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ABSTRACT

Cutting planes and branching are two of the most important algorithms for solving mixed-
integer linear programs. For both algorithms, disjunctions play an important role, being
used both as branching candidates and as the foundation for some cutting planes. We relate
branching decisions and cutting planes to each other through the underlying disjunctions
that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding
split disjunctions. We show that selecting branching decisions based on quality measures of
Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the
result improves when using cuts that more accurately represent the branching decisions.
Finally, we show how the history of previously computed Gomory mixed-integer cuts can
be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP.
Our results show a 4% decrease in solve time, and an 8% decrease in number of nodes over
affected instances of MIPLIB 2017.

1 Introduction
A Mixed-Integer Linear Program (MILP) is an optimisation problem that is classically defined as:

argmin{c™x | Ax<b, 1<x<wu, x¢€ 7V % R”*w'} D

Here, ¢ € R” is the objective coefficient vector, A € R™*" is the constraint matrix, b € R™ is the right
hand side constraint vector, l,u € R" U {—00,00}" are the lower and upper variable bound vectors, and
J C{1,...,n} is the set of indices of integer variables. We denote the set of feasible solutions to (1) as X,
and the feasible region of the linear programming (LP) relaxation as PP, where the LP is derived by relaxing
the integrality requirements of (1). An optimal solution to (1) is denoted x*, a feasible solution denoted X,
and an LP optimal solution is denoted as x**.

The core algorithm for solving MILPs is branch-and-cut, see [1] for a thorough introduction of MILP solving.
Branch-and-cut consists of two main components, branch-and-bound and cutting planes. The branch-and-
bound algorithm recursively divides the MILP into smaller subproblems, where splitting a problem into
smaller subproblems is called branching. This recursion creates a tree, where each node is a subproblem.
Traditionally branching is performed on an integer variable, x; with fractional LP value, z>¥, creating the
two LP subproblems with feasible regions P N {zff < [2FP]} and P N {z£F < [zFP]}. An example
branching procedure is visualised in Figure 1. The algorithm bounds the optimal objective through upper
bounds from feasible solutions of (1) obtained at leaf nodes of the tree, and lower bounds from LP relaxations
that bound all subtrees of a node. The procedure of branch-and-bound that we are interested in is variable
selection, which is concerned with determining which variable to branch on at a given node from the given
candidates.

*Institute of Mathematics, Technische Universitét Berlin, Stral3e des 17. Juni 135, 10623 Berlin, Germany
Zuse Institute Berlin, Department of Mathematical Optimization, Takustr. 7, 14195 Berlin
Fair Isaac Germany GmbH, Takustr. 7, 14195 Berlin, Germany


https://orcid.org/0000-0001-7270-1496
https://orcid.org/0000-0002-6320-8154
https://orcid.org/0000-0002-6284-3033
https://orcid.org/0000-0002-1967-0077

Figure 1: (Left) An example branching decision. The red point is the LP optimal solution, the larger polytope
the original LP feasible region, and the two blue polytopes the feasible LP regions of the subproblems. (Right)
An example cutting plane.

A cutting plane, or cut, parameterised by (a, 3) € R"*1, is an inequality a™x < §3 that is violated by at
least one solution of the LP relaxation but that does not increase the optimal value of the problem when
added to the problem, i.e., it is valid for (1). This definition is more general than the classical one, which
requires that cut not remove any integer-feasible solution to (1), and separate some LP feasible fractional
solution. Our definition however captures additional families of cuts such as symmetry-breaking cuts [2, 3].
The cutting plane algorithm iteratively generates cuts, applies them, and re-solves the LP relaxation. In the
classical case this algorithm is repeated until an integral LP relaxation solution is achieved. In branch-and-
cut, this algorithm is repeated at the root node until some termination criteria is met, with additional cuts
applied throughout the branch-and-bound tree. The procedure of cutting planes that we are interested in is
cut selection, which is concerned with deciding which subset of the computed cuts to actually add to the LP
relaxation.

