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1 Introduction

State constrained optimal control is widely considered as a difficult, but practically
very important issue. Interior point methods applied to such problems usually
show good numerical performance, which suggests that interior point methods may
converge in function space. The purpose of this paper is the construction and proof
of convergence of an interior point method for a model problem in state constrained
optimal control.

We consider a method that is member of the class of control reduced interior
point methods [14, 13]. This class of methods has been considered in the au-
thors PhD-thesis [12] in the context of control constrained optimal control. The
favourable theoretical properties of these methods led to the conjecture that a con-
vergence proof for state constraints is possible.

Interior point methods for state constrained problems suffer from an important
theoretical difficulty: if the state approaches the bound of the feasible region too
quickly or even touches the bound, then convergence of the method may slow down
or even come to a halt. If the classical logarithmic barrier method is used, then this
problem cannot be excluded theoretically, except for special cases. We tackle this
difficulty by strengthening the barrier functional. Then regularity of the state can
be employed to show strict feasibility of the iterates. After strict feasibility has been
established, a proof of convergence can be completed in the theoretical framework
developed in [12].

As alternatives to interior point methods Lavrentiev-regularizations of state con-
strained problems [10, 11] or exterior penalty methods [8, 7] have been discussed
recently. Convergence of the solutions of the regularized problems to the original
solution has been shown in both. Moreover, for the case of Lavrentiev-regularization
an interior point method has been shown to converge linearly to each regularized
problem [11]. In the case of exterior penalty methods it has been shown that a semi-
smooth Newton method can be applied to obtain local superlinear convergence for
each subproblem. However, for the corresponding path-following algorithms no rig-
orous proof of convergence to the original state constrained problem seems to be
available up to now.

The paper is organized as follows. In Section 2 we mainly collect general re-
sults on the analysis of barrier regularizations for state constrained optimal control
problems. To keep this exposition concise we will heavily rely on the results from
[12]. Section 3 is devoted to L1-estimates for gradients of barrier functions. This
is the first important step of the proof. The next – crucial – step is presented in
Section 4, where strict feasibility of the state is shown, provided an appropriate
barrier functional is chosen, depending on the regularity of the state. Section 5
concludes the discussion by showing convergence of an interior point path-following
algorithm. Here we use strict feasibility to successfully apply the theoretical frame-
work developed in [12].



3

Acknowledgement. The author want’s to thank Prof. Dr. Peter Deuflhard,
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2 Basic Existence and Convergence Results

We will consider the barrier method for convex optimization problems in an abstract
setting and show first basic results. Our exposition uses the framework of convex
analysis as for example presented in the first part of [5]. Our problem we consider
in this paper will be stated as follows:

min
u∈L2(Ω),y∈L2(Ω)

‖y − yd‖2
L2(Ω) + ‖u‖2

L2(Ω) s.t. (1)

Ly = u (2)

y ≥ 0 (3)

We call y the state and u the control. We restrict ourselves to this model
problem only for ease of presentation. The techniques used here also apply to more
complicated problems in terms of bounds and type of the PDE. However, at least
for the techniques used in Section 2 convexity is crucial.

We fix our framework by introducing the following basic assumptions:

Assumption 2.1. Let Ω ⊂ R
d, d = 1, 2, 3 be a smoothly bounded, open region

and denote by t ∈ Ω the independent spacial variable. Let (2) a linear elliptic PDE
with Ly = −div(a(t)∇y) + c(t)y with symmetric a(t) ∈ R

d×d uniformly positive
definite and c(t) ∈ R non-negative, and positive on a non-zero subset of Ω is a
second order elliptic differential operator. Both a(t) and c(t) are assumed to be
smooth. As boundary conditions we impose homgeneous Neumann conditions, or
Robin conditions. Under these assumptions standard regularity results (c.f. e.g.
[6]) hold.

