

• Which metrics are suitable to evaluate correspondence?

• How do the different characteristics of the three datasets affect the results of each
method?

The first section of this chapter deals with the first experiment, which is the comparison
of different methods from literature. Starting with the plain results of each dataset, we
put them into context and analyze the (dis-)advantages of each method afterwards. The
second section covers the second experiment and therefore evaluates the GDPL. At first,
we discuss the deviations towards the results of FlowSSM. Afterwards, we try to explain
them.

4.1 Experiment 1: Comparison of different Methods from Literature

In the first experiment, we compare the correspondence quality of the different correspon-
dence estimation methods presented in Section 2.2.1. We report the results of all criteria
sorted by the different datasets. Since the datasets distal femur and liver include a semi-
automatically generated correspondence for all shapes, these meshes were used to construct
an SSM. This gives us the opportunity to evaluate whether time-consuming process of the
semi-automatic correspondence generation is actually worthwhile.

There are four different variants of the method NeuroMorph evaluated in this section. The
first variation results from the use of the postprocessing method SmoothShells [ELC20]
as suggested in the original publication. Results after postprocessing are noted with the
ending "pp.". The other variation stems from the shapes deformed during the training od
the model. As already mentioned in Section 3.1.2, the initial method trains by deforming
every possible data combination. The variation implemented in this thesis, where only the
template shape gets deformed toward every target shape, is marked with the ending "o.T."
(on template).
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Computation Time Apart from the quality of the resulting correspondences, the time
needed for the estimation is an important factor when it comes to the usability of the
different methods. Table 4.1 gives an overview on the different methods, datasets and used
hardware. It is important to note, that the data-driven methods often take a lot of time for
training, but the actual time needed for the correspondence estimation of unseen shapes
is rather short. As the prediction time from NeroMorph is negligible when compared
to the duration of training, it is not listed in the table. In contrast, the classical methods
Meshmonk, LDDMM and the method used for post-processing of the NeuroMorph data
need the same amount of time for every shape, as they optimize the pairwise deformation
individually. The prediction durations listed in Table 4.1 are based for the test split of every
dataset.

Table 4.1: Computation times needed for training and predictions of different methods.

Method train. / pred. Distal Femur Liver Face

FlowSSM training 4 h⋆
2 h▲

45 min⋆

prediction 2 h♦
0.5 h⋆

1.5 h⋆

NeuroMorph training 7 d 22 h▲
4d 22.5 h⋆

3 h⋆

NeuroMorph o.T. training 2 d 3.5 h⋆
5.5 h▲

2.5 h♦

SmoothShells prediction 2 h∗
1 h∗

15 min∗

LDDMM prediction 10 min∗
5 min∗

5 min∗

Meshmonk prediction 4.5 h∗
2 h∗

15 min∗

⋆ = Nvidia A40 RTX 48GB ▲ = Nvidia Tesla V100 PCIe 32GB
♦ = Nvidia A100 SXM4 80GB * = Nvidia GeForce RTX 3080 10GB

4.1.1 Results on Distal Femur Data

The results of all methods applied to the distal femur dataset are listed in Table 4.2 and
Table 4.3. The first table shows the evaluation metrics directly based on the deformed
meshes, while the second table shows the results of the constructed SSMs. A short view
on the tables reveals that there is no clear ranking. Rather, different methods excel on a
few metrics, but underperform on other criteria. Furthermore, the results are quite similar
between all methods and hardly show any variation.

The surface error is lowest on the meshes deformed by the LDDMM approach. The ver-
sions of NeurmoMorph without postprocessing perform worst. Pairwise methods (i.e.
Meshmonk and LDDMM) deform the template without the generation of intersections.
The classical NeuroMorph approach leads to the most self-intersections, with and without
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postprocessing. The correspondence error is exceptionally low on the templates deformed
by Meshmonk. This also applies to the landmark error.

All SSMs build on automatically generated correspondences have a better generalization
ability, than the SSM build on semi-automatic correspondence. The generality error is low-
est if the SSM was build on the LDDMM data or the data generated by the postprocessed
NeuroMorph version trained to only deform the template. However, the SSMs build on
all NeuroMorph results produce a lot of self-intersections in both generality and speci-
ficity results. The specificity error itself is lowest on the un-postprocessed NeuroMorph
versions. Figure 4.4 (a) shows the compactness of the SSMs build on the estimated corre-
spondences. It is obvious that the LDDMM framework leads to the lowest compactness.
The NeuroMorph versions without postprocessing reach the best results.

Table 4.2: Evaluation metrics on the deformed templates of the distal femur data for all
methods.

Method Surface Error
in mm

SIM SIF Corresp. Error
in mm

Landmark Er-
ror in mm

FlowSSM 0.12 ± 0.09 8 % 31 1.53 ± 0.21 1.54 ± 0.24

NeuroMorph 0.51 ± 0.06 24 % 8 1.77 ± 0.31 1.83 ± 0.32

NeuroMorph pp. 0.10 ± 0.02 69 % 10 1.60 ± 0.29 1.70 ± 0.31

NeuroMorph o.T. 0.52 ± 0.05 4 % 10 1.74 ± 0.27 1.81 ± 0.29

NeuroMorph o.T. pp. 0.10 ± 0.02 4 % 10 1.77 ± 0.24 1.86 ± 0.26

LDDMM 0.07 ± 0.01 0 % 0 1.51 ± 0.34 1.51 ± 0.32

Meshmonk 0.11 ± 0.03 0 % 0 1.05 ± 0.27 1.10 ± 0.26

Table 4.3: SSM quality on distal femur data in terms of generality and specificity as different
methods were used for correspondence estimation.

