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Abstract

Based on a simple stability analysis for the semi–implicit Euler discretization
a new dynamic sparsing procedure is derived. This procedure automatically
eliminates “small” elements of the Jacobian matrix. As a consequence, the
amount of work needed to handle the linear algebra within a semi–implicit
extrapolation integrator can be reduced drastically. Within the course of
integration the sparsing criterion, which decides what “small” means, is dy-
namically adapted to ensure stability of the discretization scheme. Thus,
stepsize restrictions due to instability can be avoided. Numerical experiments
for quite different problems show robustness and efficiency of this dynamic
sparsing technique. The techniques developed here in the context of stiff
extrapolation integrators can, in principle, be applied to W–methods, where
exact Jacobians may be replaced by “sufficiently good” approximations.

Keywords: Large scale integration, extrapolation methods, stiff ODEs,
W–methods, sparse matrix techniques.
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�� Introduction

Solving an initial value problem

y′ = f(y) , y(t0) = y0 , y ∈ R
n (1.1)

with a stiff integrator, a significant part of the overall computing time is
spent for the evaluation of the Jacobian matrices

J := fy(y)

and for linear algebra computations with these matrices. This time is wasted,
if the problem is nonstiff or only mildly stiff. In that case, the use of a
nonstiff (or explicit) integrator is more appropriate. However, the degree
of inefficiency depends, mainly, on the dimension n of the current problem
and on the fashion of the linear algebra procedures used. In the opposite
situation, i.e. solving a really stiff problem with an explicit integrator, the
effect is more distinct. In the best case, the required computing time increases
dramatically, but quite often the problem cannot be solved correctly.

Preliminary Considerations

The main objective of the dynamic sparsing algorithm presented in this paper
is to reduce linear algebra computing time when solving large stiff systems.
The very simple and not new idea is to drop elements of the Jacobian. In
doing so, some essential questions arise. First, how to exploit a reduced
number of nonzero elements. Second, which of the elements are really open
for dropping. Finally, which stiff methods actually allow a modification of
the Jacobian without being strongly affected.

Distinct benefits can be expected, if the sparsing is done under structural
aspects only, e.g. dropping all off–diagonal elements or all elements which
destroy another nice pattern like band structure or block structure. This
technique works quite good, if knowledge of the underlying problem induces
the dropping procedure. In the general case, however, neglecting the problem
of stiffness and forcing a special structure often leads to an integration with
stepsizes of the order of an explicit method.

An alternative is the use of general sparse linear algebra techniques. Struc-
tural aspects are no longer of great importance. Dropping a sufficiently large
number of elementswill speed up the computation. However, a general sparse
linear algebra mode only pays off, if the (sparsed) Jacobian is really sparse
and the dimension of the problem (1.1) is not too small. Thus, the prob-
lem class where the dynamic sparsing algorithm may be applied profitably is
restricted.
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But other approaches which, ultimately, try to avoid the above mentioned
problem of wasting computing time in a stiff integrator, have also structural
drawbacks. They will be discussed shortly in the next two subsections. In
the last subsection, the question of choosing an appropriate stiff integrator
is examined. In Section 2, a properly working sparsing criterion is derived
and the dynamic sparsing algorithm for extrapolation methods is presented.
The results of some numerical experiments are given in Section 3.

Type insensitive methods

In order to solve (1.1), the problem of specifying the appropriate type of
method (stiff or nonstiff), gave rise to the development of so–called type
insensitive methods. Such methods aim at deciding for each individual inte-
gration interval whether stiff or nonstiff numerical integration should be used
exclusively. Especially for multistepmethods and Runge–Kutta methods sev-
eral attempts have been made to develop such integrators, cf. Butcher [5],
Petzold [22], Rentrop [23], Shampine [25], Sottas [26] – just to quote
a few. Loosely speaking, such a method is able to switch automatically from
an explicit to an implicit discretization – and vice versa. For the time being,
the term “implicit” is used to indicate the contrast to “explicit” and means
“suited for stiff problems”. The crucial point is the development of cheap
and robust switching criteria, especially for the switch from the explicit to
the implicit method – the so–called problem of stiffness detection. Usually,
an explicit method can be used efficiently as long as the stepsize needed to
achieve the required accuracy in the solution is smaller than the maximum
possible stepsize due to stability. Thus, the stability stepsize bound of the
explicit method must be estimated. Mostly, this is done by estimating the
spectral radius of the Jacobian matrix. But within the phase of explicit in-
tegration, the Jacobian is not available and estimates are needed. Several
techniques have been developed to get meaningful estimates, but the problem
of automatic stiffness detection is still not fully solved.