As usual L : H1 → (H1)∗, and hence, we can define an adjoint operator L∗ :
H1 → (H1)∗. Moreover, by positivity of c(t) we know that the equation Ly = u is
uniquely solvable for u ∈ L2(Ω) and

L−1 : L2(Ω) → H2(Ω) ↪→ C(Ω).

To be able to apply an interior point method, we assume that there are (ŭ, y̆) ∈
L2(Ω) × H2(Ω), that satisfy (2) and that are strictly feasible with respect to (3).
This means that there is a dmin > 0, such that ŭ ∈ L2(Ω) and

inf
t∈Ω

y̆ = dmin. (4)

This assumption can be interpreted as a Slater constraint qualification.
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By the solvability assumption we can insert y = L−1u into (1)-(3) and rewrite
our problem as an unconstrained convex minimization problem in u:

min
u∈L2

F (u) : L2 → R := R ∪ {−∞,+∞} (5)

This is possible, since we may set F (u) = ∞ for infeasible points. Note that F is
strictly convex and coercive in L2. Our assumptions imply that Problem (1)-(3)
admits exactly one solution in L2 ×H2. We will call this solution (u∗, y∗).

Next we introduce a class of barrier functions, that has been analysed in [12].

Definition 2.2. Let B ⊂ Ω × R
n be measurable such that all slices B(t), t ∈ Ω

are closed and convex with non-empty interior. Assume that the function l(t, x) :
Ω × R

n → R has the following properties:

(i) l(·, x) is a measurable function for any constant x ∈ R
n.

(ii) for each t ∈ Ω l(t, ·) is convex, continuous, and (Fréchet-)differentiable on
intB(t)

(iii) x(t) 6∈ intB(t) ⇔ l(t, x) = ∞, and limx→∂Bl(t, x) = ∞ ∀t ∈ Ω.

(iv) l(t, x) can be minorized by a function f(t, x) = a(t) − c
∑n

i=1 |xi|.

Then we call l a barrier function for B.
Further, for 1 ≤ p ≤ ∞ we define the barrier functional corresponding to l by:

b : Ω × Lp(Ω) → R

(t, u) 7→
∫

Ω
l(t, u(t)) dt.

Assumption (iv) is technical and assures that
∫
Ω l(t, x(t)) dt > −∞∀x ∈ L1(Ω)

(c.f. [5, Remark IX.2.1]).
If we add a barrier functional b to the original objective function F , then we

denote the resulting barrier problem by:

min
u∈U

(F + µb)(u), (6)

and call its solution (u(µ), y(µ)). Our problem now reads:

(F + µb)(u) = F (L−1u, u) + µb(L−1u).

Note that b may also depend on µ. Then µb can be seen as a notation for b(y;µ).
We recapitulate the most important results obtained in [12] for this class of barrier
functions:

Theorem 2.3 (Solutions of Barrier Problems). For each µ > 0 (6) is well
defined and admits a unique minimizer (u(µ), y(µ)). Moreover, (u(µ)(t), y(µ)(t))
are strictly feasible almost everywhere in Ω.
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Proof. This is [12, Theorem 2.2.2]. Mainly one has to show that b(u) is well defined,
convex, and lower semi-continuous. Then the classical theorem on minima of convex
functions (e.g. [5, Proposition II.1.2]) yields the result.

Next we recapitulate convergence of barrier methods. Our theorem shows that
barrier methods show favourable convergence behaviour under very general assump-
tions.

Theorem 2.4. Let b be a barrier functional with l(t, µ) ≤ −C ln(t, µ). Then for
b(y(µ)) > 0:

(F + µb)(u(µ)) ≤ F (u∗) + Cµ(1 − µ ln(dminµ))

‖u(µ) − u∗‖L2(Ω) ≤
C√
α

√
µ(1 − µ ln(dminµ)).

Proof. This is again a consequence of the results in [12], namely Lemma 2.3.2 and
Corollary 2.3.3.