Method
Generality Specificity

Error in mm SIM SIF Error in mm SIM SIF

Semi-automatic 0.30 ± 0.07 8 % 24 1.12 ± 0.13 2 % 11

FlowSSM 0.27 ± 0.05 0 % 0 1.12 ± 0.12 0 % 0

NeuroMorph 0.25 ± 0.05 86 % 39 0.95 ± 0.14 56 % 8

NeuroMorph pp. 0.26 ± 0.05 84 % 14 1.13 ± 0.14 79 % 12

NeuroMorph o.T. 0.25 ± 0.05 80 % 50 0.97 ± 0.12 21 % 25

NeuroMorph o.T. pp. 0.24 ± 0.04 57 % 26 1.12 ± 0.13 24 % 19

LDDMM 0.24 ± 0.04 2 % 74 1.14 ± 0.15 2 % 84

Meshmonk 0.26 ± 0.06 2 % 122 1.08 ± 0.12 1 % 19
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4.1.2 Results on Liver Data

The results for the liver dataset are listed in Table 4.4 and Table 4.5. Again, there is no clear
ranking between the different methods. But in contrast to the distal femur data, the results
of the different methods differ severely.

The surface error of the NeuroMorph variants is exceptionally high, while the postpro-
cessing leads to a significant decrease of the error. Only LDDMM reaches a similar low
surface error. Again, the meshes processed by all NeuroMorph variants have a lot of self-
intersecting faces. While Meshmonk also generates a lot of self-intersections, FlowSSM
hardly generates any and LDDMM does not create any self-intersections at all. The corre-
spondence error and landmark error of Meshmonk are again particularly low. FlowSSM
generates an even lower landmark error. The NeuroMorph variants without postprocessing
generate remarkably high landmark errors.

When the estimated correspondences are used for SSM construction, the resulting SSMs
have the following qualities: Again, the semi-automatically generated correspondences
lead to the highest generality error. The NeuroMorph variants without postprocessing
lead to the lowest generality error, as well as the Meshmonk and LDDMM approach. In
terms of specificity, the NeuroMorph varaiants without postprocessing reach by far the
best results, while LDDMM performs worst. All Neuromorph variants, the semi-automatic
correspondences and Meshmonk lead to a lot of self-intersections in the resulting meshes
of both experiments, generality and specificity. The compactness of all SSMs is visualized in
Figure 4.4 (b). Noticeably, all methods yield quite similar results. On closer inspection, we
can see that the NeuroMorph versions with postprocessing need the most modes to capture
100 % variance. The SSM constructed with the correspondences generated by LDDMM is
the least compact SSM when only a few eigenmodes are used. Surprisingly, it is also the
first SSM to reach the full variance.

Figure 4.6 shows a concrete example of the generality experiment. The semi-automatic cor-
respondences (c) lead to high frequency details, which are not part of the original shape (a).
The NeuroMorph variants, especially without postprocessing, as well as Meshmonk, lead
to many unnatural hard edges and an irregular mesh. The projections made by FlowSSM
and LDDMM produce the smoothest mesh, but lack some geometrical details such as the
bulge in the top left corner.
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Table 4.4: Evaluation metrics on the deformed templates of the liver data for all methods.

Method Surface Error
in mm

SIM SIF Corresp. Error
in mm

Landmark Er-
ror in mm

FlowSSM 0.57 ± 0.11 9 % 20 11.04 ± 4.10 8.97 ± 4.23

NeuroMorph 1.93 ± 0.28 100 % 158 11.74 ± 4.00 12.30 ± 4.82

NeuroMorph pp. 0.34 ± 0.05 100 % 160 11.27 ± 4.08 11.08 ± 5.11

NeuroMorph o.T. 1.71 ± 0.22 96 % 129 11.38 ± 4.07 12.63 ± 4.80

NeuroMorph o.T. pp. 0.33 ± 0.05 96 % 116 11.33 ± 4.05 11.31 ± 4.94

LDDMM 0.36 ± 0.04 0 % 0 11.05 ± 3.73 10.26 ± 4.53

Meshmonk 0.62 ± 0.21 91 % 226 10.23 ± 4.28 9.86 ± 4.99

Table 4.5: SSM quality on liver data in terms of generality and specificity as different meth-
ods were used for correspondence estimation.

Method
Generality Specificity

Error in mm SIM SIF Error in mm SIM SIF

Semi-automatic 1.92 ± 0.39 100 % 113 5.05 ± 0.64 88 % 60

FlowSSM 1.82 ± 0.38 35 % 70 5.04 ± 0.67 5 % 64

NeuroMorph 1.74 ± 0.36 100 % 492 4.23 ± 0.57 100 % 184

NeuroMorph pp. 1.81 ± 0.37 100 % 297 4.99 ± 0.62 100 % 204

NeuroMorph o.T. 1.67 ± 0.37 100 % 387 4.20 ± 0.61 99 % 133

NeuroMorph o.T. pp. 1.78 ± 0.40 96 % 178 4.89 ± 0.66 100 % 134

LDDMM 1.75 ± 0.32 57 % 106 5.10 ± 061 56 % 103

Meshmonk 1.73 ± 0.23 100 % 342 4.84 ± 0.65 96 % 106

4.1.3 Results on Face Data

The results for the deformed face meshes are listed in Table 4.6. Similar to the other datasets,
there is no clear ranking between the methods. Once more, we observe high differences
between the different methods.