But, even with a perfectly working switching algorithm and an efficient non-
stiff or stiff integrator respectively, type switching methods have, by construc-
tion, the following drawback. A substantial gain in the overall computing
time can be expected only, if the problem at hand allows to replace a sig-
nificant number of implicit integration steps by explicit steps of almost the
same size. In [22, 23, 26] no benefits, rather losses, are reported for the type
switching methods solving the problems of the STIFF DETEST [14].

Partitioning and Projection Methods

If the problem (1.1) can be partitioned into a stiff part and a nonstiff part
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y′s = fs(ys, yn) (stiff)
y′n = fn(ys, yn) (nonstiff)

(1.2)

the system can be treated with an implicit method for the stiff components
and an explicit method for the nonstiff part, see e.g. Hofer [20], Rentrop
[23], Strehmel/Weiner [30]. In this approach, the first task is to specify
appropriate methods, as, in contrast to the type switching schemes, the ex-
plicit and implicit discretization are used simultaneously. For Runge–Kutta
methods, the theory of P–series, Hairer [18], has its origin in the study of
the order properties of such methods. If the partitioning (1.2) is not known
in advance, or if it changes during the integration, an adaptive partitioning
algorithm is required. The development of a cheaply and reliably working
method turns out to be a quite difficult task [23]. The general drawback
of the method is obvious. The portion of components which can be treated
explicitly must be significant in order to save computing time – compared to
an overall stiff treatment.

So–called projection methods, see e.g. Björck [4], Gear/Saad [17], Wat-
kins/HansonSmith [31], may be interpreted as generalized partitioning
methods. Within such methods, one tries to approximate the stiff subspace
of the Jacobian. Somehow, these methods can be viewed as being in between
a pure projection method and a simple dropping method. Again, substantial
gains are possible only, if the dimension of the subspace is significantly less
than the dimension n of (1.1) – a perfectly working separation algorithm
assumed.

Extrapolation Methods

Although modern stiff extrapolation methods, see Deuflhard [7] for an
overview, are quite outstanding candidates for the above mentioned tech-
niques, the investigations made up to now on type insensitive methods con-
centrate on multistep and Runge–Kutta methods. On the contrary, the dy-
namic sparsing procedure is derived in the context of extrapolation methods,
but may be used also in combination with other discretizations. However,
such a method must accept perturbations of the Jacobian. Rosenbrock meth-
ods, for example, require the exact Jacobian within their order conditions,
whereas so–called W-methods, cf. Steinhaug/Wolfbrandt [29], fall into
the class of possible methods.

In the present context, one attraction of extrapolation methods is, that
pairs of explicit/implicit discretizations are available within a unified frame
of efficient extrapolation and control techniques. First, there is the pair
explicit/semi–implicit Euler discretization, combined with h–extrapolation.
Second, with h2–extrapolation, there is the pair explicit midpoint rule (the
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Gragg/Bulirsch /Stoer–algorithm)/semi–implicitmidpoint rule (due to
Bader/Deuflhard [2]). So, if the Jacobian is dropped totally, an approved
explicit discretization appears. Furthermore, the extrapolation process and
the order and stepsize control algorithm due to Deuflhard [6] need not
be changed. Rather, a quite straightforward realization of the sparsing al-
gorithm is possible, e.g. without indroducing additional heuristic control de-
vices.
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�� Derivation of the Algorithm

As pointed out in the preceding section, an appropriate criterion for dropping
“unnecessary” elements is required. Such a criterion is now derived by a
simple stability analysis of the underlying methods. The new method is then
interpreted in terms of recent theoretical results due to Deuflhard [8]. So,
in what follows, nothing is really new, but the proper collection of some
well–known considerations to a reliable algorithm.