In this paper we propose a technique for the variable selection problem based on cut selection. We note
that the opposite direction — using variable selection techniques for cut selection — also presents a valid
avenue of research, however this lies outside the scope of this work. For each branching candidate we
generate a cut, greedily select the best cut according to standard cut scoring measures, and then branch on
the corresponding candidate. Specifically, we will generate Gomory Mixed-Integer (GMI) cuts, for which we
provide a detailed introduction in Section 3. This approach to variable selection is objective-free, i.e. not
based on the objective vector, and is thus complementary to standard pseudo-cost based approaches [4]. We
show the effectiveness of multiple variants of this branching rule using different levels of strengthened cuts,
and compare them to standard branching rules from the literature. Finally, we show how this information
can be incorporated into the hybrid branching rule of SCIP [5, 6], resulting in an improvement of general
solver performance.

2 Related Work

Branching in MILP has been thoroughly studied, both theoretically and computationally, see [7, 4, 8]. The
current state-of-the-art variable selection method is hybrid branching [5], which is reliability pseudo-cost
branching [4] with integrated constraint satisfaction and satisfiability problem techniques. An array of other
selection rules exist, such as nonchimerical fractionality branching [9], cloud branching [10], and general
disjunction branching [11]. The above-stated methods, unlike our cut selection approach to branching, often
depend on the objective function for variable selection. We note that variable selection has also served as
the playground for introducing machine learning to MILP solvers, see [12, 13] for early examples, and [14]
for an overview.

Cutting plane selection has been less studied than variable selection, however it is currently experiencing
a recent refocus through machine learning driven research, see [15] for an overview. Early computational
studies, see [1, 16], show that a diverse set of measures is necessary for good performance when scoring
cuts. Both studies, as well as the computational study [17], use parallelism-based cut filtering algorithms,
and show that the inclusion of filtering methods are critical for performance. These studies suggest that
it is preferable for performance to select from a large set of weaker cuts than from a small set of stronger
cuts. More recent work on cut selection, for which [18] provides ample motivation, is machine learning
based. Specifically, research on theoretical guarantees [19, 20, 21], new scoring measures [22], the amount



of cuts to select [23], and learning to score cuts with supervised [24, 25], imitation [26], and reinforcement
learning [27, 23].

Our work is not the first to use cutting plane selection to dictate branching decisions. Moreover, it is not the
first to use GMI cuts specifically, see [28, 29]. In both papers the split disjunctions, which define the GMI
cuts of tableau rows, are used as branching candidates. The efficacy of the GMI cuts are used to filter the
set of branching candidates, where ultimately strong branching is used as the final selection criteria. In [29]
additional experiments are presented that compare disjunctions derived from reduce-and-split cuts, see [30].
Our research differs from [28, 29] in that we branch on elementary splits, i.e., single variable disjunctions,
we perform additional experiments using non-strengthened GMI cuts, and we integrate our approach with
existing state-of-the-art history-based methods.

3 Gomory Mixed-Integer Cuts

This section is structured to give a thorough introduction to Gomory Mixed-Integer (GMI) cuts. Following the
history and general introduction of Subsection 3.1, we introduce disjunctive, split, and intersection cuts in
Subsection 3.2. We then step through the derivation of GMI inequalities in Subsection 3.3, ending with how
GMII cuts are used and derived in practice 3.4. The geometric interpretation of the GMI cuts will be provided,
and related to the overview of Subsection 3.2. For alternate overviews of GMI cuts see [31, 32, 30, 29].

3.1 GMI Introduction and History

First introduced in 1960 [33], GMI inequalities are general purpose inequalities valid for arbitrary bounded
MILPs. They can be used to iteratively tighten a LP relaxation of an MILP, and when they are generated
to separate a specific solution, are referred to as cutting planes, or cuts. In practice they are generated to
separate the current LP solution using the simplex tableau, see Subsection 3.4.

Following the landmark paper [34], GMI cuts were empirically shown to be a computational success. This
success was in spite of a commonly held belief that only cuts derived from MILP instance structure were
computationally useful. Some examples of structured inequalities or cuts are knapsack cover and flow cover
inequalities [35]. The summarised reasons for the success of [34] was their intelligent lifting procedure to
globally valid cuts, their selection algorithm, their use of branch-and-cut as opposed to pure cutting plane
approaches, and the recent robustness improvements of LP solvers. For a more complete history behind the
resurgence of GMI inequalities, see [36]. Advances on GMI cuts have continued, where we name reduce-
and-split cuts [30] and LaGromory cuts [37] as examples. To stress the importance of these cuts in the
current day, we note that GMI cuts are continually noted as computationally necessary [38, 39], and are
used in every state-of-the-art MILP solver, see Xpress [40], Gurobi [41], CPLEX [42], HIGHS [43], and SCIP
[6].

