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Abstract

THESEUS, the ZIB threading environment, is a parallel implementation of a
protein threading based on a multi-queued Branch-and-Bound optimal search algo-
rithm to find the best sequence-to-structure alignment through a library of template
structures. THESEUS uses a template core model based on secondary structure
definition and a scoring function based on knowledge-based potentials reflecting
pairwise interactions and the chemical environment, as well as pseudo-energies
for homology detection, loop alignment, and secondary structure matching. The
threading core is implemented in C++ as a SPMD parallelization architecture us-
ing MPI for communication. The environment is designed for generic testing of
different scoring functions and search algorithms. A validation of the structure pre-
diction results has been done on the basis of standard threading benchmark sets.
THESEUS successfully participated in the 6th Critical Assessment of Techniques
for Protein Structure Prediction (CASP).
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1 Introduction
In post-genomics era protein structure prediction is still one of the major challenges in
bioinformatic research because of the need to assign biological function to the thou-
sands of uncharacterized transcribed genes discovered by the various genome sequenc-
ing projects. It is a fundamental axiom of molecular biology that the three-dimensional
structure of a protein determines its function [1]. Although experimental methods like
X-ray crystallography, NMR spectroscopy or cryo electron microscopy are providing
high-resolution 3D structure information, they are still expensive due to wet-lab costs
and expenditure in time. Existing computational methods for protein structure predic-
tion can be split into the following categories:

• Ab initio methods (see, e.g., [2, 3]) adopt approximate physicochemical methods
for the evaluation of the interaction of structural objects (atoms, residues etc.)
and explore the phase space to find stationary states on the energy hyper-surface
being of biological importance.

• Comparative modeling methods are based on identifying structural similarities
with known 3D structures.

Comparative modeling is based on the observation that proteins with similar 3D
structures exhibit, in general, similar functions. This is done by detecting close (homol-
ogy modeling) or remote (fold recognition or threading) sequence homology between
two sequences with inherent structural similarity. Fold recognition methods make a
structure prediction for the target amino-acid sequence by recognizing a structural tem-
plate structure representing a native fold. The template-based modeling approach will
become increasingly useful for solving structures of proteins as more protein structures
become available. For a recent review on fold recognition methods, see [4].

The basic idea behind threading is, that there are only a limited and rather small
number (in the range of thousands) of different folds, also named architectures or cores,
and that the various preferences of the different amino acids provide sufficient infor-
mation to discriminate between different folds [5]. Threading methods usually consist
of four components [6]:

1. a template structure library of known cores,

2. an empirical scoring function measuring the fitness of the target sequence for the
cores,

3. a combinatorial search algorithm to optimally align the target sequence onto the
cores, and

4. a statistical analysis to assess the significance of an optimal sequence-to-
structure alignment found.

For each statistical significant sequence-to-structure alignment, the residues of the tar-
get sequence are predicted to have the backbone coordinates of the aligned residues in
the template structure. Since fold recognition uses structural information in addition to
sequence-based methods alone, it is often more effective than sequence-based methods
like BLAST [7] or PSI-BLAST [8] for identifying native like folds.

In this work, we are introducing the THESEUS environment for protein structure
prediction. THESEUS is a parallel implementation of a protein threading based on a
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multi-queued Branch-and-Bound optimal search algorithm to find the best sequence-
to-structure alignment through a library of known structures. In section 2 we describe
the template model based on secondary structure definition, the scoring function based
on knowledge-based potentials and pseudo-energies, the search algorithm to find an op-
timal alignment between the target sequence and one template structure, and how we
determine significant threading alignments from all alignments against the template
library. Section 3 deals with the implementation details of the THESEUS threading
environment. In section 4 we describe the results for several fold recognition bench-
mark sets, the participation at the 6th experiment on Critical Assessment of Techniques
for Protein Structure Prediction (CASP) in 2004, and the performance tests in compar-
ison with two other threading algorithms.
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2 Protein Threading

2.1 Problem Definition
The optimal protein threading problem (OTP) is a variant of the general problem pre-
dicting the three-dimensional structure of a given amino acid sequence (the target se-
quence). Threading can be defined as a sequence-to-structure alignment between a
target sequence S of unknown structure and a given template structure Tm. The align-
ment is given by a valid mapping~t of a template model MTm (see subsections 2.2 and
2.4) onto the target sequence. The similarity between target sequence and template
structure is scored by a given energy function f (see subsection 2.5). Since the scor-
ing function uses pseudo-energies or knowledge-based potential, the OTP is defined as
determining the sequence-to-structure alignment with minimal energy:

f (~t) = min
~u∈τ

f (~u) , (1)

where τ represents the total search space of all valid threadings, with~u being a member
of it (see subsection 2.2).

2.2 The Template Model
To avoid the computational costs of an full atomic description of protein structures, the
three-dimensional coordinates are replaced by an abstract, simplified template model.
The definition of a template model MTm for a given protein structure Tm is as follows
(Fig. 1): A template structure is a linear series of core segments that are connected
via loops, representing the core of a protein structure. Each core segment represents a
part of a secondary structure, namely an α-helix or a β-sheet. Each core segment corei
(headi, taili) of a template is defined by the two parameters head and tail, where head
is its start-position in the template and tail denotes its end-position in the template.
Each corei consists of (taili − headi) + 1 core elements or amino acids. The region
between taili and headi+1 is called loop region (loopi) connecting core segments i and
i+1. The M core segments of the template structure are enumerated from 1 to M in N-
to C-terminal orientation and they must not overlap in the template sequence. This can
be expressed mathematically as

1≤ head1 ≤ tail1 < head2 ≤ tail2 < .. . < headM ≤ tailM ≤ n , (2)

where n is the template sequence length.

Figure 1: Template with four core segments and its five surrounded loops.