The Basic Sparsing Criterion

The explicit Euler discretization applied to the problem (1.1) reads

yn+1 = yn + hf(yn). (2.1)

The semi–implicit Euler discretization is given by

(I − hA)(yn+1 − yn) = hf(yn) (2.2)

with
A := fy(yn). (2.3)

The integrators which are based on these discretizations (the codes EULEX
and EULSIM) use Richardson extrapolation to get approximations of higher
and variable order. Furthermore, the codes are equipped with a sophisticated
order and stepsize control [6]. Nevertheless, it is sufficient to look on a basic
stability property of (2.1, 2.2) to motivate the sparsing criterion used finally.

Application of both discretizations to the famous Dahlquist test equation

y′ = λy , y(0) = 1 , Re(λ) ≤ 0 , (2.4)

yields the well known stability domains for the methods (2.1) and (2.2) re-
spectively, that is,

SEE = {z ∈ C; | 1 + z |≤ 1}
SIE = {z ∈ C; |(1− z)−1| ≤ 1}

where
z = hλ.

The requirement for A–stability (S ⊃ C
−) gives rise to the stability stepsize

bound of the explicit Euler method

hmax
EE ≤ 2/|λ|, (2.5)
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whereas the semi–implicit Euler method is A–stable. Note that for the lin-
ear problem (2.4) the semi–implicit discretization (2.2) coincides with the
usual implicit Euler discretization. In terms of A–stability, these methods
are sometimes regarded as “superstable” (a notation due to Dahlquist). Ap-
plied to nonlinear problems, this disadvantage vanishes for the semi–implicit
discretization.

The usual generalization of the stepsize bound (2.5) for nonlinear systems is

hmax
EE ≤ 2/‖fy‖. (2.6)

Herein, a suitable norm ‖ . ‖ must be chosen. Note that any type switching
method will have to make use of such a norm based criterion.

In order to derive a sparsing criterion, one may look at (2.5) in a special
manner. Assume that a stepsize h is given. Then, as long as

|λ| ≤ 2/h,

holds, the explicit discretization (2.1) can be used. In other words, one
may use the semi–implicit discretization (2.2), but with A ≡ 0. Now, as an
entry based criterion is required, instead of the generalization (2.6) one may
intuitively generalize in a different way. An element ai,j of the Jacobian (2.3)
can be dropped, if

|ai,j| ≤ 2/h (2.7)

holds. In a rough sketch, one may interpret the criterion (2.7) in the following
way. If the component yi depends in a non–stiff fashion on the component
yj the element ai,j is not necessary for the stability of the integration. Thus,
this entry of the Jacobian may be dropped.

In this form, however, the criterion (2.7) cannot be used. First, the constant
2 in the nominator of the right hand side of (2.7) must be replaced by a more
conservative value (or safety factor). There are, indeed, several reasons for
that, not only numerical experience.

Recall that the integrators use extrapolation with variable order. Thus, the
extrapolated semi–implicit (sometimes called linerly implicit) Euler is A(α)–
stable solely (α close to 90◦). Furthermore, the problem is usually nonlinear.
Finally, the stepsize h in (2.7) is an internal estimate. Normally, this stepsize
estimate is computed after each successful integration step and is based on
the current internal error estimates. If estimated in a stiff integrator, the size
of h reflects only the dynamics of the problem and is not limited due to miss-
ing stability. Now, underestimating the maximum possible stepsize forces
a criterion based on (2.7) to eliminate more elements. As a consequence,
the next stepsize estimate, done within an integrator which is now partially
explicit (totally if all elements of A have been dropped), may suffer from a
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too extensive sparsing of A. This stepsize is again too small (compared to
the optimal stepsize of the stiff method) and the effect may strengthen. On
the other hand, if this trapping effect can be avoided, one may drop more
elements than originally indicated by a criterion of type (2.7). If the lin-
ear algebra computations are speeded up so far, that the increasing number
of steps is, at least, compensated, one may optimize the dynamic sparsing
procedure in that sense.

A second objection to the simple criterion (2.7) is its unscaled form. As the
problem of scaling invariance is of great importance for the reliability of a
method, this distinctive feature needs to be discussed in more detail.