3.2 Disjunctive, Split, and Intersection Cuts

It is common in the literature to find compact introductions of GMI cuts that mention they are either
disjunctive cuts, intersection cuts, or split cuts. All these statements are true, and moreover, the families
of cuts have a clear hierarchy [44, 45]:

GMI cuts from basic feasible solutions C Split cuts C Intersection cuts C Disjunctive cuts

We highlight that while our work on branching leverages GMI cuts, it can also leverage any family of cuts
that fit into this hierarchy and can be derived from disjunctions.

3.2.1 Disjunctions and Disjunctive Cuts

A linear disjunction is a set of linear inequalities joined by and, or, and negation operators (see [44] for
a thorough introduction). The solution set of a disjunction is a disjunctive set. For MILPs, every integer-
feasible solution to (1) is an element of a disjunctive set. A disjunctive cut is any cut derived from such a
disjunctive set, i.e., all elements in the disjunctive set remain feasible and some fractional solution outside
the disjunctive set is separated.

A linear disjunctive set represents a union of polyhedra. It is defined as:

|D]
D .= U D;, where;D; CP Vie{l,---|D|}
i=1

An example disjunction is visualised in Figure 2, with the Figure also showing a valid disjunctive cut.



Figure 2: (Left) An example disjunction ((z1 < (2P ]) V (21 > [2IP)) A (22 < [25F)) V (22 > [257])) .
The disjunctive set is the union of blue polytopes. Here D, is the empty set. (Right) An example disjunctive
cut for the disjunction.

3.2.2 Splits and Split Cuts

A split disjunction, or split, is defined by an an integer 7, € Z and an integral vector 7 € Z7| x 07171 which
has zero entries for coefficients of continuous variables. We denote the split disjunction as D(r, 1), where
(m,mo) define the two hyperplanes:

wTx < mg
aTx >m+ 1

(2)

The disjunctive set D = | J,. (1,23 Di formed by the hyperplanes is:

Dl ::Pﬂ{x € Rn|ﬂ'TX < 7T0}
Dy :=PnN{xeR"nTx>m+ 1}

The disjunction is valid as wTx must always take an integer value in a feasible solution to (1) due to the
design of r. We observe that the disjunctive set D can be written as the complement of a set S intersected
with P, where S is defined as:

S={xeR"|m<wTx <mp+1} 3)

Note that notation is often abused where the split can reference either the set S from (3) or the boundary
of the set S, i.e. the two hyperplanes from (2). From a split disjunction we can derive a split cut. A split cut,
(e, B), is a valid inequality for both D; and D,, and separates some points from S N P. In the mixed-integer
case, unlike the pure integer case [46], a finite amount of split cuts is not always sufficient for defining the
integer hull and proving optimality, see [47]. A split is called simple or elementary if it only acts on a single
variable, i.e. m = e; for some i € J. An example (simple) split disjunction alongside a valid split cut is
visualised in Figure 3.

Figure 3: (Left) An example (simple) split. (Right) An example (simple) split cut.

3.2.3 Intersection Cuts

Some cuts reason on the standard form of a MILP, which is defined using equality constraints instead of
inequalities. In particular, intersection cuts and GMI cuts are derived using this standard form. Given our



definition of a MILP in (1), we can transform it to a standard form MILP in higher dimension by adding
non-negative slack variables to each constraint. We can additionally substitute and introduce variables to
shift variable bounds while keeping an equivalent formulation. We do this procedure to obtain the following
MILP, where for ease of notation we will continue to use ¢ and A.

argmin{c'x | Ax=b, x>0, x ez x Rr+m-IT1 €]

The simplex method typically used to solve LP relaxations of (4) returns a basis, B C {1,...,n + m}, where
|B| = m. The basis is an index set of variables and relates to an extreme point of the LP relaxation, x € R**™,
which is a basic solution. In practice the simplex method returns the optimal basic solution x*. Associated
with every basic solution x is the LP cone, or corner polyehdron, C(x) C R**™, whose apex is X and whose
rays are defined by the n-hyperplanes that form the basis. These rays are the columns of the simplex tableau
relating to the non-basic variables. Note that in the case of primal degeneracy, multiple bases may result in
the same extreme point but in different LP cones, and as such C(B) is the more appropriate notation. Two
example LP cones are visualised in Figure 4.