The template model MTm for a template structure Tm of sequence length m
(tm1,. . . , tmm) with M core segments (core1,. . . ,coreM) and a target sequence S =
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(s1, . . . ,sn) of length n can be defined as a tuple MTm = (M,~c,~λ,~lmin,~lmax,I ) with

~c = (c1, . . . ,cM) , (3)
~λ = (λ0, . . . ,λM) , (4)

~lmin = (lmin
0 , . . . , lmin

M ) , (5)
~lmax = (lmax

0 . . . , lmax
M ) , (6)

I = OCMG(Tm) , (7)

and
m ∈ N,~c ∈ NM,~λ ∈ NM+1,~lmin ∈ NM+1,~lmax ∈ (N∪{∞})M+1 ,

to hold

‖Tm‖= m = λ0 +
M

∑
i=1

ci +λi . (8)

The length of core segment corei is given by ci and the length of loopi by λi. I
is given by the pairwise interaction graph OCMG(Tm) representing pairwise structural
contacts in Tm as defined in section 2.3. The two vectors l̃min and l̃max are denoting the
minimal and maximal allowed loop lengths for a mapping of template model MTm onto
the target sequence S, that can be calculated from the Euclidean distances between the
cores of Tm and the length of the target sequence S:

∀i ∈ [1 . . .M−1] : lmin
i = dδ3(Cα(tail(i))−Cα(head(i+1)))

4 e ,

∀i ∈ [1 . . .M] : lmax
i = n− (lmin

0 +
i

∑
j=1

c j + lmin
j ) ,

where Cα(tail(i)) and Cα(head(i + 1)) are the coordinates of the last Cα atom of
corei and the first Cα atom of corei+1, respectively. δ3 is the Euclidean distance be-
tween the two three-dimensional vectors of the two Cα atoms, and 4 describes the av-
eraged Euclidean distance between two neighbouring Cα atoms in amino acids. Since
there is no information about the structure before the first and after the last core seg-
ment added to the template model, these values are set to lmin

0 = lmin
M = 0.

A threading is then defined as a mapping of the template model onto the positions
of the target sequence. Given a template model MTm and a target sequence S, than a
threading of S through MTm is a vector

~t = (t1, . . . , tM) ∈ [1 . . .n]M ,

where ti denotes the position of tail(i) on the target sequence S.
For such a mapping (sequence-to-structure alignment) there exist some restrictions.

The following constraints simply adopt the definitions of the template concerning or-
dering and overlapping to the mapped target sequence:

1. All core segments of MTm have to be placed onto S.

2. The core segments must be mapped to the target sequence with the same order as
they have in the template sequence, i.e., corei+1 must be placed after corei onto
the target sequence.
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3. The regions of the target sequence mapped to core segments must not overlap.

The mathematical definition of these restrictions is given in Eq, 13 in the subsection
2.4. Examples for restriction of valid threadings and invalid threadings are shown in
Fig. 3 and 4.

During the sequence-to-structure alignment, gaps are only tolerated in loop regions
between two core segments or in loop regions before the first (loop0) or after the last
core segment (loopM , in case of M cores in template), while the alignment in core seg-
ments must be gap-free (gapped block). This rule represents the biological fact that
core segments are highly conserved and therefore insertions or deletions are not sup-
posed to take place inside the core segments. Gaps permitted anywhere in the structure
would result in much larger search space sizes than gapped block.

2.3 Contact Graph
The score for each threading as expressed by the scoring function (see section 2.5)
partly relies on contacts between residues in the template structure. Only interactions
of residues inside core segments are taken into account. Interacting residues might
be located in the same core segment or in two different, interacting core segments.
Interactions with residues located in loop regions are not considered as it is believed
that these interactions are relatively insignificant for fold recognition [9].

A contact map gives a detailed representation of the three-dimensional fold
of a protein [10]. The interaction graph of a protein structure Tm of sequence
length m (Fig. 2a) can be represented by the undirected original contact map graph
OCMG(Tm) = (VO,EO), where EO ⊆V 2

O with VO as the set of all residues of Tm, i.e.,

VO = {tmi|1≤ i≤ m} , (9)

and EO as the set of edges with

∀i, j ∈VO : eo
i j =

{
1 if tmi and tm j are in contact,
0 else .

(10)

OCMG(Tm) represents the interaction graph I of the template structure Tm in Eq. 7. For
reasons of simplicity we define for the template model MTm additionally the simplified
contact map graph SCMG(Tm) = (VS,ES) with ES ⊆ V 2

S for modeling the alignment.
Here VS is defined as the set of core segments

VS = {Ci|1≤ i≤M} , and (11)

ES is the set of edges with

∀i, j ∈VC : es
i j =





1 if ∃ tmi ∈ corei, tm j ∈ core j : eo
i j = 1 ,

1 if j = i+1 ,

0 else .

(12)

Each node in SCMG(Tm) represents a core segment (corei) of the protein template
while each edge es

k,l ∈ ES represents an interaction between the two core segments k
and l which denotes that there exists at least one pair of interacting residues located in
corek and corel . All interacting core segments and also all neighboring core segments
are connected via edges.
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Figure 2: Source: [11]. (a): Template Contact Graph: Each residue of the template structure is
represented by a circle, each core segment is marked as a box framing all residues located in that
core segment. In the OCMG all interactions between residues are expressed by an edge between
these two residues. In the SCMG these edges are replaced by only one edge connecting two
core segments if there is at least one interaction edge in the original contact graph connecting
residues located in these two core segments or the core segments are neighbors. (b): Alignment
Graph: Each residue inside a core segment of the contact graph is aligned to exactly one residue
of the target sequence symbolized by an alignment edge. Dashed arcs connect two residues of
the sequence that are aligned to two interacting residues of the template graph and correspond
to interactions in the original contact graph.