The surface error, again, is highest on the NeuroMorph versions without postprocessing. It
is exceptionally low on the meshes deformed by LDDMM. While FlowSSM leads to no self-
intersections whatsoever, all NeuroMorph versions create not even a single mesh without
self-intersections. The landmark error is lowest on the meshes deformed by FlowSSM. The
standard NeuroMorph implementation leads to the highest landmark error. It also is to
be highlighted that the postprocessing step increases the landmark error when applied to
NeuroMorph version trained on deforming only the template mesh.
As the dataset was initially used by Grewe and Zachow [GZ16] to generate unsupervised
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correspondences, we can compute their landmark error on our test split. In order to ensure
a better comparability, we used the results based on a version of their proposed method
which does not use texture information. With on average 2.38 mm, the error is slightly
higher than for the meshes generated with FlowSSM. However, the comparability is limited,
as they trained their model on the original dataset with an increased depth of field and the
used template has an open mouth, as well as eyes. As the method uses landmark detection
for an initial alignment, it can only be used on face data.

The landmark error is visualized for all individual landmarks in Figure 4.1. While the left
side shows the landmark error of the landmarks located on the vertical centerline of the
template, the right side shows all other landmarks. It is obvious that the ranking between
the methods differs from landmark to landmark. Especially on the centerline, the error
increases if the landmark is located closer the edge of the surface. Only FlowSSM seems
to disregard this trend. The same trend also occurs on the right plot in weakened form.
Here, the landmarks are plotted based on their horizontal location from right to left. The
errors of Meshmonk even seem to be nearly symmetrical in regard to the vertical centerline,
which is located between the landmarks PHR and PHL. While LDDMM reaches the highest
errors, FlowSSM yields by far the best results. Sometimes, the error is even lower than the
Intra Person Variability (IPV). In those cases, the method performs on the same level as the
expert annotators.

The generality and specificity results for the face dataset are listed in Table 4.7. Meshmonk,
LDDMM and the NeuroMorph versions with postprocessing lead to the lowest generality
errors. The specificity error again is lowest on the NeuroMorph versions without postpro-
cessing, but FlowSSM also reaches a comparatively low result. Once more, all NeuroMorph
versions lead to a lot of self-intersections. While Meshmonk creates a lot of self-intersections
in the generality experiment, the specificity experiment creates only a few self-intersections.
The compactness results for all methods are visualized in Figure 4.4 (c). The methods
LDDMM and Meshmonk need the most eigenmodes to capture the variance of the popula-
tion. FlowSSM and the NeuroMorph version trained to deform only the template need the
fewest.

Figure 4.5 shows a concrete example of the generality experiment. The original structure of
the template mesh is best preserved with FlowSSM (c). The other methods obviously have
problems with the illustration of the eyes, as the shape is often very unnatural. NeuroMorph
without postprocessing leads to a large nose and Meshmonk seems to have problems with
the border of the face.
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Table 4.6: Evaluation metrics on the deformed templates of the face data for all methods.

Method Surface Error
in mm

SIM SIF Landmark Error
in mm

FlowSSM 0.46 ± 0.12 0 % 0 2.25 ± 1.46

NeuroMorph 0.83 ± 0.08 100 % 175 4.30 ± 3.17

NeuroMorph pp. 0.30 ± 0.03 100 % 167 4.17 ± 2.85

NeuroMorph o.T. 0.97 ± 0.07 100 % 273 3.40 ± 2.21

NeuroMorph o.T. pp. 0.30 ± 0.04 100 % 220 3.87 ± 2.48

LDDMM 0.17 ± 0.02 84 % 26 3.79 ± 3.49

Meshmonk 0.78 ± 0.38 42 % 11 3.13 ± 2.79
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Figure 4.1: Landmark errors of the different methods. The left figure shows the landmarks
located on the vertical centerline of the template from top to bottom. The right
figure shows the landmarks located outside of the centerline of the template
from right to left. The distance between the landmarks is proportional to their
distance on the template in the respective direction. The IPV data was taken
from [Tiw21].
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Table 4.7: SSM quality on face data in terms of generality and specificity as different meth-
ods were used for correspondence estimation.

Method
Generality Specificity

Error in mm SIM SIF Error in mm SIM SIF

FlowSSM 1.25 ± 0.20 11 % 40 1.82 ± 0.20 0 % 0

NeroMorph 1.10 ± 0.26 100 % 286 1.64 ± 0.19 100 % 185

NeuroMorph pp. 1.02 ± 0.25 100 % 210 2.14 ± 0.18 100 % 181

NeuroMorph o.T. 1.14 ± 0.31 100 % 312 1.68 ± 0.19 100 % 275

NeuroMorph o.T. pp. 1.04 ± 0.28 100 % 211 2.31 ± 0.26 100 % 219

LDDMM 0.94 ± 0.28 79 % 62 2.11 ± 0.21 63 % 34

Meshmonk 1.00 ± 0.21 100 % 49 2.03 ± 0.18 36 % 8

4.1.4 Discussion

The results on all dataset showed that there is no clear ranking between the methods,
as the results differ on each metric and each dataset. In literature, it is often assumed
that group-wise methods are favorable compared to pair-wise methods, as they are less
prone to outliers. This assumption can not be confirmed by our results, as there is no clear
ranking between those categories. Furthermore, the selected metrics used for evaluation
often contradict each other. This highlights that the quality of a correspondence can best
be evaluated by using more metrics, and that the metrics should be chosen according to
the use case at hand. Nonetheless, there are a few general observations to be made on the
performance of every method:

Semi-automatic Correspondences The semi-automatically generated correspondences of
the distal femur and liver data were used to build SSMs. It is remarkable that the resulting
generality errors are the highest when compared to all other methods. The specificity errors
also range in the higher levels. The high frequency details in Figure 4.6 can only partly
be explained by the fact that the meshes have no surface error and therefore contain all
details of the original shapes. This of course leads to eigenmodes that capture more details,
resulting in more high frequency details on the projections. But since the projection also
shows details that are not part of the original shapes, this indicates that the eigenmodes
are somehow faulty. The observations described above induce the realization that the time-
consuming task of semi-automatically generating correspondences is no longer necessary.
On the other hand, the observations question the reliability of the correspondence labels
for distal femur and liver data, as these labels were generated in the same way. For this
reason, these labels will be given a lower priority in the remainder of this thesis.
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FlowSSM For most metrics the method scores somewhere in the middle field. However,
there are a few exceptions to be made. First of all, the meshes generated by FlowSSM
and the resulting SSMs have the fewest intersections. This can be explained by the un-
derlying approach, as the integration of a deformation flow is known to hardly create
self-intersections ([Lüd+22], [Jia+21]). Furthermore, FlowSSM yields by far the best results
on the landmark errors on the face and liver dataset. This could be explained by its inde-
pendence from the template meshing: As FlowSSM samples points evenly on the surface of
each mesh, it is not influenced by irregularities of the mesh itself. Since for example the face
template is densely meshed around the eyes, other methods "use" these vertices on other
parts of the face, resulting in a bad representation of the eyes and a high landmark error.
This could also explain why the landmark error tends to be higher on the outer landmarks
for nearly all methods (compare Figure 4.1).

NeuroMorph Two metrics stand out when evaluated on the NeuroMorph results: the
exceptionally high numbers of self-intersections and the low specificity errors when com-
puted without post-processing. Since self-intersections are scarcely evaluated in the broader
computer vision domain, this disadvantage is probably not known to the authors. The good
specificity results however can easily be explained: The surface error of the variants without
postprocessing is also quite high. This leads to smoother meshes without many details.
The specificity error evaluates the similarity between shapes generated by the SSM and
shapes used to build the SSM. As the latter lack many details, the generated meshes will
also be very smooth. And since no details have to be illustrated in this setting, the resulting
error is exceptionally low. The good specificity results are therefore misleading and the
postprocessing step highly recommendable whenever the surface error is high. Another
observation of the NeuroMorph variants is notable: The results when trained in the stan-
dard setting hardly differ from the results when the deformations are only trained on the
template. As the latter is much faster during training (see Table 4.1), it is recommendable
to use this version.

LDDMM Similar to FlowSSM, meshes generated by LDDMM tend to have only a few self-
intersections. Again, this can be explained by the integration of a deformation flow field
which is part of the method. LDDMM produces the lowest surface errors and good gener-
ality results. However, the specificity error is often among the highest and the compactness
is also on the lower end. The landmark error on the face data is also one of the highest.
These contradicting results lead to the assumption that the generated correspondences
are somehow faulty. Erroneous correspondences that yield good SSM results have also
been reported in literature (i.e. [Gop+22], [EK07], [MDS08]). The low performance for the
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landmark errors of the face dataset can probably again be explained by the construction
of the template mesh. As LDDMM takes vertices from the densly meshed area around the
eyes and moves them somewhere else, the surface error is reduced, as more vertices are
available to represent the other areas of the face. Unfortunately, this means that the verices
are not moved to semantically similar locations, which leads to a high landmark error. But
as all shapes are deformed in the same (presumably wrong) way, the results are consistent
in itself. This, on the other hand, could explain the good generality results.

Meshmonk Regarding all datasets, Meshmonk tends to have an especially low landmark
error, but the SSM quality is always somewhere in the middle range. In the concrete
examples of the generality experiment on the liver (Figure 4.6) and face dataset (Figure 4.5),
we can see that resulting shapes have an irregular mesh with unnaturally sharp edges. As
the authors hardly give any background information on the mathematical background of
the method, it is difficult to interpret the results. Nevertheless, as the method is easy to
use and quite quick in its computations, it might be a good choice for some applications,
especially if these include the annotation of landmarks.
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4.2 Experiment 2: Evaluation of FlowSSM with the Geodesic

Distance Preservation Loss

In the second experiment we evaluate the performance of the GDPL implemented in
FlowSSM. As the implementation required us to decrease the number of points considered
on the template surface, a new baseline model was trained for each dataset. The differences
observed on the error metrics between the original FlowSSM model and the new baseline
model also influence the model trained with the new loss term and therefore the final
results. It is assumed that the results of the GDPL could be altered by those differences if a
large enough memory was available. The main hypothesis to be tested in this experiment
is whether the addition of the GDPL leads to a better correspondence and if so, why.