Figure 4: The shaded area is the feasible region of C(x). The red dot is the apex of the simplicial conic
relaxation of the feasible region of (1), and r,r;, are the rays of the cone. (Left) The red dot is both x“”
and x. (Right) The red dot is a primal infeasible x.

An intersection cut, similar to a split cut, is defined w.r.t. a set S C R**™  which lies in the same dimension
as x in the new space. Unlike split cuts however, S is not necessarily defined by two hyperplanes. Rather,
it needs to be convex, to contain in its interior a current LP-feasible fractional solution we want to separate,
and to not contain any integer-feasible solution in its interior. In the context of MILP, the set S is a lattice-free
set [48]. In addition to the set S, an intersection cut is also defined w.r.t. a simplicial conic relaxation of the
feasible region of (1), see Figure 4 for example simplicial conic relaxations derived from bases. We note that
while any simplicial conic relaxation can be exploited, an LP cone derived from a basis is used in practice.
The idea behind intersection cuts is to collect the intersection points of each ray with the boundary of the
closure of S, and form a valid inequality as the hyperplane that contains all the intersection points. When
using the LP cone C(x*"’) and a set S containing x", the generated inequality will be a cut. Two examples
of intersection cuts are visualised in Figure 5. For a deeper look into intersection cuts, we refer readers to
[48, 44].

Figure 5: (Left) Example intersection cut. (Right) Example intersection cut that is also a split cut.



3.3 GMI Inequality Derivation

We will now derive the GMI inequality, which we note again is general purpose and requires no additional
problem structure.

Definition 1 (GMI inequality). Given a valid equality for the LP relaxation of (4), aTx = b, we distinguish the
variables into those with integer requirements and those that are continuous, i.e., ), 7 @iTi+ Eie[n]\ 74T =
b. Let [n] = {1,...,n}, b= |b] + fo, where 0 < fo < 1, and a; = |a;] + fi, where 0 < f; < 1 and i € [n]. The
GMI inequality is:

i L—fi a; a;
Z %%—i— Z 1—f0xi+ Z o Z 1—foxi21 ®)

i€, fi<fo i€J,fi>fo i€[n]\J,a; >0 i€[n)\J,a;<0

Derivation. The logic of the GMI inequality is that if f; > 0, then fractional multiples of integer variables
and multiples of continuous variables must account for f,. Specifically, they must sum to f, and a potential

integer. That is:
Yo fwit Y, (fi-Dait Y awi=k+fo, kel (6)
i€J,fi<fo i€J,fi>fo i€n]\J
This partition of f; values around f, is possible due to the observation that a;, where f; > 0, can be
equivalently written as a; = |a;] + f; or as a; = [a;| + (f; — 1). For example, 3.6 = 3 4 0.6 or equivalently,
3.6 = 4 — 0.4. This partition is done as it results in a strictly stronger cut than otherwise [32, 30, 29].

Specifically, it results in smaller coefficients for like terms as i:}z < % when f; > fo.

Let us create a disjunction for two cases for inequality (6), where k < —1 or & > 0. In the case k < —1 we

have that:
Z fix; + Z (fi — Z a;z; < —(1 - fo)

€T, fi<fo €T, fi>fo ZE[n]\J
1-f; a;
=- ¥ et ¥ jf > g ¢
€T, fi<fo ied frsgo L 10 ien\J 0

In the second case, k£ > 0 we have that:

S fiwi+ Y (i Z aizi > fo

€T, fi<fo i€, fi>fo n)\J
1 _ . .
€T i< 10 ied pisfo 0 i€\ ’°

As x > 0, we can derive a globally valid inequality for the disjunctive set from the inequalities (7) - (8) by
taking the maximum coefficient of each term over the two inequalities. That is the inequalities aTx > 1 and
a’Tx > 1 implies )", max(a;,a})x; > 1. We have grouped the terms in their derivation above s.t. at most
one is positive. The result of this derivation is exactly the GMI inequality (5). O

3.4 GMI Cuts in Practice

In general, it is N"P-hard to find a GMI cut that separates a given LP-feasible solution, or to determine if
such a cut exists, see [49, 32]. It is not A"P-hard, however, to separate a given basic solution of P, e.g., an
LP-optimal solution found by a simplex algorithm.