The interaction graph SCMG(Tm) describes which core segments contain core
elements that are interacting in some biological sense, i.e., that core elements are
spatial neighbours in the three-dimensional protein structure. The interaction graph
OCMG(Tm) contains all interactions between core elements. SCMG(Tm) can be de-
rived directly from OCMG(Tm) and the template model MTm .

2.4 Sequence-to-Structure Alignment
A threading or sequence-to-structure alignment of a target sequence S and a template
model MTm can also be expressed as a bipartite alignment graph as shown in Fig. 2b.
In addition to the simplified contact graph from Fig. 2a the alignment graph contains
another set of nodes (s1. . . sn) representing residues 1 to n of the target sequence S. If
residue i of the template structure is aligned to residue k of the target sequence there is
an alignment edge ai,k connecting them. If residues i and j of the template structure are
aligned to residues k and l in the target sequence this is equivalent to the fact that the
two alignment edges ai,k and a j,l exist in the alignment graph. If the two edges ai,k and
a j,l exist, and there exists an interaction edge ei, j in the complete contact map graph,
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then the two residues k and l of the target sequence are supposed to have an interaction
too, symbolized by the dashed arcs in the alignment graph. Each of the alignment edges
in one threading is weighted with a value representing the g1 term of the energy func-
tion in Eq 15 introduced in the next section. The dashed arcs representing interactions
are weighted with a value representing the g2 term or pairwise interaction term of the
energy function (see also next section). The score of one threading is then calculated
by summing the weights of all alignment edges and interaction edges (dashed arcs) of
the alignment graph. As mentioned already there are some restrictions for a placement
to be valid. Non-overlapping core segments as well as the preservation of the core seg-
ment order correspond to non-conflicting alignment edges in the alignment graph. In
the graphical representation of the alignment graph conflicting alignment edges can be
defined as crossing edges (Fig. 3 and 4). A threading~t ∈ τ is called a valid threading
from the set of all valid threadings τ if the following constraints are fulfilled:

1+lmin
0 ≤ t1 ≤ 1+ lmax

0

ti + ci+lmin
i ≤ ti+1 ≤ ti + ci + lmax

i , 1≤ i < M

tM + cM+lmin
M ≤ n+1≤ tM + cM + lmax

M ,

(13)

where ti denotes the position in the target sequence of length n that is aligned to corei.
The variables lmin

i and lmax
i are the minimal and maximal length assigned to loopi and

ci is the length of corei:
ci = taili−headi +1 .

We say that corei is aligned to ti if corei is aligned to target sequence positions
ti. . . ti+(ci−1).

These constraints directly guarantee that all pairs of neighboring alignment edges
are not in conflict. It can be proven that this fact transitively guarantees for all pairs of
alignment edges not to be in conflict (transitivity of non-conflict [11]). The constraints
also guarantee that loop lengths are within their boundaries (lmin

i , lmax
i ) and all core

segments are aligned to sequence S.

2.5 The Energy Function
In section 2.4 the alignment graph was introduced and the score of a valid threading
was calculated as the sum of weights of all alignment and interaction edges (dashed
arcs in Fig. 2b). These edge weights are assigned by the energy or scoring function
f . The overall energy function represents the sum of energies over all alignment and
interaction edges. The energy of one specific threading t ∈ τ is defined as:

f (~t) = wmEm +wsingleEsingle +wp(Ep1 +Ep2)+wgEg +wssEss (14)

The Em term defines a mutation energy, Esingle is the singleton energy , Ep1 is the pair-
wise interaction energy term that considers interactions between residues located in the
same core segment, Ep2 is the energy term that considers interactions between different
core segments. Eg represents the loop scoring and Ess the secondary structure predic-
tion term. Each wi defines a weight factor for the corresponding energy term. In this
section at first the formula for each term is presented followed by a brief introduction
into the theory and construction of each energy term used in THESEUS.

Choosing an optimal set of weighting factors for the scoring function in Eq. 14 is
crucial for the performance of THESEUS. The weight factors wm, wsingle, wpair, wg
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Figure 3: Equivalence of conflicting (crossing) alignment edges in alignment graph model and
invalid threading. Minimal and maximal loop length are not considered for reasons of clarity.
(a) Alignment Graph showing invalid alignment (threading) where order of core segments in
the template is not preserved in aligned target sequence. It is shown that this sort of invalid
threading causes crossing alignment edges (conflicting edges). (b) Another invalid threading
with overlapping (overlapping region in dark grey) core segments in target sequence also results
in crossing alignment edges.

and wss were optimized by Taguchi orthogonal arrays [12] using the Fischer benchmark
set [13] consisting of 68 target and 301 template structures (see section 4.1).

The energy function given in Eq. 14 can easily be transformed into a very common
form that Lathrop and Smith called the “general scoring function” [5]. This is obtained
by including all non-pairwise scoring terms into one function g1 ∈ N2 and all pairwise
core segment interaction terms into a second function g2 ∈ N4. The resulting general
scoring function is defined as

Etotal =
M

∑
i=1

g1(i, ti)+
M

∑
i=1

∑
i< j

g2(i, j, ti, t j) , (15)

with

• g1(i, ti) means, placing the corei onto position ti, and

• g2(i, j, ti, t j) means, placing corei onto position ti and core j onto position t j.

g2 has the following predicate:

g2(i, j, ti, t j) 6= 0⇔ es
i j = 1,es

i j ∈ SCMG(Tm) . (16)
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Figure 4: Visualization of the restrictions for valid threadings (Eq. 13). The dashed arcs show
all valid alignment positions for corei+1. In this example lmin

i is 2 and lmax
i is 7

Higher-order interactions can be included by extending the definition of the inter-
action graph to that of an interaction hypergraph. Furthermore, one has to introduce
2n-ary functions gn in order to implement n-ary interactions. If the template has M
core segments, then n≤M. Hence, the fully general scoring function is

Etotal = ∑
i1

g1(i1, t1)+∑
i1

∑
i2<i1

g2(i1, i2, t1, t2)+ . . .