By definition, a barrier function l(t, ·) is differentiable in intB(t). Hence for
b(y) 6= +∞ the linear functional

b′(y) : Lp(Ω) → R :
〈
b′(y), v

〉
:=

∫

Ω
l′(t, y(t))v(t) dt

is a natural candidate for a derivative of b.

Lemma 2.5. Let b(y) and b(y+ δy) be finite. Then b is directionally differentiable
at y in the direction δy and

b′(y; δy) =
〈
b′(y); δy

〉
.

If p = ∞ and y is strictly feasible, then b is Gâteaux differentiable at y with deriva-
tive b′(y).

Proof. See [12, Lemma 2.1.10].

In the following let M(Ω) denote the space of regular Borel measures, which
comes into play by the Riesz representation theorem: M(Ω) ∼= C(Ω)∗.

Theorem 2.6 (First order necessary conditions for state constraints). As-
sume that L−∗ maps M(Ω) continously into some Banach space W � ⊂ L2(Ω). Then
the following first order necessary (and sufficient) conditions hold:

y − yd +m− L∗λ = 0

αu+ λ = 0

Ly + u = 0,

(7)

for some m ∈ µ∂b(y) ⊂M(Ω) and λ ∈W �. If y is strictly feasible, then m = µb′(y).
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Proof. This is [12, Theorem 2.2.4]. The important result m = b′(y) for strictly
feasible y is a consequence of Gâteaux differentiability of b(y) in C(Ω) as shown in
Lemma 2.5. Analysis of the operator L−∗ (c.f. [3, 2]) yields characterizations of W �

as a Sobolev space.

If only y ≥ 0 holds, then we cannot show b′(y) = ∂b(y). There may occur
additional terms (such as point functionals) at the touch points of the bounds and
the solution. Assume, for example, that y(0) = 0, b′(y) ∈ ∂b(y). Then

b(y + δy) ≥ b(y) + b′(y)δy − δy(0).

Indeed, if δy(0) < 0, then by continuity of y+ δy it follows that b(y+ δy) = ∞. For
δy(0) ≥ 0 this inequality holds, since b′(y) ∈ ∂b(y). Thus b′(y)− δ0 ∈ ∂b(y) with δ0
being the point measure at 0.

The consequence for barrier methods applied to state constrained optimal con-
trol problems is unpleasant. If y is not strictly positive and b′(y) is used in place
of ∂b(y) in the first order necessary conditions of the barrier problem, then this
system is not necessarily solvable, although there exists a minimizer of the barrier
problem. Thus, in such a case a barrier method in function space is likely to fail.

Hence we have to construct methods with strictly feasible iterates. This is the
aim of the rest of this paper.

3 Uniform Bounds for Gradients

The first order necessary conditions state the qualitative result that there is m(µ) ∈
M(Ω), such that (7) holds. We augment this by a quantification, that holds uni-
formly for all µ > 0.

Lemma 3.1. Let l : R+ → R be a monotonically decreasing barrier function and
b the associated barrier functional. Let p ∈ C(Ω) be non-negative, and m ∈ ∂b(y).
Then

0 ≥
〈
b′(y), p

〉
≥ 〈m, p〉 . (8)

In particular, m is a non-positive measure.

Proof. Since p is non-negative and b(y) <∞, so is b(y+ p) ≤ b(y) by monotonicity
of b. Thus, b(y) is directionally differentiable in the direction p and

b(y + hp) − b(y) ≤
〈
b′(y), hp

〉
+ o(h).

Assume now for contradiction that

〈m, p〉 −
〈
b′(y), p

〉
= ε > 0.

Then
〈m,hp〉 ≥

〈
b′(y), hp

〉
+ hε > b(y + hp) − b(y)

for sufficiently small h, which contradicts the hypothesis m ∈ ∂b(y).
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Now we show that ‖m(y(µ))‖M(Ω) is unifomly bounded in µ, depending only on

the coercivity of F and on the Slater point (ŭ, y̆).