Consider a row of the simplex tableau for variable «; of basis B. The row is an aggregated equality constraint,
created from a linear combination of original constraints, where basic variable z; is described purely in terms
of the non-basic variables. That is:

RIS ©)

i¢B
Here z; is the right hand side value of the tableau row and a;; is the tableau entry for the row of basic

variable «; and column of variable z;. In the considered case of x > 0 the Z; is the value of variable «; at
the basic solution. Note that the constraint (9) is tight for the current basic solution.



A GMI cut is derived from applying the GMI inequality procedure from Subsection 3.3 to the aggregated
equality constraint (9). This procedure is only applied to rows of the simplex tableau that correspond to
integer variables with fractional LP solutions. This is because these rows have a fractional right hand side,
and the resulting GMI inequality guarantees separation of the current LP solution. An inequality produced
by this method is called a GMI cut.

Geometrically, a GMI cut is a split cut, and therefore it is also both an intersection cut and disjunctive cut.
Specifically it is an intersection cut for the split D(7%, |z;]), where =€ is defined as follows:

laji], if (fi <fo) NigB
[aji], if (fi>fo) NigB
1, ifi=j

0, if (i £ j)Ai€B

G ._
i =

n% e 7", wheren Vie{l,..,n} (10)

The GMI cut of the tableau row (9) is the strengthened version of the intersection cut obtained from the
elementary split D(e;, |Z;]), see [30, 44]. Deriving a cut using the elementary split for the simplex tableau
row (9) of variable z; without the strengthening procedure results in the intersection cut (11). This cut is
obtained by treating integer variables the same as continuous for the GMI derivation.

> Fmi— Y PEwmzd (an
i¢B,a;i>0 fo i¢6&»-<017f0
We denote this inequality as weak-GMI, and note that the GMI cut will always dominate the associated weak-

GMI cut. We also note that the strengthening procedure is performed by using fractional coefficient values
fi instead of a;; for integer variables and the partitioning of those fractional coefficients f; around fj.

4 Cutting Plane Selection for Variable Selection

The core idea of our work is to use measures of cuts to evaluate and decide on corresponding branching
candidates. Specifically, we will generate the GMI cut from the corresponding tableau row of each branching
candidate, and use cut selection techniques to dictate branching decisions. We will additionally augment the
default SCIP hybrid branching rule with history-based scores of already-computed GMI cuts from previous
separation rounds.

Currently, history-based approaches, see [4, 5], are the backbone behind branching rules used in MILP
solvers [6, 43]. Pseudo-costs [50], the most prolific case of history-based approaches, estimate scores for
a branching candidate based on the historical objective value improvement of child nodes spawned from
branching on the candidate. One can consider pseudo-costs as an approximation of strong-branching scores,
see e.g. [4], which are derived from directly solving the upper and lower LP relaxations of all branching
candidates. In our approach, branching scores are derived from cut quality measures of cuts generated
from each branching candidate. It is complementary to pseudo-costs in that it provides an objective-free
measure. These cut-based scores can be integrated into SCIP’s default scoring rule, using a history of cut
quality measures from previously generated cuts. This is similar to other history-based scores, such as those
based on bound inferences, conflict information, and subproblem infeasibility [5].

The classical cut scoring measure is efficacy*, which denotes the Euclidean distance between the LP optimal
solution and the cut hyperplane. Given a cut («, 3) € R**! and the LP optimal solution x*¥, efficacy is
defined as:

a™x!P — g3

eff(a, B,xF) := T

(12)

When scoring cuts for the purpose of branching, we will rely on efficacy as our cut measure. We note
that there exists many more potential cut scoring measures [16, 22], however preliminary results of their
inclusion led to negligible improvements.

GMI cuts are not the only cuts associated with split disjunctions, or even the elementary split, i.e. branching
decisions. For example, lift-and-project cuts [51, 52] are intersection cuts of elementary splits. The
elementary splits from which these cuts are derived, however, are not necessarily related to the current
LP basis, nor even necessarily related to a primal-feasible LP basis. Nevertheless, scoring measures for this
family of cuts are also a potentially potent indicator of good branching decisions. We however restricted our
study to GMI cuts which are readily computed and available for all variables in all MILP solvers.