+∑
i1

∑
i2<i1

. . . ∑
iM−1<iM

gM(i1, i2, . . . , iM, t1, t2, . . . , tM).
(17)

Triplet or higher interactions would arise in treatment of steric packing among mul-
tiple core segments, linked constraint equations on structural environments and detailed
geometric or environment modeling [14]. Such interactions are computationally very
expensive and yet there is no existing threading implementation considering triplet or
higher interactions.

Mutation energy. The term Em describes the compatibility of substituting one amino
acid from the template structure by an amino acid from the target sequence. This energy
is calculated using amino acid substitution matrices like PAM [15] or BLOSUM [16].
While in some implementations only the score in the substitution matrix is consid-
ered, the THESEUS implementation also makes use of a position specific frequency
matrix (PSFM) calculated by PSI-BLAST [8]. PSI-BLAST constructs this matrix au-
tomatically by at first performing a BLAST search for the target sequence followed by
a multiple alignment of the target sequence with the sequences of the best hits from
which a position specific scoring matrix and a PSFM is generated. This procedure is
iterated a user-specified number of times or until it converges. For a target sequence
of length n the result is an n× 20 matrix P where each column k describes the occur-
ring frequency of all 20 amino acids at position k in the target sequence. The mutation
function mut(i,k) represents the mutation energy for template position i being aligned
to position k in the target sequence:

mut(i,k) =
20

∑
a=1

P(k,a)M(tmi,a).

For each pair of aligned amino acids of target and template sequence we are summing
up the products of the occurring frequency of amino acid a at target sequence position
k and the substitution compatibility of amino acid a and the amino acid at position i
in the template (tmi) taken from substitution matrix M over all possible amino acids.
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Currently the THESEUS pipeline is using the PAM250 substitution matrix which is
supposed to be the best performing matrix for protein threading [13, 17]. If core seg-
ment i is aligned to sequence position ti then Mutation(i, ti) is simply the sum of the
mutation energies over all core segment positions ci:

Mutation(i, ti) =
ci−1

∑
r=0

mut(headi + r, ti + r).

The total mutation energy term Em is then given by:

Em =
M

∑
i=1

Mutation(i, ti) ,

where M is the number of core segments.
The described sequence-to-profile alignment score is the mutation score averaged

over homolog sequences. It has been shown that averaging energies over homologs can
improve the alignment accuracy of fold recognition methods [18, 19]. The PSFM is
applied in the same manner to all other scoring terms in Eq. 14.

Singleton and pairwise scoring terms. The terms Esingle and Ep are knowledge
based potentials. These potentials of mean force are estimated by applying the inverse
Boltzmann relation to a given set of known 3D protein structures [20]. The advantage
of knowledge based potentials is their small computational expense compared to more
complex potential expressions used in today’s force-fields. The disadvantage of the
knowledge based potentials is the fact that they are derived from a specific dataset of
proteins. Therefore they depend on the quality of the set and might vary considerably
using different datasets.

The singleton term (singleton energy) characterizes the fitness of a single amino acid
in its local chemical environment. The local environment of an amino acid is described
by its affiliation to a secondary structure type and its solvent accessibility. Three sec-
ondary structure states according to the DSSP [21] classification

• helix (α-helix, 310-helix,π-helix)

• sheet (extended β strand, residue in isolated β-bridge)

• loop (all other residues)

and three states for the solvent accessibility

• buried (solvent accessibility ≤ 7%)

• intermediate (7% < solvent accessibility ≤ 37%)

• accessible (solvent accessibility > 37%)

have been defined. The singleton energy of amino acid i, placed in environment with
secondary structure type ss and solvent accessibility type sol is calculated using the
formula

esingle(i,ss,sol) =−kb T ln
N(i,ss,sol)
NE(i,ss,sol)

,
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Table 1: The THESEUS singleton scoring matrix with singleton energy for each amino acid
(first column) in all 9 environments as described in the text

.
Helix Sheet Loop

Buried Inter Exposed Buried Inter Exposed Buried Inter Exposed
ALA -0.578 -0.119 -0.160 0.010 0.583 0.921 0.023 0.218 0.368
ARG 0.997 -0.507 -0.488 1.267 -0.345 -0.580 0.930 -0.005 -0.032
ASN 0.819 0.090 -0.007 0.844 0.221 0.046 0.030 -0.322 -0.487
ASP 1.050 0.172 -0.426 1.145 0.322 0.061 0.308 -0.224 -0.541
CYS -0.360 0.333 1.831 -0.671 0.003 1.216 -0.690 -0.225 1.216
GLN 1.047 -0.294 -0.939 1.452 0.139 -0.555 1.326 0.486 -0.244
GLU 0.670 -0.313 -0.721 0.999 0.031 -0.494 0.845 0.248 -0.144
GLY 0.414 0.932 0.969 0.177 0.565 0.989 -0.562 0.299 0.601
HIS 0.479 -0.223 0.136 0.306 -0.343 -0.014 0.019 -0.285 0.051
ILE -0.551 0.087 1.248 -0.875 -0.182 0.500 -0.166 0.384 1.336
LEU -0.744 -0.218 0.940 -0.411 0.179 0.900 -0.205 0.169 1.217
LYS 1.863 -0.045 -0.865 2.109 -0.017 -0.901 1.925 0.474 -0.498
MET -0.641 -0.183 0.779 -0.269 0.197 0.658 -0.228 0.113 0.714
PHE -0.491 0.057 1.364 -0.649 -0.200 0.776 -0.375 -0.001 1.251
PRO 1.090 0.705 0.236 1.246 0.695 0.145 -0.412 -0.491 -0.641
SER 0.350 0.260 -0.020 0.303 0.058 -0.075 -0.173 -0.210 -0.228
THR 0.291 0.215 0.304 0.156 -0.382 -0.584 -0.012 -0.103 -0.125
TRP -0.379 -0.363 1.178 -0.270 -0.477 0.682 -0.220 -0.099 1.267
TYR -0.111 -0.292 0.942 -0.267 -0.691 0.292 -0.015 -0.176 0.946
VAL -0.374 0.236 1.144 -0.912 -0.334 0.089 -0.030 0.309 0.998

where kb is the Boltzmann constant, T the absolute temperature and N(i,ss,sol) is the
number of amino acids of type i in the environment ss and sol.