Remeshed Face Data The GDPL relies on a search of up to 15 nearest neighbors during
the estimation of the correspondence matrix. This can be challenging if there are not many
neighbors available, which is the case for the face dataset due to its low resolution. On
the original template, as shown in Figure 4.2 (a), a set of 15 nearest neighbors would
probably span over half the area of the forehead. And a "wrong" neighbor, that could for
instance occur if the hneighborhood is influenced by the edge of the surface, would have a
huge impact. In order to weaken this challenge, the face dataset was remeshed to increase
its resolution. Thereby, the previous average resolution of 1,969 vertices per shape was
increased to 10,101 vertices per shape. Figure 4.2 (b) shows the remeshed template. It is
obvious that the resolution of the area around the eyes is approximately the same as on all
other areas, as opposed to the original template.

Computation Time Table 4.8 lists the computation times needed for the trainings and
predictions of the different FlowSSM versions. It is obvious that the use of the GDPL
leads to a steep increase in training but especially in prediction time. While the memory
management of the method could be improved, the difference partly stems from the many
nearest neighbor searches. Therefore, the use of the GDPL will always be slower. The
fact that an additional pre-processing step is needed for the computation of the geodesic
distance matrices increases the computation time of the GDPL even more.

4.2.1 Results on all Datasets

Table 4.9 lists the results on the deformed meshes of all datasets. We can see that the
addition of the GDPL term leads to small increases of all metrics, especially on the landmark
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(a) Original template (b) Remeshed template

Figure 4.2: Original and remeshed face template

Table 4.8: Computation times needed for training and predictions of different FlowSSM
versions.

Method train. / pred. Distal Femur Liver Face Face remeshed

Original training 4 h⋆
2 h▲

45 min⋆
45 min⋆

prediction 2 h♦
0.5 h⋆

1.5 h⋆
1.5 h⋆

New Baseline training 2h⋆
1 h⋆

45 min⋆
45 min⋆

prediction 1 h⋆
15 min⋆

1.5 h⋆
30 min⋆

with GDPL training 1 d 8 h⋆
16.5 h⋆

1.5 h♦
8.5 h⋆

prediction 1d 1.5 h⋆
1d 4h⋆

30 min⋆
2d 10h♦

⋆ = Nvidia A40 RTX 48GB ▲ = Nvidia Tesla V100 PCIe 32GB
♦ = Nvidia A100 SXM4 80GB

error. It is also noticeable that the remeshing of the face dataset leads to an overall lower
surface error. In order to see whether the deviation between new baseline and GDPL are
statistically significant, a pairwise t-test was applied to all error metrics. Except for the liver
data, the addition of the GDPL leads to statistically significant higher errors (p < 0.05).

In Figure 4.3 we see the error on each individual landmark of the face dataset. As before,
the figure is split in two different plots. The left plot lists the errors located on the vertical
centerline of the template, while the right plot covers all other landmarks from right to left.
Most errors are significantly higher when the GDPL is added. The errors can be reduced,
if the shapes have a higher resolution (remeshed versions). Again, we can see that the error
increases if the landmark is closer to the edge of the surface. This effect is especially striking
for the GDPL variants on the right plot. The differences between the methods tend to be
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smaller if the landmarks are located on the centerline of the template. Here, the remeshed
GDPL version produces nearly the same results as the baseline trainings and sometimes it
is even better (e.g. on LIKONVEX, COL, STOINF).

In Table 4.10 the generality and specificity results are listed. The GDPL leads to a small
increase of self-intersections on the generality meshes of the distal femur data. Otherwise
the results seem quite consistent. On the liver dataset we see a decrease of the generality
and specificity error, as well as a decrease of self-intersections on the generality meshes.
The latter changes on the face data, where the GDPL leads to a steep increase of self-
intersections on the generality meshes. It also leads to a small decrease of the specificity
error. Again, paired t-tests were conducted to evaluate the statistical significance of the
deviations between the new baseline model and the FlowSSM version with GDPL. We can
see that the addition of the GDPL has no significant influence on the femur SSM. However,
the improvements we can see on the liver and remeshed face dataset are all statistically
significant. The compactness for all datasets is plotted in Figure 4.4. While the GDPL leads
to a reduced compactness on the distal femur data, this is not observable on the other
datasets. The compactness on the remeshed face dataset is even improved by the addition
of the GDPL.

Figure 4.5 shows a concrete example of the generality experiment of the face data. Akin to
the similar generality error, it is hard to state which result is better. It is, however remarkable
that the version with the GDPL moved the characteristic rhombus on the templates mesh
structure further up the forehead. On the exemplary generality result of the liver data
(Figure 4.6), the resulting meshes differ in many regions. Unfortunately, these differences
are hard to interpret.

4.2.2 Discussion

When we compare the results of the FlowSSM version with GDPL and the results of the
new baseline model we can summarize the following observations:

1. On the distal femur dataset and the face variants we get significantly worse results
on the metrics applied to the deformed meshes when adding the GDPL.

2. The results on the deformed liver meshes hardly deviate from the new baseline.
3. We get significantly lower generality and specificity errors on the liver and face

remeshed dataset if we add the GDPL. Furthermore, these metrics hardly deviate
on the other datasets.
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Figure 4.3: Landmark errors of the different FlowSSM variants. The left figure shows the
landmarks located on the vertical centerline of the template from top to bottom.
The right figure shows the landmarks located outside of the centerline of the
template from right to left. The distance between the landmarks is proportional
to their distance on the template in the respective direction. The IPV data was
taken from [Tiw21].
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Table 4.9: Evaluation metrics on the deformed templates of all datasets for the different
variants of FlowSSM. If the addition of the GDPL leads to statistically significant
deviations (paired t-test, p < 0.05) from the new baseline, the results are marked
with a "*". Only error metrics were tested.