*Main selection criteria for most MILP solvers, e.g., FICO Xpress 9.0 and SCIP 8.0



5 Experiments

We conduct three experiments: First, we analyse the effectiveness of our initial approach compared to
standard branching rules (Subsection 5.1). Then, we refine our approach to a history-based one, and
determine the best parameter value for including our approach in the state-of-the-art branching rule
hybrid branching (Subsection 5.2). Finally, we compare our integrated branching rule to default SCIP
with experiments run in exclusive mode (Subsection 5.3). We perform experiments on the MIPLIB 2017
benchmark set® [53], which we will now simply refer to as MIPLIB. For all these experiments we present two
variants: Firstly, we use default SCIP on the original instances to analyse the impact on the the out-of-the-box
behaviour of a MIP solver. Secondly, we use SCIP with heuristics disabled and the optimal solution provided,
which reduces random noise and emphasises the effect of branching rules.

We define a run as an instance random-seed pair for which we use a given branching rule. All results are
obtained by averaging results over the SCIP random seeds {1,2,3,4,5}. For all experiments, SCIP 8.0.3 [6]
is used, with PySCIPOpt [54] as the API, and Xpress 9.0.2 [40] as the LP solver. For Subsections 5.1 and 5.2,
experiments are run in non-exclusive mode on a cluster equipped with Intel Xeon Gold 6342 CPUs running
at 2.80GHz, where each run is restricted to 2GB memory, and the LP solver is restricted to a single thread.
For Subsection 5.3 experiments are run in exclusive mode on a cluster equipped with Intel Xeon Gold 5122
CPUs running at 3.60GHz, where each run is restricted to 48GB memory, and the LP solver is restricted to a
single thread. The code used for all experiments is available and open-source®, and will be integrated in the
next release of SCIP.

For the entirety of our experiments, we filter out any instance that for any random seed was solved to
optimality without branching, hit a memory limit, or encountered LP errors. Note that the instance is only
filtered in a comparison of branching rules when one of the criteria is met for a run on one of the compared
branching rules. When comparing results from branching rules, we use individual instance-seed pairs as
data points as opposed to the aggregate performance over the random seeds. Additionally, when shifted
geometric means are referenced, we use a shift of 100, 10s, and 1s for number of nodes, solving time, and
branching time respectively. We finally note that certain instances were excluded from the MIPLIB data set
with an optimal solution due to the solutions being unavailable online.

5.1 Gomory Cut-Based Branching Rules

To rank the effectiveness of our GMI cut based branching rules, we compare them against standard branching
rules from the literature, with Table 1 containing a complete list.

Branching Rule Description

GMI Generate GMI cuts from Tableau. Select candidate from cut with largest efficacy.
weak-GMI Generate weak-GMI cuts from Tableau. Select candidate from cut with largest efficacy.
fullstrong Solve LP relaxations of children nodes for all candidates, see [4].

hybrid Reliability psuedo-cost / Hybrid. (Default SCIP scoring rule, see [4, 5])
random Select random candidate.

Table 1: Branching rules used in Experiment 5.1

The shifted geometric means over three performance metrics on our data sets are presented in Table 2. We
observe expected performance from the standard branching rules. Fullstrong requires the least nodes to
prove optimality over all data sets, while hybrid is the branching rule that most quickly proves optimality.
Our newly introduced branching rule GMI, is regrettably inferior to default SCIP over all metrics and data
sets, however we observe that it clearly has a positive signal due to it requiring substantially less nodes than
random to prove optimality over all data sets. Most interesting is the relative performance of weak-GMI to
GMI, where weak-GMI wins over all metrics and data sets. This suggests that the strengthened cut, while
strictly better than the weaker version in a cutting plane context, has lost some level of the representation of
the branching decision that the weaker cut is derived from.

For running time, we must also address the overhead of our branching rule. While ultimately faster per node
than strong branching, we still need to generate a GMI cut for every branching candidate at every node. This
overhead is significant, and is the reason why random is on average faster to solve over MIPLIB both with
and without a provided solution. This is despite requiring over twice as many nodes. This can be verified

>MIPLIB 2017 — The Mixed Integer Programming Library https://miplib.zib.de/.
6https ://github.com/0Opt-Mucca/branching-via-cut-selection
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Metric Pairs | GMI  weak-GMI _ fullstrong  hybrid random

MIPLIB
Nodes 237 | 3877 3109 512 1562 8589
Time (s) 237 | 222 191 289 101 214
Time w/o branch time (s) 237 124 111 64 81 214
Branch time (s) 237 47 39 107 11 0
MIPLIB with optimal solution provided and heuristics disabled
Nodes 227 | 3767 2812 386 1287 8286
Time (s) 227 | 179 138 126 73 168
Time w/o branch time (s) 227 97 82 44 59 168
Branch time (s) 227 46 32 39 8 0

(a) Instance-seed pairs where all branching rules solved to optimality.