NE(i,ss,sol) is defined as:

NE(i,ss,sol) =
N(i)N(ss)N(sol)

N2

denoting the estimated number of amino acids of type i in the defined environment.
All numbers were defined by counting each occurrence in a representative database.
Currently THESEUS uses the sequence-independent, representative protein structure
database derived by Fischer et al. [13, 22].

Combining each of the three states of secondary structure and solvent accessibility
make nine different structural environments. The singleton energy for all amino acids
can be stored in a 20×9 matrix as shown in Table 1.

The singleton energy averaged over homologs for corei aligned to position ti is
defined as

Singleton(i, ti) =
ci−1

∑
k=0

20

∑
a=1

P(headi + k,a)esingle(a,ss(headi + k),sol(headi + k)) ,



2 PROTEIN THREADING 14

where ss(y) is the secondary structure classification and sol(y) the solvent accessibility
of residue y in the template structure. The singleton energy term is given by:

Esingle =
M

∑
i=1

Singleton(i, ti).

The interaction potential measures the preference of pairs of amino acids to be in a
short distance in 3D structure. A protein’s conformation and its fold respectively are
determined by weak non-covalent interactions of residues that are close in 3D space.
In the energy function an interaction of two amino acids is assumed, if

• the distance between their Cβ-atoms is within a specified cutoff distance which
is set to 7Å in THESEUS, and

• their distance on the sequence is greater than 2 residues.

The interaction potential of a pair of two amino acid types i and j is calculated as:

epair(i, j) =−kb T ln
M(i, j)

ME(i, j)
,

with M(i, j) denoting the occurrence frequency of pairs of amino acid types i and j
within the cutoff distance found in the protein structure database. The reference state
ME(i, j) is defined as

ME(i, j) =
M(i)M( j)

M
,

denoting the estimated number of pairs assuming that amino acid types i and j are
forming independently interactions within the cutoff distance. M(x) is the number of
pairs within cutoff where at least one amino acid is of type x, and M is the total number
of pairs within cutoff distance. Table 2 shows the 20×20 interaction potential matrix
from Xu et al. [9]. The pairwise energy Pair(i, j, ti, t j) for two core segments averaged
over homologs is defined as:

Pair(i, j, ti, t j) =
ci−1

∑
k=0

c j−1

∑
l=0

20

∑
ai,a j=1

Pi(ti + k,ai)Pj(t j + l,a j)epair(ai,a j)coi j(k, l) ,

with the boolean function

coi j(k, l) =

{
1 if (headi + k,head j + l) ∈ EO(OCMG),
0 else ,

where OCMG represents the original contact map graph defined in section 2.3.
Then the total pairwise energy for interactions within a single core segment Ep1 is

given by:

Ep1 =
M

∑
i=1

Pair(i, i, ti, ti) ,

and the total pairwise interaction energy for interactions between two distinct core
segments by:

Ep2 =
M−1

∑
i=1

M

∑
j=i+1

Pair(i, j, ti, t j).
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Table 2: The interaction potential matrix [9], amino-acid one-letter code in first column and
bottom row.

The secondary structure prediction term. The term Ess measures the agreement
between predicted secondary structure of the target sequence using PSIPRED [23] and
the actual secondary structure of the template structure. PSIPRED assigns each posi-
tion of the target sequence one of three secondary structure states (helix, strand, coil)
together with a reliable score ranging from 0 to 9, where 0 means that the prediction is
not reliable, and 9 very reliable. The score for a single position is then given by:

esspred(i, j) =

{
rel(i) if pred(i) is equal to ss( j),
−rel(i) else ,

where rel(i) is the reliability score of PSIPRED at position i, pred(i) the predicted
secondary structure state, and ss( j) the secondary structure state of the aligned template
structure position. Similar scoring functions for secondary structure are used in [24,
25]. The secondary structure prediction term for a single core segment is then defined
as:

ssPred(i, ti) =
ci−1

∑
k=0

esspred(ti + k,headi + k) ,

and the total secondary structure prediction score as:

Ess =
M

∑
i=1

ssPred(i, ti).

The loop scoring term. The term Eg is built in two steps. Loops are per defini-
tion connecting two core segments or describing the sequence before the first or after
the last core segment. First, a sequence alignment between the loop region in the tar-
get sequence and the corresponding loop region in the template is performed using
a standard dynamic programming algorithm [26] and a PAM250 substitution matrix.
Secondly, the chemical environment of the aligned residues is scored. The idea is that
insertions and deletions will occur very frequently in loop regions. Often sequences
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with additional secondary structure are added so that a sequence alignment gap penalty
is not able to capture the ability of a sequence region to be part of a loop region. Con-
sequently, aligning a residue preferring a helical environment with a residue preferring
an exposed loop environment should be penalized and aligning two residues preferring
loops should be awarded.

The loop score for a single column of the alignment is defined as:

eloop(i, j) =

{
esingle(i,ss( j),sol( j)) if i and j are aligned,

0 if i or j is a gap position ,

where esingle describes the placement of residue i in the target sequence into the chemi-
cal environment of residue j in the template structure. The score for loopi is then given
by:

Loop(i,bi,ei) =
ei

∑
i=bi

endi

∑
j=begini

eloop(i, j) ,

where bi and ei are the beginning and ending position in the target sequence and begini
and endi the first and the last position of loopi in the template structure. The total loop
score is defined as:

Eg =
M

∑
i=0

Loop(i,bi,ei) .