Scaling Invariance

In practical applications the scaling invariance property of a code plays an
important role. This means, the current scaling of the problem should not
affect the algorithmic performance. In other words, the code should be in-
variant under rescaling of some or all components of y, say by yi → siyi. To
discuss the general case, consider a scaling transformation

y → Sy =: ȳ , S = diag(s1, ..., sn). (2.8)

Insertion into the original problem (1.1) yields the transformed problem

ȳ′ = f̄(ȳ) := Sf(S−1ȳ) , ȳ0 = Sy0. (2.9)

The analytical solution and the numerical approximation of both discretiza-
tions (2.1) and (2.2), turn out to be covariant, i.e. ȳ(t) = Sy(t) and ȳn+1 =
Syn+1 hold. So, invariance is lost in the code if unscaled norms enter into
the control of the algorithm. Typically, norms of the form ‖Δy‖, where Δy
denotes the difference of two internal approximations to y(t), have to be
evaluated. Obviously,

‖Δy‖ �= ‖Δȳ‖ = ‖SΔy‖ (2.10)

holds in general. Therefore, to ensure algorithmic invariance, scaled (or
weighted) norms are internally used, i.e.

‖Δy‖ → ‖D−1Δy‖ . (2.11)

Assume for the moment that for the internal scaling matrix D a choice

D = diag(y1, ..., yn) (2.12)

is possible. Note that the replacement (2.11) with the choice (2.12) forces
the usual error check ‖Δy‖ ≤ tol to test for the relative error. With (2.12),
the internal scaling matrix D̄ for the transformed problem (2.9) reads

D̄ = diag(ȳ1, ..., ȳn) = SD
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and, in contrast to (2.10),

‖D̄−1Δȳ‖ = ‖D−1S−1SΔy‖ = ‖D−1Δy‖ (2.13)

holds. Thus, the algorithmic performance is now invariant.

The sparsing criterion (2.7) monitors the values of Jacobian elements. Con-
sequently, these elements must be internally scaled to achieve invariance also
for the sparsing algorithm. Straightforward calculation shows that the Jaco-
bian of the transformed problem (2.9) is given by

Ā′ := f̄ȳ = SfyS
−1 = SAS−1. (2.14)

Inspired by (2.11), an internal scaling of the Jacobian (2.3) of the form

A → D−1AD (2.15)

guarantees invariance due to

D̄−1ĀD̄ = D−1S−1SAS−1SD = D−1AD.

However, the choice (2.12) is not always possible. Either as yi → 0 or if a
relaxed relative error control is more adequate for the problem at hand. So,
(2.12) is replaced by

D = diag(yw1 , ..., y
w
n ). (2.16)

Herein, yw denotes an internal weighting vector which is updated internally
within the course of the integration. Details are omitted here. But the fact
that the internal weights which enter into the order and stepsize control, are
also used in the sparsing criterion is of great importance for the reliability
of the sparsing criterion. Combining (2.15),(2.16) and (2.7), the actually
implemented sparsing criterion reads as follows

if(ywj |ai,j|/ywi ≤ σ/H) then ai,j := 0, (2.17)

where

H : current basic stepsize of the integrator

σ : safety factor, σ ≤ 1

yw : internal weighting vector of the integrator.

Interpretation of the Method

In principle, the new method is nothing else than the semi–implicit Euler
method, where the exact Jacobian A = fy is replaced by a modified one, say

Â, i.e.
A → Â (2.18)
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with
‖A− Â‖ ≤ δ0. (2.19)

If not all elements are dropped, one has a new method which is somehow
in between (2.1) and (2.2). Both basic methods, as well as variants and
extensions, have been studied extensively – from theoretical and computa-
tional points of view, see e.g. [7, 9, 10]. Recall that the semi–implicit Euler
discretization can be interpreted as an explicit Euler discretization of the
transformed problem

y′ − Ay = f(y)−Ay. (2.20)

As the Jacobian is only needed to ensure stability, a method which elimi-
nates some elements of the Jacobian (simultaneously on both sides of (2.20))
still meets the requirements for consistency and convergence of the method.
The extrapolation process and the order and stepsize control can be done as
usual. The replacement (2.18) just influences the maximum permitted step-
size. This can nicely be seen by looking to some recent uniqueness theorems
due to Deuflhard [8]. Herein, stiff ODE problems and implicit discretiza-
tion methods are characterized by affine invariant Newton–type uniqueness
theorems. Within that frame, the basic discretization (2.2) is interpreted
as one possible realization of a simplified Newton method in function space.
“Simplified” means that from the global, continuous Jacobian information
fy(y(t)), t ∈ [tn, tn+1] just the local information A := fy(y(tn)) is used.
Clearly, with the replacement (2.18) the simplified Newton method is re-
placed by a Newton–like method, again in function space. The local continu-
ation property for the solution of (1.1) is discussed in terms of a characteristic
time constant τ̄ . Due to (2.19) this constant is reduced according to