Dataset Method
Surface Error
in mm

SIM SIF Corresp. Er-
ror in mm

Landmark
Error in mm

Distal
Femur

Original 0.12 ± 0.09 8 % 31 1.53 ± 0.21 1.54 ± 0.24

New baseline 0.14 ± 0.09 6 % 26 1.89 ± 0.23 1.86 ± 0.27

with GDPL 0.15 ± 0.09* 8 % 29 2.10 ± 0.64* 2.11 ± 0.65*

Liver
Original 0.57 ± 0.11 9 % 20 11.04 ± 4.10 8.97 ± 4.23

New baseline 0.68 ± 0.14 9 % 31 10.45 ± 3.98 8.87 ± 4.49

with GDPL 0.68 ± 0.12 4 % 25 10.60 ± 5.29 9.92 ± 6.25

Face
Original 0.46 ± 0.12 0 % 0 - 2.25 ± 1.46

New baseline 0.48 ± 0.15 0 % 0 - 2.24 ± 1.45

with GDPL 0.81 ± 0.11* 0 % 0 - 3.43 ± 2.21*

Face
remesh

Original 0.34 ± 0.16 0 % 0 - 2.22 ± 1.48

New baseline 0.34 ± 0.17 0 % 0 - 2.28 ± 1.48

with GDPL 0.40 ± 0.16* 0 % 0 - 2.87 ± 2.10*

The liver obviously displays the largest benefits of the GDPL. This could be explained in
two different ways. The liver is, contrary to the other datasets, a soft-tissue organ and could
thereby exhibit more deformations with isometric nature. This would fit the formulation
of the geodesic distance preservance and could therefore explain the improved results.
Another possible explanation is based on the nearest neighbor search. As we search for up
to 15 nearest neighbors for each template vertex, we assume them to be equally distributed
in the area around the original vertex. However, if the vertex is located at or near the edge
of the surface, this assumption cannot be made. If, for example, the vertex is located on
the right edge of the surface, most neighbors will be located further left, which distorts the
resulting adapted geodesic distances. Thereby, the loss function does not function properly.
As the surface of the liver has no border, this problem doesn’t occur at all. This observation
could also partly explain, why the landmark errors are higher on the outside of the face: it
is more likely that the neighborhood of these landmarks touches the edge of the surface.

The remeshing of the face dataset leads to an decrease of all error metrics. This is not
surprising, as it is easier to display a surface if more vertices are available. However, the
results with the GDPL are improved significantly, as the proportion of vertices whose
neighborhood is affected by the surfaces edge is reduced significantly.
One big advantage of FlowSSM in its original form is its independence towards differences
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Table 4.10: SSM quality of different FlowSSM variants on all datasets. If the addition of the
GDPL leads to statistically significant deviations (paired t-test, p < 0.05) from
the new baseline, the results are marked with a "*". Only error metrics were
tested.

Dataset Method
Generality Specificity

Error in mm SIM SIF Error in mm SIM SIF

Distal
Femur

Original 0.27 ± 0.05 0 % 0 1.12 ± 0.12 0 % 0

New baseline 0.25 ± 0.05 0 % 0 1.11 ± 0.12 0 % 0

with GDPL 0.25 ± 0.05 6 % 25 1.11 ± 0.12 0 % 0

Liver
Original 1.82 ± 0.38 35 % 70 5.04 ± 0.67 5 % 64

New baseline 1.80 ± 0.39 4 % 111 5.01 ± 0.65 2 % 54

with GDPL 1.68 ± 0.28* 9 % 70 4.95 ± 0.62* 5 % 62

Face
Original 1.13 ± 0.25 11 % 40 1.82 ± 0.20 0 % 0

New baseline 1.14 ± 0.20 11 % 25 1.82 ± 0.21 0 % 0

with GDPL 1.13 ± 0.28 37 % 37 1.73 ± 0.20* 1 % 14

Face
remesh

Original 1.09 ± 0.25 26 % 101 1.99 ± 0.28 37 % 145

New baseline 0.95 ± 0.25 42 % 195 1.58 ± 0.21 0 % 0

with GDPL 0.83 ± 0.22* 42 % 245 1.73 ± 0.20* 3 % 68

in the mesh resolutions, as stated in Section 4.1.4. The advantage gets diminished by the
use of the GDPL since the original vertices are used in the loss function. This could partly
explain the rise of the landmark error on the face dataset.