Alternatively, the user can use simple affine gap penalties introduced for sequence
alignments, where the values of the gap opening go and the gap extension ge penalty is
user-specified:

Loop(i,bi,ei) = go +(ei−bi +1)ge .

2.6 The Branch-and-Bound Search Algorithm
According to the formulated energy function the best (optimal) threading for a template
and a target sequence is the one that minimizes the score f and is valid concerning for-
mulated restrictions, as given in Eq. 1 in section 2.1. The task of finding the optimal
threading is called the optimal threading problem (OTP) as formulated in section 2.1.
It was proven by Lathrop that the optimal threading problem is NP-hard if pairwise
interaction terms are considered [27]. There are two main approaches to solve this
problem. One is to use heuristics that do find a good threading in polynomial time.
But the solution found is not necessarily the optimal solution and therefore these al-
gorithms sometimes do not solve the OTP exactly. The other strategy is to implement
exact algorithms that find the optimal solution in acceptable time for most threadings
but might have exponential runtime for some pairs of template structure and target se-
quence. The THESEUS threading environment implements the improved multi-queue
variant of the Branch-and-Bound algorithm from Lathrop and Smith [5, 28]. The idea
of Branch-and-Bound algorithms is to minimize the search space by splitting it sub-
sequently into subsets (branch step). For each of the generated subsets of the original
search space a lower bound within this subset is determined (bound step). The next
branch step is then performed on the subset with the best lower bound.

In [5] Lathrop and Smith define the search space of the OTP as sets of valid thread-
ings

T [~b, ~d] = {~t ∈ τ | bi ≤ ti ≤ di}
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representing a hyper-rectangle, whose corners are the vectors b̃ and d̃. The variables bi
and di with 1≤ i≤M define an interval [bi,di] containing all allowed positions in the
target sequence for the alignment of corei, where M is the number of core segments.
All threadings in T [~b, ~d] are valid with respect to the restrictions (13). The splitting of
a set of threadings T = T [~b, ~d] is performed by choosing a core segment cores and a
split position tsplit

s inside cores. The set T is then split into three subsets T<, T= and T>.

T< = {~t ∈ T | bs ≤ ts < tsplit
s }

T= = {~t ∈ T | ts = tsplit
s }

T> = {~t ∈ T | tsplit
s < ts ≤ ds} .

The splitting starts with the core segment that has the most interactions with other core
segments. Every splitting partitions a hyper-rectangle into smaller hyper-rectangles, at
least one of which with lower dimension, i.e., with one or more additional fixed core
segments. A priority queue holds a list of all currently instantiated hyper-rectangles
sorted by lower bound. The queue is instantiated with a single threading set covering
the entire search space of legal threadings. At each iteration, the threading set having
the currently lowest lower bound is removed from the queue. If it contains a single
threading, i.e., all core segments are fixed, the global optimum is found and the algo-
rithm terminates. Otherwise the hyper-rectangle representing a threading set is split,
and the resulting threading sets are merged into the queue according their lower bound.
The evaluation of lower bounds is probably the most important part of the algorithm.
The more precisely the lower bound the more rapidly the search converges towards the
optimal threading. Besides the strength of the lower bound it is also important that it
can be computed efficiently. Formula (18) defines a function lb(T [~b, ~d]) for evaluation
of lower bounds which can be computed in polynomial time and is applicable for all
energy functions that are compatible to the general scoring function (15):

lb(T [~b, ~d]) = ∑
i

[
min

bi≤x≤di
g1(i,x)+ ∑

j>i
min

bi≤y≤di
b j≤z≤d j

g2(i, j,y,z)
]

. (18)

Lathrop and Smith had explored several alternative forms of lower bounds and
denoted the following lower bound, which is implemented in THESEUS, as the most
efficient variant:

lb(T [~b, ~d]) = min
t∈T [~b,~d]

∑
i

[
g1(i, ti)+g2(i−1, i, ti−1, ti) (19)

+minu∈T [~b,~d] ∑‖ j−i‖>1
1
2 g2(i, j, ti,u j)

]
.

In [28] Lathrop introduces a modified variant of the Branch-and-Bound algorithm, that
uses m+1 priority queues, where queue Qk holds the threading set of vector subspace
dimension m−k, i.e., k of m core segments are fixed. The threading sets in each queue
are sorted by their lower bound. Normally, at the beginning all queues are empty except
queue Qm, that is instantiated by a threading set covering the whole search space. If
some prior knowledge about placing single core segments is available, this knowledge
can be used to initialize a queue of lower dimensionality. At each step the algorithm
sweeps across the different queues, always beginning with the queue of highest dimen-
sionality, popping the threading set with the lowest bound, splitting it, and reinserting
the new threading sets into the queues according their dimensionality. The idea is that
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threading sets enclosing good solutions will tend to sort to the front of the queues, and
their children generated by splitting will migrate quickly to lower dimensions repre-
senting more fixed core segments. Sweeping across the different queues from high to
low dimensionality will yield an optimal solution rapidly: one sweep can be done in
O(m) lower bound evaluations and guarantees to produce a legal threading in Q0 at
the end. The number of sweeps can be specified by the user. In THESEUS we are
starting with 10 sweeps. Thereafter, if the global optimal solution is not found, the
algorithm operates on the most productive regions of the search space explored by the
sweep iterations.