τ̄ → τ̂ = τ̄/(1 + δ0τ̄ ) ≤ τ̄ . (2.21)

Thus, dropping small terms in the Jacobian is a slight modification of the ba-
sic method (2.2) which leads to a minor reduction of the maximum permitted
stepsize.

Algorithmic Realization

In order to discuss the algorithmic realization of the dynamic sparsing proce-
dure one may look at the following informal algorithm which – very roughly
– describes one basic step (from t̄ → t̄+H) of the extrapolated semi–implicit
Euler method. Herein, H denotes the so–called basic stepsize, q the depth
of extrapolation and ȳ the extrapolated approximation to y(t̄).
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Informal Algorithm:

Basic step:

Given: t̄, ȳ, H, q

t0 := t̄
η0 := ȳ
f0 := f(η0)
A := fy(η0)

Â :≈ A (Sparsing)

Extrapolation loop:

do j = 1, . . . , q + 1
hj := H/j

LU := (I − hjÂ) (LU–Decomposition)

Internal steps:

do l = 0, . . . , j − 1
fl := f(ηl)

ηl+1 := ηl + (LU)−1hjfl (Solve)

enddo
for j > 1:

extrapolation
convergence monitor

enddo
order and stepsize selection: Hnew, qnew

extrapolation: ȳnew

do next basic step (t̄ := t̄ +H)

Obviously, the dynamic sparsing procedure is a very local addition to the
usual algorithm. A more interesting question is, in which way the linear
algebra routines are affected. In the sparse version of the code EULSIM, the
code EULSIS, the linear system solution is done with the aid of the sparse
matrix package MA28 from Harwell [11, 12]. The compilation follows the
lines presented in Duff/Nowak [13].

Within the MA28 package there are two routines to factor a given matrix.
The expensive Analyse/Factorize routine MA28A analyses the matrix
and tries to minimize the number of fill–in elements in its LU–decomposition.
Besides, there is the fast Factorize routine MA28B which factors a matrix
with the same nonzero pattern as from a previous call to MA28A. But the
values may have changed, thus the now prescribed pivot sequence may be-
come not appropriate. This is internally checked and one may restart with a
factorization by MA28A, if numerical instability is indicated. Provided that
the structural nonzero pattern is known exactly, after a first decomposition
with MA28A, the fast factor routine may be used, in principle, throughout
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the whole integration. Numerical experience shows, that during an integra-
tion quite often just 1–3 expensiveAnalyse/Factorize calls are necessary.
All other decompositions can be done by the fast Factorize routine.

Things change, if the sparsing algorithm is added and the criterion (2.17)
really removes elements from the Jacobian. Now, the pattern may change
from step to step. So, doing dynamic sparsing requires, at least, one Anal-
yse/Factorize call per step (to be precise, after each Jacobian evaluation).
Thus, fixing the Jacobian for more than one step will pay off especially in
combination with dynamic sparsing. Note that typically q ∈ {2, 3, 4} holds,
thus one can get over this additional amount of work.

As an interesting variant, one may combine the sparsing procedure directly
with the Jacobian evaluation. This means, that the exact Jacobian A must
never be stored. Only the nonzero elements of the sparsed Jacobian Â need
to be hold.

11



�� Numerical Experiments

In this section some numerical results, illustrating the performance of the
dynamic sparsing procedure (2.17), are presented. Most of the experiments
have been carried out in FORTRAN double precision on a SUN SPARC1+
Workstation, using the Sun FORTRAN Compiler with standard options ex-
cept for the optimization level “-O1” (due to a sometimes buggy compila-
tion for higher levels). Some of the computations were performed on the
CRAY Y–MP (in single precision) of the Konrad–Zuse–Zentrum für Infor-
mationstechnik Berlin. The following discussion will focus on the question of
reliability and efficiency of the new method within the semi–implicit Euler
discretization. Testing the procedure within the frame of the semi–implicit
midpoint rule (code METAN1) yields similar results.