Subsuming we can state that the use of the GDPL improves the correspondences on a global
level, but individual landmarks could suffer from a reduced correspondence accuracy. At
the same time the method loses robustness, as it is more influenced by the meshing of the
template in terms of general resolution and differently meshed regions. The functionality
is also decreased when applied to data whose surfaces are bordered.
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Figure 4.4: Compactness of the different SSMs per dataset. An ideal SSM captures the
whole variation of the population in only a few eigenmodes.
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(a) Original (b) Template

(c) FlowSSM (d) FlowSSM + GDPL (e) LDDMM

(f) NeuroMorph (g) NeuroMorph pp. (h) Meshmonk

Figure 4.5: Example of the generality experiment on the face data. The original shape (a)
was projected into the SSM. Thereby, the eigenmodes were wheigted in a way
to transform the template (b) surface towards the original shape (a). The images
(c) - (h) show the results of the different methods.
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(a) Original (b) Template (c) Semi-automatic

(d) FlowSSM (e) FlowSSM + GDPL (f) LDDMM

(g) NeuroMorph (h) NeuroMorph pp. (i) Meshmonk

Figure 4.6: Example of the generality experiment on the liver data. The original shape (a)
was projected into the SSM. Thereby, the eigenmodes were wheigted in a way
to transform the template (b) surface towards the original shape (a). The images
(c) - (i) show the results of the different methods.
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The aim of this thesis was to investigate different methods that can be used for correspon-
dence estimation of anatomical shapes. In order to do so, we evaluated the performance of
the following methods: LDDMM, Meshmonk, NeuroMorph and FlowSSM. The first two
methods are already established in the medical domain. NeuroMorph was never tested
on anatomical data before, as it is a data-driven method from the wider computer vision
community. FlowSSM on the other hand, was initially developed to build shape models
of anatomical shapes, but the resulting correspondences were not evaluated beforehand.
Furthermore, the GDPL was added to FlowSSM in order to improve the quality of the
generated correspondences.

Since there is no reproducible ground truth for the correspondence of anatomical shapes,
the evaluation itself is a challenge. It is therefore mandatory to evaluate the correspondence
quality with a set of indirect metrics. The metrics used in this thesis include the Chamfer
distance, the sparse correspondence of anatomical landmarks and the quality of resulting
SSMs. The evaluation was performed on three datasets with different degrees of geometric
variation, namely distal femur, liver and face.

In this final chapter of this thesis we want to summarize the findings of all experiments
and give an outlook towards possible future work. To this end, we divide our findings
and suggestions into the following categories: Statements regarding the evaluation of
correspondences in general, recommendations regarding the suitable selection of a method
used for correspondence estimation and special findings regarding the method FlowSSM
and the addition of the GDPL.

5.1 Conclusion

Evaluation of Shape Correspondence: During the evaluation we found that the quality
of the results varied across all methods, datasets and metrics. We can thereby conclude
that it is important to evaluate correspondence on datasets with different features such as
topology and degree of geometric variation when benchmarking various methods against
each other. Furthermore, we observed that the metrics can sometimes contradict each other.
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In order to ensure a good correspondence, it is therefore recommended to evaluate a set of
metrics, ideally related to the field of application afterwards.

The assumption of many methods that the deformation process moves vertices to semanti-
cally corresponding positions could not be unanimously confirmed in this work. Thus, a
deformation that minimises the surface distance between the deformed template and the
target does not automatically produce a good correspondence. This statement mainly relies
on the LDDMM results on the face dataset, where a low surface error between deformed
template and target surfaces still lead to an above average landmark error. The observa-
tions on the postprocessed NeuroMorph variants, where a low surface error produced a
low SSM quality support this statement.

Moreover, we saw that surface error, landmark error and SSM quality often contradict
each other. This observation could be explained by different expressions of correspondence
quality. The SSMs mostly require a consistent correspondence, i.e. that each point on the
template is deformed towards the same location on every mesh. The source location on the
template and the destination locations do not necessarily have to be the semantically same.
In order to evaluate the sparse correspondence on special landmarks on the other hand,
the deformations have to move those points to their anatomically similar location. Here, it
is not enough if the correspondences are consistent, they have to be objectively correct.

FlowSSM and GDPL: The method FlowSSM has certain advantages when compared to
the other methods tested in this thesis. As it does not directly use the vertices of each mesh,
it is independent towards the resolution of the meshes. It can also create meshes with
different resolutions of the same surface. If the GDPL is added, this advantage is reduced,
as the loss function needs a predefined set of vertices. The loss term also works better, if
the data is of high resolution. Furthermore, problems occur if the loss function is applied
in an area close to the border of a surface. Lastly, training and predictions with GDPL need
more time than with the standard setting.

However, the addition of the GDPL can lead to a significant improvement of the general-
ization ability and specificity of the resulting SSM. If these qualities are important to the
use-case and the dataset is of high resolution, it is recommendable to apply the GDPL.

Selection of a Method used for Shape Correspondence Estimation: Since the SSM qual-
ity based on the semi-automatically generated correspondences was on the same level
or even lower than quality based on fully automatically generated correspondences, the
time-intensiv semi-automatic generation of correspondence does not seem worthwhile.
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As opposed to literature, we could not see a clear superiority of groupwise methods. Be-
cause the performance of the different methods varied for each dataset and metric, this
observation could also result from other method properties than the group- or pairwise
training.
The performance of the different methods hardly varied, when the dataset exhibited only
low levels of geometric variations (e.g. the distal femur). On all other datasets, we saw
significant differences between the methods but no clear ranking. If the data has a lot of
geometric variance, it is therefore recommendable to choose the method according to the
downstream task. For applications that require a objectively correct correspondence, the
method FlowSSM seems suitable. If not enough data for training is available, Meshmonk
could be used. If the downstream task is in need of an SSM, FlowSSM with the GDPL
might be a good choice. The method LDDMM is a good alternative for building SSMs if
less data is available. NeuroMorph, on the other hand, did not produce convincing results
in the evaluation of this thesis.