Metric Pairs | GMI  weak-GMI _ fullstrong  hybrid random
MIPLIB
Time (s) 464 | 977 874 1200 310 858
Time w/o branch time (s) 464 | 362 337 113 260 858
Branch time (s) 464 | 340 298 689 26 1
MIPLIB with optimal solution provided and heuristics disabled

Time (s) 440 | 1016 832 610 269 943
Time w/o branch time (s) 440 338 294 85 225 942
Branch time (s) 440 | 401 311 306 24 1

(b) Instance-seed pairs where at-least one branching rule solved to optimality.

Table 2: Shifted geometric mean results. Best branching rule per metric in bold.

by seeing that GMI and weak-GMI both are much faster than random when removing branching time from
consideration.

5.2 History-Based GMI Branching

Our approaches GMI and weak-GMI were shown to make substantially better branching decisions than
random, but were ultimately too slow, and were not as good as LP relaxation based branching rules. The
default SCIP branching rule, while dominated by pseudo-costs, is a hybrid method, with scores from a
weighted sum of metrics. Most of these metrics are history-based, meaning that they use information from
different parts of the solving process, and are quick to evaluate. Given that GMI cuts are already generated
by SCIP throughout the solve process, we can store for each variable, the average normalised efficacy of a
GMI cut generated from a tableau row when the variable is basic and fractional. This normalised average
can then be used to augment the branching candidate’s score of default SCIP. We normalise efficacy by the
maximum GMI cut’s efficacy from the given separation round. We stress here that this approach requires no
additional overhead, as the cuts themselves as well as their efficacies are already computed in the separation
process.

We denote our new branching rule gmi-10~*, where 10~* denotes the coefficient used in the weighted sum
scoring rule for average efficacy. The shifted geometric mean of performance metrics for various coefficient
values are presented in Table 3. We observe that too high of a coefficient, as in gmi-10~2, results in worse
performance than default SCIP over all metrics and all data sets. By decreasing the coefficient value, we see
an improvement in performance, with gmi-10~5 being the best performing rule w.r.t. both nodes and solve
time over all data sets. We also observe that the branching rules on either side of gmi-10~°, i.e. gmi-10~* and
gmi-10~6, always outperform default SCIP, indicating that 10~ is a sweet-spot. We therefore conclude that
107° is a good and robust coefficient choice for improving hybrid branching, i.e. default SCIP, once again
noting that it requires no additional overhead since branching time is functionally identical.

We also performed preliminary experiments using the normalised efficacy of the most recently generated GMI
cut, but quickly found that the approach was always outperformed by the historical average. In addition, we



Metric Pairs [ hybrid gmi-100% gmi-10~% gmi-10=* gmi-10~° gmi-10"°

MIPLIB
Nodes 472 | 4345 5025 4590 4214 4101 4267
Time (s) 472 253 276 253 235 232 239
Time w/o branch time (s) 472 208 228 209 194 191 197
Branch time (s) 472 24 26 24 22 23 23
MIPLIB with optimal solution provided and heuristics disabled
Nodes 426 | 3870 4426 4023 3822 3671 3820
Time (s) 426 204 226 213 203 195 199
Time w/o branch time (s) 426 165 185 174 165 158 161
Branch time (s) 426 22 23 22 21 21 22

(a) Instance-seed pairs where all branching rules solved to optimality.

Metric Pairs [ hybrid gmi-100% gmi-10°% gmi-10=* gmi-107° gmi-10"°
MIPLIB
Time (s) 548 370 402 378 350 342 348
Time w/o branch time (s) 548 308 336 315 293 284 290
Branch time (s) 548 33 34 32 31 31 31
MIPLIB with optimal solution provided and heuristics disabled

Time (s) 507 310 357 333 314 293 301
Time w/o branch time (s) 507 254 295 275 259 240 247
Branch time (s) 507 31 34 32 30 30 31

(b) Instance-seed pairs where at-least one branching rule solved to optimality.