Proposition 3.2. Let b be a barrier functional corresponding to a monotonically
decreasing barrier function l. Assume, there are ŭ ∈ L2, y̆ ≥ dmin > 0 with Ly̆ = ŭ.
Then ∥∥µb′(y(µ))

∥∥
L1(Ω)

≤ ‖m(µ)‖M(Ω) ≤ C

independently of µ. Moreover,

‖λ(µ)‖W � ≤ C

independently of µ.

Proof. We eliminate y = L−1u from the optimal control problem. Then the first
order necessary conditions for the minimum read:

〈u(µ), v〉 +
〈
y(µ) − yd, L

−1v
〉

+
〈
m(µ), L−1v

〉
= 0 ∀v ∈ L2.

By Lemma 2.5 m(µ) must be a non-positive measure. Inserting v := ŭ, L−1ŭ = y̆
we obtain

α 〈u(µ), ŭ〉 + 〈y(µ) − yd, y̆〉 − 〈m(µ), y̆〉 = 0.

Since u(µ), y(µ), ŭ, y̆, yd are bounded in L2 independent of µ we conclude

〈m(µ), y̆〉 =

∫

Ω
y̆ dm(µ) ≤ C

and thus by non-positivity of m(µ) and positivity of y̆:

‖m(µ)‖M(Ω) ≤
| 〈m(µ), y̆〉 |

min{y̆} ≤ C/dmin.

By (8) it follows that ‖µb′(y(µ))‖L1(Ω) ≤ ‖m(µ)‖M(Ω).

4 Barrier Functions with Rational Gradients

Now we consider a special barrier functional b:

b(y) :=

∫

Ω
− ln(y(t)) +

µq−1

(q − 1)y(t)q−1
dt (9)

with q > 1. By q = 1 we denote the case of the pure logarithmic barrier functional.
We say that the barrier functional b(y) is of order q. Its gradient can then be
computed as

µb′(y) = −µ
y
− µq

yq
.

Observe that the rational term of the barrier function only adds significantly to
the functional, if y � µ, thus the difference between b and the logarithmic barrier
function is small on most parts of the domain.

We will derive conditions, under which b′(y(µ)) ∈ L∞. This will be crucial for
the analysis of our Newton path-following scheme.



8

Lemma 4.1. Let Ω ⊂ R
d, 0 ≤ y ∈ Cβ(Ω), 1/yq ∈ L1(Ω), β ≤ 2. Assume that

β ≥ d/q. Then 1/y ∈ C(Ω).

Proof. Assume that without loss of generality 0 ∈ Ω, y(0) = 0. Since y ∈ C 1 for
β ≥ 1, and y necessarily obtains a minimum at 0, we conclude ∇y(0) = 0 for β ≥ 1.
By the Hölder-continuity of y or ∇y we infer that y(x) < cr1+β for all x ∈ B(0, r).
Hence we can compute

∫

Ω
|1/y(t)|q dt ≥ c

∫

[0,R]
|1/(crβ)|qrd−1 dr = ∞,

which is a contradiction to 1/yq ∈ L1. Hence y > 0 in Ω, which implies by com-
pactness of Ω that y ≥ c, and thus 1/y ∈ C(Ω).

Since ‖m(µ)‖M(Ω) ≤ C, we can use well known regularity results to show that

‖y(µ)‖Cβ is uniformly bounded for µ → 0 for some β. By [3] we know that y ∈
W 3,p with p < d/(d − 1). By Sobolev embedding theorems [1] we thus conclude
β = 2, 2 − ε, 1 − ε for d = 1, 2, 3 respectively.

For sufficiently large q Lemma 4.1 yields that y(µ) ≥ ε(µ) > 0 and thus strict
feasibility. Consequently m(µ) = b′(y(µ)) ∈ L∞(Ω) .