5.2 Future Work

Evaluation of Shape Correspondence While this thesis already used a lot of metrics for
the evaluation of the correspondence quality, there are still some suggestions from literature
not yet implemented. Goparaju et al. [Gop+22] suggested to evaluate the correspondence
on an actual SSM applications such as a reconstruction task or a disease classification.
Kaick et al. [Kai+11] recommend to evaluate correspondence on a synthetic dataset with
ground truth annotations. The challange here lies in finding or creating a synthetic dataset
of anatomical data with a sufficient degree of realism.

As the results significantly differed on each dataset, it seems recommendable to test on
even more datasets. New datasets should pose new challenges, such as a different topology
(e.g. a torus or a surface with holes).
We previously discussed, that there might be different qualities of correspondence respon-
sible for contradicting results on different metrics. Future work is needed to prove this
assumption.

FlowSSM and GDPL: While the addition of the GDPL improves the resulting correspon-
dence of FlowSSM on a global scale, it also brings some downsides. However, there are
some ideas for future improvements: The use of the GDPL is limited at the edge of a
surface. One easy way to circumvent this problem would be to not apply the GDPL on
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vertices located on the edge of a surface.
Another possible improvement for the nearest neighbor search could include the connec-
tivity information of the mesh. Since the nearest neighbor search is based on Euclidean
distances, the current formulation has a risk of adding a wrong neighbor in an area with
high curvature. A geodesic-based neighborhood search would eliminate this issue and
could thereby minimize the number of self-intersections created on the deformed tem-
plate.

In the previous chapter it was stated, that FlowSSM is more invariant towards the mesh
structure than other methods. The use of the GDPL could limit this advantage, as it depends
on the given surface discretization. Future work could investigate, how far different mesh
structures influence the results of FlowSSM with GDPL.

Other Methods used for Shape Correspondence Estimation: As this thesis did not find a
clear superiority of groupwise methods, this topic could be investigated in future research.
An easy way to prove groupwise superiority would be to train a learning based method
(i.e. FlowSSM or NeroMorph) for each target and use only a single target mesh as training
data. If the resulting deformed templates have a lower quality than the ones trained on the
whole dataset, the method clearly profits from the groupwise setting.

One way to improve the performance of the learning based methods, could be the addition
of a supervised landmark error loss term. This could improve the sparse correspondence
on these points. But as labels are needed, the method would not be unsupervised anymore.
Furthermore, most of the methods strive to minimize a symmetrical surface distance. If
template and target consist of the same corresponding points, this is a good choice. If,
however, one of the two covers anatomical areas that are not present in the other this leads
to problems, as there is no good correspondence possible in both directions. For those cases
a one-sided loss term would be more suitable and make the method more robust in future
work.
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Appendix

Table A1: Definitions of anatomical landmarks on face dataset by experts from Universität-
sklinikum Ulm, taken from [Tiw21].

Abbreviation Name Definition

ALAL Alare curvature Most lateral point of attachment of the
nasal wing to the cheek (on left side of
the face).

ALAR Alare curvature Most lateral point of attachment of the
nasal wing to the cheek (on right side of
the face).

CHL Cheilion Lateral point at the corner of the mouth
(on left side of the face).

CHR Cheilion Lateral point at the corner of the mouth
(on right side of the face).

COL Columnella Most convex point of the nose bridge.
ENL Endocanthion Point at the medial commissure of the

palpebral fissure (on left side of the face).
ENR Endocanthion Point at the medial commissure of the

palpebral fissure (on right side of the
face).

EXL Exocanthion Point at the lateral commissure of the
palpebral fissure (on left side of the face).

EXR Exocanthion Point at the lateral commissure of the
palpebral fissure (on right side of the
face).

GB Glabella Medial point at greatest convexity above
the root of the nose.

GN Gnathion Most anterior and caudal point on the
chin.

LI Labiale inferius Medial point at transition from lower lip
red to lower lip white.

LIKONVEX Labiale inferius konvex Anteriormost point on lower lip red.

i



Abbreviation Name Definition

LS Labiale superius Medial point at the transition from upper
lip white to upper lip red.

LSKONVEX Labiale superius konvex Anteriormost point on upper lip red.
N Nasion Medial point at deepest retraction be-

tween forehead and bridge of nose.
OL Orbitale Point at the lower edge of the orbit, one

eyelid slit width below the pupil of the
unconstrained, straight-eyed eye (on left
side of the face).

OR Orbitale Point at the lower edge of the orbit, one
eyelid slit width below the pupil of the
unconstrained, straight-eyed eye (on right
side of the face).

PHL Philtrum Transition lip red lip white (on left side
of the face).

PHR Philtrum Transition lip red lip white (on right side
of the face).

POG Pogonion Medial most anterior point on the chin.
PRN Pronasale Most anterior center of the nasal tip.
SM Supramentale Medial point at most concave location be-

tween lower lip and chin.
SN Subnasale Medial point at the transition of the col-

umella into the philtrum.
SSP Subspinale Medial point at greatest concavity of

philtrum.
STOINF Stomion inferior Medial point at the oral fissure.
STOSUP Stomion superior Medial point at the oral fissure.

ZYGL Zygion Point at widest part of face at zygomatic
arch, constructed by crossing lines exo-
canthion to lowermost point at earlobe
and orbital to porion (on left side of the
face).
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Abbreviation Name Definition

ZYGR Zygion Point at widest part of face at zygomatic
arch, constructed by crossing lines exo-
canthion to lowermost point at earlobe
and orbital to porion (on right side of the
face).
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