The Oregonator problem

This rather small problem, describing an oscillating chemical reaction sys-
tem, is a quite popular test problem for stiff/nonstiff switching methods.
The underlying chemical problem is the Belousov-Zhabotinsky reaction sys-
tem with the kinetic model of Field/Noyes [15]. The equations for the
dimensionless concentrations, taken from Seider/White III/Prokopakis
[24], read

y′1 = 77.27(y2 − y1y2 + y1 − 8.375 · 10−6y21)

y′2 = (−y2 − y1y2 + y3)/77.27

y′3 = 0.161(y1 − y3),

with initial values , again from [24],

y1(0) = 4. , y2(0) = 1.1 , y3(0) = 4.

First, to depict the oscillatory nature of this problem, the solution and step-
sizes for a simulation over more than 3 cycles (t0 = 0, tend = 1000) with
the standard code EULSIM are shown in Figure 3.1. Note that the values
are in logarithmic scale. The cyclic behavior of the solution carries over
to the behavior of the stepsizes. Now, equipping the code EULSIM with
the dynamic sparsing procedure, one may check the robustness of this al-
gorithm. Of course, running the new code (DYSEUL) on the Oregonator
problem, no gain can be expected, as the arising linear systems are still
solved with the standard full mode solver DGEFA/DGESL from LINPACK.
Rather, the safety factor σ is varied and the changes in the performance of
DYSEUL are monitored by checking the usual indicators nstep (number of
integration steps), nfcn (number of function evaluations), ndec (number of
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Figure 3.1: Solution and stepsize for the Oregonator problem

LU-decompositions) and nsol (number of forward/backward substitutions).
Note that the count nfcn includes also the function evaluations required for
the internal Jacobian generation by a finite differences approximation. The
integration interval is now [0, 300] and the required relative accuracy was set
to rtol=10−3 and rtol=10−5 respectively. The internal scaling of DYSEUL
was forced to ensure a relative error check for all components over the whole
integration interval.

The results of this experiment, summarized in Table 3.1 and Table 3.2, are
very satisfactory. Up to a value σ = 0.25 the runs with the dynamic sparsing
option switched on show a good coincidence with the standard EULSIM run,
i.e. DYSEUL with σ = 0. Even for values of σ, where the stability of the
discretization may degenerate, the problem is solved correctly – but with
smaller stepsizes and an increased amount of work. This increase of nstep
nicely agrees with the theoretical result (2.21).
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The last two columns of the tables contain the results of an additional ex-
periment. Using only the diagonal of the Jacobian, indicated by Â=D, the
problem is still solved – but extremely inefficient. A pure explicit integration
with the code EULEX (Â = 0) fails, as the internal maximum step number
bound nstepmax = 20000 is met.

σ 0 10−2 10−1 0.25 0.5 1 10 100 Â=D Â=0
nstep 127 129 126 131 168 290 387 fail 5733 fail
nfcn 1761 1730 1671 1715 1930 2608 3301 - 32401 -
ndec 684 676 658 685 779 1188 1524 - 17539 -
nsol 2093 2046 1980 2039 2232 3004 3777 - 31055 -

Table 3.1: Dynamic sparsing for different values of σ (rtol=10−3).

σ 0 10−2 10−1 0.25 0.5 1 10 100 Â=D Â=0
nstep 173 173 176 171 214 297 643 fail 15451 fail
nfcn 4033 4070 4065 3862 4273 5527 10515 - 113621 -
ndec 1245 1240 1265 1192 1378 1851 3951 - 49235 -
nsol 4780 4821 4840 4571 5038 6532 12745 - 117237 -

Table 3.2: Dynamic sparsing for different values of σ (rtol=10−5).

In the second picture of Figure 3.2, for the standard value σ = 0.25, the
internally selected stepsizes Hi,i=1,..,nstep of DYSEUL are compared with the
series Hi of EULSIM. Again, the first picture of Figure 3.2 shows the 3 solu-
tion components. In addition, the number of nonzero elements of the sparsed
Jacobian (nne(Â)) is plotted in the last picture of Figure 3.2. Obviously, the
behavior of the Hi and of nne(Âi) is nicely coupled. Large Hi and nne(Âi)
in the stiff, smooth phase, smaller steps and less nonzero elements in the
dynamic, transient phase, where, perhaps, an explicit discretization may be
used.