2.7 Global Optimal Threading
The result from the Branch-and-Bound search algorithm is an optimal alignment of
the target sequence with one template structure. Then, we have to determine which
of the alignments against the template library is the most significant alignment. The
alignments are characterized by the score of the energy function in Eq. 14 measuring
the fitness of the alignment of target sequence and the template structure. The value
of this score depends on the lengths of the target sequence as well as the template se-
quence and additional structural properties of the 3D template structure [29]. Some
confidence measures like, e.g., the p-value can be computed only if the underlying
score distribution is known. However, this is not the case for known fold recognition
methods [30]. The THESEUS threading environment currently supports three mea-
sures to determine the significance of a given sequence-to-structure alignment. First,
it ranks all alignments against the template library according to the raw score denot-
ing the score of an optimal threading. Second, we are using z− scores, by using the
score of all threading alignments against the template library to normalize the thread-
ing scores. The mean µ̂seq and the standard deviation σ̂seq can be estimated from the
raw scores s of one target sequence seq versus the set of template structures STRseq as

µ̂seq =
1∣∣ST Rseq

∣∣ ∑
str∈ST Rseq

s(seq,str) (20)

σ̂seq =
1∣∣ST Rseq−1

∣∣ ∑
str∈ST Rseq

(s(seq,str)− µ̂seq)
2 . (21)

Then the raw scores s are normalized into z− scores according

z(seq,str) =
s(seq,str)− µ̂seq

σ̂seq
. (22)

We have experimentally determined that a z− score value below−2.5 is very probable
corresponding with a good sequence-to-structure alignment.

The third significance measure we are using is the raw score gap introduced by
Sommer et al. [30],

sg(seq,str) = s(seq,str)− s(seq,next(str)) (23)

that measures for a target sequence seq the difference of the target raw score of a
template structure str and the next best raw score of a template structure belonging to a
different fold class, next(str). This measure can only be used if the template structures
can be classified into different folding classes. Therefore, we are using the SCOP [31]
classification scheme.
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3 Implementation

3.1 Data Sources
The template fold library is built on SCOP [31] domains, which are available as
ASTRAL [32] PDB-style files. Additionally, single chains of protein structures in
PDB format can be included. Often it is not useful to align a target sequence against
all available protein domains, so we use the SCOP40 non-redundant subset as standard
template library. Here, all domains have at most a pairwise sequence homology of
40%. The secondary structure of the target sequence is predicted using PSIPRED [23].
The secondary structures of the template structures were obtained by the DSSP [21]
method. The sequence-derived profiles for the target sequence and the template struc-
tures are both constructed by using PSI-BLAST [8]. This is done with five iterations
against the non-redundant version of the UNIPROT [33] database. The database was
filtered to remove low-complexity, transmembrane, and coiled-coil regions. The sol-
vent accessibility of the template structures were determined with DSSP but using the
quaternary structure files available from the PQS [34] database instead of the ASTRAL
PDB-style files, because most of the domains are consisting of multiple domains. Qua-
ternary structure is defined as that level of protein structure in which units of tertiary
structure aggregate to form homo- or hetero-multimers. The template library and all
preprocessed data is stored in a MySQL database.

3.2 Parallel Threading
Fold recognition by threading can be parallelized by assigning each of a subset of
template structures to a different process. Our parallel threading core is implemented
in C++ and uses MPI for message passing and POSIX threads. Two kind of parallel
architectures are designed:

1. a Master-Slave (MS) version, and

2. a Single-Program-Multiple-Data (SPMD) version.

In the MS architecture the central component is the MySQL database. A master pro-
cess or POSIX thread distributes each outstanding template structure to a slave process
waiting for work. Based on a first-come-first-serve protocol a dynamic load balancing
scheme can be realized. In the SPMD architecture the content of the MySQL template
structure database is dumped into a binary file which is cloned on each compute node
on a Linux cluster. The template structures are distributed in a static scheme amongst
the MPI processes, i.e., each MPI process performs its own subset. Having all template
structures processed, one MPI process gathers all results from the remaining concurrent
MPI processes.

The SPMD approach is significant faster over the MS architecture (shown in Fig. 5:
the squares relate to the SPMD and the diamonds to the MS architecture). The draw-
back of the MS architecture is the time determining database connections: the cen-
tral database server can not timely satisfy the requests from all the slave processes.
The SPMD architecture has the extra advantage of parallel I/O. To show the time ef-
ficiency of our implementation, we can process a protein sequence consisting of 573
amino acids against 37556 templates structures representing the whole SCOP template
database in about 36 minutes on 32 CPUs on a IA32 Myrinet Linux cluster .
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Figure 5: Performance of the two parallel threading architectures.

3.3 Structure Prediction Pipeline
We have integrated the THESEUS threading environment into a complete protein
structure prediction pipeline to provide full-atom 3D models for protein sequences.
The pipeline has been designed and implemented for the 6th CASP experiment in
2004 [35, 36] (see also section 4.3). In order to provide a fully automated protein pre-
diction tool, the pipeline integrates various prediction and analysis steps. The whole
pipeline is designed modular, so that improved methods and tools can be substituted
in, as they become available. Fig. 6 shows the global pipeline architecture. The first

Figure 6: Schematic representation of the structure prediction pipeline.

step in the workflow is the identification of suitable template structures for homol-
ogy modeling (Fig. 7, top). A sequence analysis sub-workflow is passed to search for
homologous sequences with known structures. Successive PSI-BLAST searches are
performed in order to find suitable templates. If no suitable template structure has been
found in the PDB (Protein Data Bank [37]) database, a second PSI-BLAST search in
the UNIPROT [33] database is initiated followed by parallel PSI-BLAST searches in
the PDB database starting from the hits found in UNIPROT. If a structural template
has been found, an atomic structural model will be generated with a suitable homology
modeling tool. Here, we can plug-in any available method for homology modeling.
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Currently, we are using the MODELLER [38] tool. For the CASP6 experiment (see
section 4.3) methods developed in the Preissner group (Charité, Berlin [36]) were ap-
plied. If no suitable structural template is detectable the structure will be predicted
through our protein threading implementation. The threading procedure (Fig. 7, bot-

Figure 7: Sub-workflows: (top) Sequence analysis, (bottom) Threading

tom) starts with secondary structure prediction using PSIPRED [23]. PSIPRED provides
a 3-state prediction (helix, strand, loop) together with a reliability score for every se-
quence position. Then THESEUS predicts all sequence-to-structures alignments for
the template database. From the best scoring template structures the most probable
templates are selected and submitted to the loop modelling procedure, where differ-
ent 3D models for each template are generated in parallel. The loop and side-chain
modelling step finalizes the threading part of the prediction pipeline. Suitable methods
for loop and side-chain modeling are utilized: currently, MODELLER is also used to
model the loop regions and the amino acid side chain atoms of the given backbone
model. In the CASP6 contest, the LIP tool [39] was applied for loop modeling and the
Swiss PDB Viewer [40] for side-chain placement. At the end, a full-atomic structure
model of the target sequence is provided.