If we compute the integrals, then also the assertion of Lemma 4.1 can be quan-
tified, and it can be shown that for sufficiently large q there is a function ψ(µ) that
is uniformly bounded in [µ0;µ] for each µ > 0, such that mint∈Ω y(µ)(t) ≥ ψ(µ).
More specifically ψ(µ) must fulfill the following inequality:

∫

Ω

rd−1µq

(rβ + ψ(µ))
q dr ≤ C.

This uniformity property is essential for a convergence proof. Thus for barrier
functionals with sufficiently large order q(e.g. q = 1, 1+ ε, 3+ ε for d = 1, 2, 3 resp.)
we obtain a bound ‖1/y(µ)‖L∞

≤ ψ(µ)−1 and analogously ‖b′(y(µ))‖L∞
≤ ψ̃(µ).

All in all we have proven:

Theorem 4.2. Let µ0 be given. For sufficiently large q there are positive functions
ψ(µ) and ψ̃(µ), such that

min
t∈Ω

y(µ)(t) ≥ ψ(µ)

∥∥b′(y(µ))
∥∥

L∞
≤ ψ̃(µ).

For each µ > 0 the functions ψ(µ)−1 and ψ̃(µ) are uniformly bounded on the interval
[µ, µ0].

In the following we set the order of the barrier functional q sufficiently large.
Then ∂b = b′ and the (control reduced) first order necessary conditions read:

(y − yd) + µb′(y) + L∗λ = 0

Ly − α−1λ = 0.
(10)
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Here we have eliminated the control using the equation αu+λ = 0. By Theorem 2.6
and Theorem 4.2 this system has a strictly feasible and unique solution (y(µ), λ(µ))
for each µ > 0. Since b′(y(µ)) ∈ L∞ we also have y(µ), λ(µ) ∈ H2.

Corollary 4.3. For sufficiently large order q the gradient b′(y(µ)) converges to the
Lagrange multiplier m∗ in the sense of weak∗ convergence in M(Ω):

b′(y(µ)) ⇁ m∗.

Proof. The functional µb′(y(µ)) is uniformly bounded in M(Ω) = C∗(Ω) and thus
a sequence µkb

′(y(µk)) contains a weakly∗ convergent subsequence with limit (µb′)∗
for which (7) is satisfied. Moreover,

〈
µb′(y(µ)), y(µ)

〉
= µ

∫

Ω
1 +

µq−1

yq−1
dt ≤ Cµ,

since
∫ µq−1

yq−1 is bounded by boundedness of
∫ µq

yq . Since y(µ) converges strongly and

µb′(y(µ)) converges weakly, we obtain

lim
µ→0

〈
µb′(y(µ)), y(µ)

〉
=
〈
(µb′)∗, y∗

〉
= 0.

Moreover, by non-positivity of b′ and convexity of the negative cone we conclude
b′
∗
≤ 0. Hence b′

∗
= m∗. By uniqueness of m∗ the desired weak∗ convergence of the

whole sequence follows.

5 A Primal Interior Point Path-Following Method

Strict feasibility of y enables us to study the analytic properties of the central path
in the framework of [12, Chapter 3]. We define x := (y;λ) and write (10) as

F (x;µ) = 0,

which can be declared on the Banach space

X = H2(Ω) × L2(Ω)

with F (x;µ) : X → X∗. We equip X with the norm

‖δx‖X := ‖δy‖H2(Ω) + α−1/2 ‖δλ‖L2(Ω)

Note that L∗ can be extended by duality to L∗ : L2 → (H2(Ω))∗. F is well defined
and smooth in a neighbourhood of the central path defined by:

Uµ(y(µ)) = B
(
y(µ);ψ(µ)/2, ‖y‖L∞

)
.

It is important that these balls do not degenerate, except for µ→ 0. If we assume
strict feasibility, then under suitable assumptions all following results can be carried
over to non-convex problems.
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Qualitatively speaking, the barrier problem is smooth inside this neighbourhood
and thus Newton’s method applied to F can be shown to converge locally. For
a convergence proof we will have to quantify the relation between the radius of
convergence and µ.