In order to study the behavior during this phase in more detail, Figure 3.3
shows the magnified region [0,5] of Figure 3.2. Now one can see, that the
transient phase consists of two sharp transient regions, where an explicit
method may work efficiently. But these non–stiff regions are separated by a
small stiff region, where an explicit method would waste computing time.
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Figure 3.2: Solution, stepsizes and nne(Â) for the Oregonator (first zoom)
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Figure 3.3: Solution, stepsize and nne(Â) for the Oregonator (second zoom)
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Thus, a type switching method should use the stiff integration method not
only in the large smooth region but also for the just mentioned small stiff
region, see e.g [26]. Gratifyingly, this small local stiff region is recognized by
the sparsing procedure also. The number of remaining nonzero elements in
the sparsed Jacobian increases locally. Large time steps are possible and are
not prevented by a too insensitive sparsing criterion.

The fact, that the dynamic sparsing procedure works very satisfyingly on this
nontrivial test problem is encouraging. But, in order to exploit the reduced
number of nonzero elements in the Jacobian, special linear algebra routines
are necessary. For an example of dimension n = 3 this certainly will not pay
off.

Quite interesting is the result of another experiment. Running the type
switching code LSODA due to Petzold/Hindmarsh [19, 22] on the Oreg-
onator problem shows that the code works fastest, if the switching to the
nonstiff Adams method is inhibited. Likewise, no gain is reported for the
Runge–Kutta based switching method developed by Sottas [26].

Large Problems from Chemical Kinetics

A quite extensive and interesting problem class are large systems of stiff
ODEs coming from a detailed modeling of chemical reaction systems. For
the numerical simulation of such systems, the program package LARKIN [3]
turned out to be a powerful tool. Now, one may compare the efficiency of
solving some of these problems with the unchanged integrators of LARKIN
(special versions of the semi–implicit Euler method and the semi–implicit
midpoint rule) with variants, where the sparsing procedure is added. Three
examples are considered:

• n− hexane[21] n = 59 nne(A) = 523 n2 = 3481
• soot[16] n = 138 nne(A) = 2880 n2 = 19044
• RNA[27] n = 352 nne(A) = 2642 n2 = 123904

Recall that dynamic sparsing means to change the nonzero pattern of the
Jacobian within the course of the integration. Thus, one has an a priori loss
of efficiency for the sparse linear system solution. Testing again for different
required tolerances and various values for σ, the distinct reliability of the
sparsing algorithm is the most important result. Once more, up to σ = 1
only minor changes in the integration behavior can be observed. Regarding
the efficiency, the results are summarized quickly. The number of elements
which can be removed is not dramatic but sufficient to balance, at least, the
a priori loss of efficiency (for σ = 0.25). For the example soot, which has
the comparatively densest Jacobian, the overall computing time is reduced
by 15% .

17



The Epidemic Spread of AIDS

A detailed model for the epidemic spread of the HIV/AIDS disease, including
the dynamics of the development of the disease, the population size, the
gender and age structure, has been derived by J.Weyer and B.Ch.Schmidt.
Their fine modeling leads to a set of

n = 1650

nonlinearly coupled equations. Depending on the selected values for the
medical and sociological parameters, the system can become very stiff. A de-
scription of the model, the numerical solution and the outcome of some sim-
ulations can be found in Schmidt/Weyer/Deuflhard/Nowak/Pöhle
[28].

Analyzing the Jacobian A of the system, the number of structural nonzero
elements turns out to be

nne(A) = 128268 (n2 = 2, 722, 500).

Hence, the matrix cannot be considered as extremely sparse. Consequently,
one may first study the general question whether sparse matrix techniques
will still pay off on a vector machine. So, as a first experiment, the problem
has been solved with the standard full mode code EULSIM and with the
general sparse mode code EULSIS on a CRAY machine. The advantage of
using sparse matrix techniques is evident. Although the full mode linear
system solver vectorizes nearly optimal, the (badly vectorizing) sparse mode
solution is drastically faster. These results, as well as all other test results
for the present test problem, are put together in Table 3.3.