Table 3: Shifted geometric mean results. Branching rules better than default in italics, best in bold.

performed experiments using a new homogeneous MILP instance set, SNDIib-MIPs [55], which was inspired
by SNDLib [56], but that the results while better than default SCIP, were only a marginal improvement.
Up to this point, our runs were affected by our experimental setup, where memory limits reduced the size
of instances that we considered, and the non-exclusive mode introduced additional noise w.r.t. solve time.
We therefore perform a more in-depth comparison of hybrid and gmi-10~5 over MIPLIB in the following
subsection.

5.3 Improving Default SCIP

Our in-depth comparison presented in Table 4 shows that our branching rule clearly outperforms default
SCIP’s hybrid branching. Over MIPLIB both with and without a solution provided, our augmented branching
method results in faster solve times, and less nodes. We stress here that due to the size of the coefficient
value for the average normalised GMI cut efficacy, our approach will often act more as a tie breaker rather
than as a dominant decision maker.

The performance improvement of gmi-10~> becomes even more apparent when we look only at affected
instances, see Table 5. Over MIPLIB we achieve a 4% speedup on affected instances, and require 8% fewer
nodes. This improvement becomes even more apparent when an optimal solution is provided. Our approach
however is outperformed by default on unsolved instances. We do stress that upon further investigation, we
found no evidence that gmi-10~° is outperformed on larger or more complex instances that solved within
the time limit. The large amount of affected instances indicates that the MILP solver ends up in situations
where the scores of branching candidates, especially the pseudo-costs, are very similar.

Figure 6 shows the distribution of performance improvement per instance-seed pair. We observe a
surprisingly diverse distribution, with the majority of instance-seed pairs either performing 10% better or
10% worse in both number of nodes and solve time. While many instances exhibit worse performance on
gmi-10~5, there are consistently more instance-seed pairs that perform correspondingly better than default
SCIP over all levels of improvement. This is evident both for number of nodes and for solve time.
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Metric Pairs | hybrid gmi-10—°

MIPLIB
Nodes 541 | 4385 4150
Time (s) 541 349 339
MIPLIB with optimal solution provided and heuristics disabled
Nodes 491 | 4702 4334
Time (s) 491 325 304

(a) Instance-seed pairs where all branching rules solved to optimality.

Metric Pairs | hybrid gmi-10—°
MIPLIB
Time (s) 578 | 411 398
MIPLIB with optimal solution provided and heuristics disabled
Time (s) 528 | 381 361

(b) Instance-seed pairs where at-least one branching rule solved to optimality.

Table 4: Shifted geometric mean results. Best branching rule per metric in bold.

MIPLIB
67.1% instance-seed pairs affected
Time (s) Nodes A-Solved A-Dual A-—Primal
0.96 092 -1(/578) -11(/472) -4(/472)
MIPLIB with optimal solution provided and heuristics disabled
69.5% instance-seed pairs affected
0.91 0.89 -1(/528) -6(/307) -

Table 5: Ratio of shifted geometric means for gmi-10~—° vs hybrid over affected instances (solved to optimality
for both branching rules). A is the difference in wins over the instance-seed pairs for amount solved, and the
respective bounds for unsolved instances. Entries are in bold when our approach is better than SCIP default.

6 Conclusion

In this paper, we developed a new branching rule based on the correspondence between Gomory mixed-
integer cuts and split disjunctions, leveraging the efficacy of cutting planes as a measure for the relevance
of a variable for branching. We used the branching rule with both unstrengthened and strengthened cuts,
showing that the unstrengthened versions, which are directly derived from potential branching decisions,
provide a better measure to reduce the number of nodes, and solve time. Our branching rule results in
low numbers of nodes while being less expensive than strong branching. When integrated in the state-of-
the-art hybrid branching algorithm of SCIP, the score provided by our branching rule reduces significantly
both solve time and number of nodes over MIPLIB 2017. Future work includes extending our idea beyond
Gomory mixed-integer cuts, to any cut that is linked to a split disjunction, e.g., lift-and-project cuts.
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Figure 6: Bar plots of relative improvement of gmi-10~5 compared to default SCIP over affected instance-
seed pairs. (Left) Number of nodes. (Right) Solve time.
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