As pointed out in [12, Chapter 3] the concept of inverse differentiability is a
convenient approach to the affine covariant analysis of Newton methods in function
space. This can be seen as an extension of the ideas due to [4] to infinite dimensional
normed spaces. For a function F : X → Y we introduce an inverse derivative L−

that has the role of an inverse of the Jacobian matrix. A criterion for inverse
(Fréchet)-differentiability at x0 is

∥∥x− x0 − L−(x0)(F (x) − F (x0))
∥∥

X
= o(‖x− x0‖X).

For the quadratic convergence of Newton’s method, one has to show for all x0 in a
neighbourhood of the solution x∗:

∥∥x− x0 − L−(x0)(F (x) − F (x0))
∥∥

X
≤ 1

2
ω ‖x− x0‖2

X ,

which is equivalent to showing
∥∥F ′(x0)

−1(F ′(x) − F ′(x0))(x − x0)
∥∥

X
≤ ω ‖x− x0‖2

X

for some formal Jacobian matrix satisfying the Fundamental Theorem of Calculus.
Then the radius of quadratic convergence of Newton’s method behaves proportional
to ω−1. Moreover, an affine invariant Implicit Function Theorem holds for zeros of
F (x;µ).

In our case it is easy to construct the formal Jacobian matrix F ′(x;µ) for the
perturbed optimality system:

F ′(x;µ) =

(
I + µ

y2 + qµq

yq+1 L∗

L −α−1

)
. (11)

Similar as for the control constrained case it can be shown that the Fundamental
Theorem of Calculus holds for this definition of F ′(x;µ). We introduce the following
norm:

‖δy‖x;µ =
∥∥∥α1/2δy

∥∥∥
H2

+
∥∥∥
√

1 + µ/y + µq/yq+1δy
∥∥∥

L2

.

Proposition 5.1. The Jacobian matrix F ′ for the perturbed optimality system has
the following invertibility property. Let

F ′(x;µ)δx = r :=

(
ra
rs

)
.

Then

‖δy‖x;µ + α−1/2 ‖δλ‖L2
≤ sup

v∈H2

〈ra, v〉
α1/2 ‖v‖x;µ

+ sup
w∈L2

〈rs, w〉
α−1/2 ‖w‖L2

.
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Proof. This follows from [12, Theorem 4.2.3].

To avoid additional technicalities let the order q be an integer in the following.

Lemma 5.2. Let a, b ≥ c/2 > 0. Then

|a−n − b−n| ≤ 4nc−n−1|a− b|.

Proof. This is a simple algebraic computation:

|a−n − b−n| = |b
n − an

(ab)n
| =

∑n
i=1 b

n−iai−1

(ab)n
|b− a|

=

n∑

i=1

b−iai−n−1|a− b| ≤ 4nc−n−1|b− a|.

Proposition 5.3. The following affine covariant Lipschitz condition holds in
Uµ(y(µ)):

∥∥F ′(x;µ)−1(F ′(x;µ) − F ′(x̃;µ))∆x
∥∥

X
≤ cω(µ) ‖∆y‖2

L∞
≤ ω(µ) ‖∆x‖2

X (12)

together with the estimate

ω(µ) ≤ Cψ(µ)−3/2.

In particular, in a neighbourhood of the central path the family of mappings

Meµ : X × [µ;µ0] → X

(x;µ) 7→ F ′(x(µ̃); µ̃)−1F ′(x;µ)

is equi-continuous in [µ0;µ].

Proof. We abbreviate the right hand side of (12) by δx = (δy, δλ) with

F ′(x;µ)δx =

(
ra
rs

)
=

(
(F ′(x;µ) − F ′(x̃;µ))∆x

0

)
.