Looking into more details, one can see that for the solution with EULSIS the
portion of CPU time which is required for the linear system solution is still
not in balance with the portion for the function and Jacobian evaluation.
Furthermore, the amount of work for the matrix decompositions dominates
the one for the forward/backward substitutions too strongly.

Now, solving the problem with dynamic sparsing (code SEULSP, σ = 0.25)
yields another drastic speed up factor. The results are arranged in Table 3.3.
Most of the elements of the Jacobian can be dropped. The resulting matrix
Â is extremely sparse, i.e.

nne(Â) < 8000

hold for the whole integration. This dramatic sparsing effect is illustrated
in Figure 3.4. Again, the choice of the specific value for σ is not critical.
Confirming the experience of the experiments presented so far, the perfor-
mance of the integrator is just slightly changed. The different portions of
the computing time are now nicely balanced. Rerunning the problem on a
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EULSIM EULSIS SEULSP SEULSP SEULSP-V
(CRAY) (CRAY) (CRAY) (SUN) (SUN)

nstep 11 11 10 10 10
nfcn 70 70 72 72 72
njac 10 10 9 9 9
ndec 41 41 39 39 39
nsol 110 110 110 110 110

CPU(s) 734.1 67.3 6.2 45.2 30.1
Storage(MB) 46.2 9.5 6.5 5.5 3.0

f-time 0.1 % 0.5 % 6.0 % 10.9% 16.3 %
J-time 0.3 % 4.5 % 45.7 % 55.4% 35.9 %

Dec-time 99.2 % 92.2 % 29.1 % 13.8% 20.6 %
Sol-time 0.3 % 1.8 % 16.1 % 7.8% 11.6 %

other-time 0.1 % 1.0 % 3.1 % 12.1% 15.6 %

Table 3.3: Performance of EULSIM variants for the Epidemic problem.

workstation (SUN SPARC1+), yields another load balance. This is due to
the fact, that the loss of vectorization shows up mainly in the code for the
evaluation of the functions and Jacobians, respectively. Now, the costs for
the Jacobian evaluations are dominant.

As pointed out in the preceding section, one may combine the sparsing pro-
cedure and the Jacobian generation, mainly to save storage. For the present
problem a skillful matching saves, furthermore, about 30% computing time.
The results for this variant are shown in the last column of Table 3.3.

A final question to be discussed is, whether the problem can be solved effi-
ciently with an explicit integrator. With the current parameter values and
model assumptions of the underlying epidemic model, the problem turns out
to be only mildly stiff. A simulation with EULEX requires more steps and
function evaluations but the overall computing time is in the same range as
for SEULSP. Though, using other parameter values the system may become
extremely stiff. An explicit integration is impossible, whereas the behavior of
SEULSP remains nearly unchanged. The stepsizes of SEULSP and EULEX
for such a stiff problem are plotted in Figure 3.5. This picture indicates that
a type switching method would not help, as the stiffness increases with time.
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Figure 3.4: Original and sparsed Jacobian for the Epidemic problem

Figure 3.5: Performance of EULEX and SEULSP for the Epidemic problem
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Conclusion

The dynamic sparsing algorithm for semi–implicit extrapolation methods
turns out to be a theoretically backed and robust device. It can easily be
inserted into existing software. Depending on the problem at hand, the gain
in efficiency can be drastic, whereas the potential loss is small. The latter fact
is mainly subject to the realization of the sparse linear algebra method, as
the computational costs for the sparsing algorithm itself are neglectable. But
the efficient application of the dynamic sparsing procedure is not restricted to
ODE solvers with sparse linear algebra mode. Especially for very large scale
problems, where the linear system solution is done with an iterative method,
the benefit from an a priori sparsing of the Jacobian may be substantial.
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breitung von HIV/AIDS in Ballungsgebieten. Technical Report TR 91–9,
Konrad-Zuse-Zentrum Berlin (1991)

[29] T. Steihaug, A. Wolfbrandt: An Attempt to Avoid Exact Jacobian
and Nonlinear Equations in the Numerical Solution of Stiff Differential
Equations. Math. Comp. 33, p. 521–534 (1979)

[30] K. Strehmel, R. Weiner: Behandlung steifer Anfangswertprobleme
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