In view of application of Proposition 5.1 we compute the difference of two Jacobians
in Uµ(y(µ)) multiplied with a test function ϕ = (v, w). Since only the upper left
block of the Jacobian depends on x we obtain

〈
(F ′(x;µ) − F ′(x̃;µ))∆y, ϕ

〉
=

〈(
µ

y2
+

qµq

yq+1
− µ

ỹ2
− qµq

ỹq+1

)
∆y, v

〉
.
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Now we apply Lemma 5.2 pointwise setting a = y, b = ỹ, c = y(µ) and continue:

∣∣(F ′(x;µ) − F ′(x̃;µ))∆x
∣∣ ≤ C

∣∣∣∣
(

µ

y(µ)3
+

µq

y(µ)q+2

)
∆y2

∣∣∣∣

= C

∣∣∣∣∣

√
µ

y(µ)2
+

µq

y(µ)q+1

∣∣∣∣∣

∣∣∣∣
1

y(µ)3/2

∣∣∣∣

∣∣∣∣∣

√
µ

y(µ)
+

µq

y(µ)q

∣∣∣∣∣
∣∣∆y2

∣∣

≤ C

∣∣∣∣
√
µ

y2
+

µq

yq+1

∣∣∣∣
∣∣∣∣

1

y(µ)3/2

∣∣∣∣

∣∣∣∣∣

√
µ

y(µ)
+

µq

y(µ)q

∣∣∣∣∣
∣∣∆y2

∣∣ .

The exchanges between y(µ) and y are possible, since y ∈ Uµ(y(µ)). Hence,

〈
(F ′(x;µ) − F ′(x̃;µ))∆y, ϕ

〉

≤
〈∣∣∣∣

1

y(µ)3/2

∣∣∣∣

∣∣∣∣∣

√
µ

y(µ)
+

µq

y(µ)q

∣∣∣∣∣
∣∣∆y2

∣∣ ,
∣∣∣∣
√
µ

y2
+

µq

yq+1

∣∣∣∣ v
〉

≤ C

∥∥∥∥
1

y(µ)3/2

∥∥∥∥
L∞

∥∥∥∥
µ

y(µ)
+

µq

y(µ)q

∥∥∥∥
1/2

L1

‖∆y‖2
L∞

‖v‖x,µ

≤ Cψ(µ)−3/2 ‖∆y‖2
L∞

‖v‖x,µ .

For the last estimate we used the fact that µ
y(µ) + µq

y(µ)q = b′(y(µ)) is uniformly

bounded in L1. By Proposition 5.1 and the embedding H2 → L∞ we conclude

‖δx‖X ≤ ‖δy‖x;µ + α−1/2 ‖δλ‖L2

≤ ψ(µ)−3/2 ‖∆y‖2
L∞

≤ cψ(µ)−3/2 ‖∆y‖2
H2 ≤ cψ(µ)−3/2 ‖∆x‖2

X .

Hence, Meµ is uniformly continuous in an X-neighbourhood of x(µ̃). It is now
easy to show continuity with respect to µ and thus continuity in (x;µ). Since the
continuity-modules hold uniformly (we have shown Lipschitz continuity together
with a bound on the Lipschitz constant) for µ̃ ∈ [µ;µ0] the conclusion holds.

The result of Proposition 5.3 suggests that interior point methods may converge
sublinearly. However, the structure of the proof makes clear, why in practice linear
convergence is observed: the norm of the Newton corrections is naturally measured
in ‖δy‖x;µ. The scaling in the L2-term suggests that in regions, where y is small
the Newton correction is also small. Then it may happen that

∥∥∥∥
1

y(µ)3/2
∆y2

∥∥∥∥
L∞

�
∥∥∥∥

1

y(µ)3/2

∥∥∥∥
L∞

‖∆y‖2
L∞

,

and thus ω may be much smaller than our estimate.
Now we study differentiability of the central path. For this purpose let

η(µ) :=

∥∥∥∥
d

dµ
y(µ)

∥∥∥∥
x;µ

+ α−1/2

∥∥∥∥
d

dµ
λ(µ)

∥∥∥∥
L2

.
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Proposition 5.4. The central path is differentiable and its slope is bounded by:

η(µ) ≤ cµ−1/2.

Thus,

α1/2 ‖y(µ) − y∗‖H2 + α−1/2 ‖λ− λ(µ)‖L2
≤ c

√
µ. (13)

Proof. Proposition 5.3 assures strong inverse differentiability of F via [12, Lemma
3.2.2] in a neighbourhood of the central path. To show existence and differentiability
of the central path via the affine invariant global existence Theorem in [12, Theorem
3.5.1], we merely have to show differentiability of F ′(x(µ̂); µ̂)−1F (x(µ̂);µ) for fixed
µ̂ with respect to µ. Since y(µ) is bounded and µ is scalar, differentiability is clear,
and we can easily compute the derivative:

Fµ(x(µ);µ) =
1

y(µ)
+
µq−1

y(µ)q
.

Inserting this as a right hand side into Proposition 5.1 we obtain the estimate:

‖yµ(µ)‖x,µ + α−1/2 ‖λµ(µ)‖L2
≤
∥∥∥∥∥µ

−1/2

(
1 +

µq−1/2

y(µ)q

y(µ)(q+1)/2

µq/2

)∥∥∥∥∥
L2

≤ µ−1/2c

(
1 +

∥∥∥∥∥
µ(q−1)/2

y(µ)(q−1)/2

∥∥∥∥∥
L2

)
.

Since ‖µq/y(µ)q‖L1
is uniformly bounded in µ by Proposition 3.2, so is

∥∥∥∥∥
µ(q−1)/2

y(µ)(q−1)/2

∥∥∥∥∥
L2

=

∥∥∥∥
µq−1

y(µ)q−1

∥∥∥∥
1/2

L1

.

This shows the conclusion of the proposition. Integration over the slope shows the
estimate for the length.

Now we have collected all the estimates to show the convergence of a simple
path-following algorithm, which is the main theorem of this paper. Recall that F
is defined by (10), F ′ is defined by (11), and xk = (yk, λk).

Algorithm 5.5.
select µ0 > 0, and x0 with y0 ∈ Uµ(y(µ0))
for k = 0, . . .

xk+1 := xk + F ′(xk, µk)
−1F (xk, µk)

select 0 ≤ σk < 1
µk+1 := σkµk
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Theorem 5.6 (Convergence for State Constraints). For some µ0 < 0 assume
that y0 sufficiently close to y(µ0) is given. Then there is a sequence of step sizes
σk, for which Algorithm (5.5) produces a sequence of iterates (yk, λk), such that the
sequence (yk, uk := −α−1λk) converges to the optimal solution (y∗, u∗) of (1)-(3).
Moreover,

‖yk − y∗‖H2 + ‖uk − u∗‖L2
≤ Cα−1/2√µk. (14)

Proof. The estimates for ω(µ), η(µ), and for the radius r(µ) of Uµ(y(µ)) are sufficient
to conclude with [12, Theorem 3.6.2] the existence of such a sequence. Without loss
of generality the iterates can be assumed to be close enough to the central path,
such that (14) holds due to (13).

Remark 5.7. Since λ(µ) is uniformly bounded in some Sobolev space W 1,p and
admits a convergence rate in L2, it follows by interpolation theory that λ(µ) also
admits a convergence rate in Sobolev spaces W s,q that depends only on the choice
of s and q. An analogous result is valid for u(µ) and y(µ).

6 Conclusion

We have shown convergence of an interior point method for a model problem of state
constrained optimal control. Our aim was to fix the main ideas in a framework as
simple as possible. We note, however, that an extension to more general problems
(bilateral bounds, control constraints) is straightforward.

We regard this analysis as a first step to the understanding of interior point
methods for state contraints. Its algorithmic implications are clear: other func-
tions than the logarithmic barrier function are worth considering for this class of
problems. In practice one will design an affine covariant adaptive path-following
algorithm similar to the algorithm developed in [12, Chapter 9]. This is subject to
current work.
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