The whole workflow runs on a IA32 Myrinet Linux cluster available at our site1.
The resources of the compute cluster complex are managed by a job management sys-
tem (batch system) providing a single point of control (job submission and job con-
trol). The overall structure prediction pipeline is implemented as a fully-automated
Perl script, which manages the orchestration of the workflow components and the com-
munication with the local batch system. Additionally, we have implemented a Web
service-based version of the structure prediction pipeline using Triana [41] as work-
flow engine [42].

1http://elfie.bcbio.de
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4 Results
The fold recognition performance of THESEUS was tested on two commonly used
benchmark sets for threading methods: the Fischer [13] and the Lindahl [43] bench-
mark set. Additionally, the THESEUS results from the CASP6 [35] experiment in
2004 and detailed performance measurements are discussed.

4.1 Fischer Benchmark
The Fischer [13] benchmark set consists originally of 68 target sequences and 301
template structures. For every target sequence there is at least one template structure
with similar fold type. All pairs were hand selected showing high structure similarity
but low sequence similarity. Only 67 of the 68 Fischer pairs are possible to find for
THESEUS because of the constraint, that the template structure sequence have to be
smaller than the target sequence. A match occurs when the expected matching template
structure or a template structure with the same fold is found on the top rank, or within
the top five, or within the top ten ranks. In Fig. 8 the results for all 67 target sequences
are shown ordered according the SCOP [31] classification CLASS level (Mainly Alpha,
Mainly Beta, Alpha/Beta, Alpha+Beta, Others).� � � � � � � � � � � � 	 
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Figure 8: Results from the Fischer benchmark sets.

Totally, THESEUS is able to predict 56 (83%) of the 67 correct pairs within the top
ten ranks. The best recognition is given for the ’Mainly Alpha’ class representing pro-
tein folds that consists of helices mainly. For the ’Other’ class the recognition is worst
because this class contains only 3 target sequences consisting of only few secondary
structure elements with few pairwise contacts in between.

4.2 Lindahl Benchmark
The Lindahl [43] benchmark set consists of 976 protein sequences of SCOP [31] do-
mains. All these 976 protein domains were aligned all against all. SCOP is a hierarchi-
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Table 3: Performance of various fold recognition methods for the Lindahl
Benchmark [43]: Percentage of recognized folds at different SCOP levels
within top ranked results. All results except for THESEUS are from Zhou
et al. [44]. The methods are ordered according the TOP5 ranks for the ’Fold
only’ category.

Family only Superfamily only Fold only
Method Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10
RAPTOR 89.3 91.6 59.2 74.4 39.7 61.2
PROSPECT II 84.1 88.2 52.6 64.8 27.7 50.3
SPARKS 82.9 90.1 56.5 72.4 23.1 43.6
THREADER 49.2 58.9 10.8 24.7 14.6 37.7
THESEUS 59.8 77.0 78.4 13.0 43.1 51.9 9.0 36.2 49.7
FUGUE 82.3 85.8 41.9 53.2 12.5 26.8
SAMT98-PsiBlast 70.1 75.4 28.3 38.9 3.4 18.7
HMMER-PsiBlast 67.7 73.5 20.7 32.5 4.4 14.6
PSIBLAST 71.2 72.3 27.4 27.9 4.0 4.7

cal classification of protein domains, so relationships between proteins can be studied
on different levels:

• FAMILY: Protein domains with clear evolutionary relationship.

• SUPERFAMILY: Protein domains that have low sequence identities, but whose
structural and functional features suggest that a common evolutionary origin is
probable.

• FOLD: Protein domains are defined as having a common fold if they have the
same major secondary structure arrangement and with the same topological con-
nections. Protein domains placed together in the same fold category may not
have a common evolutionary origin.

Since all methods are much better in recognizing closely related proteins all hits from
lower SCOP levels are ignored, otherwise the score on, e.g., the fold level would be
the sum of fold, superfamily and family level dominated by the easiest family level.
There are 555, 434, and 321 pairs of protein domains in the same family, superfamily,
and fold, respectively. THESEUS is tested whether or not the method can recognize
the correct pair as first rank or within the top five or top ten ranks. The results of
THESEUS in comparison to several well-established methods for protein structure
prediction are shown in Table 3. The comparison of the results can only be approxi-
mate, because the structure and sequence databases used for previous methods at the
time publishing the results have become larger.

Generally, THESEUS has problems to rank the correct pair within the top five hits,
but the results for the top ten ranks are comparable to methods with comparable algo-
rithms and energy functions like RAPTOR, PROSPECT, FUGUE, or THREADER.
The performance in all three categories is better than those for methods based on pro-
file alignments only, like HMMER-PSIBLAST, SAMT98-PSIBLAST, or PSIBLAST.
The overall performance is for the most difficult category FOLD better than for the two
other categories, where sequence similarity is detectable.
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4.3 THESEUS in CASP6
4.3.1 The CASP6 Experiment

CASP [35] is a blind prediction experiment where crystallographers give their solved
protein structures to the organizers before they are published in the PDB. Predictors
can submit their predictions within a given period or until the structure is published.
The predicted data is then passed to the assessors who analyse the data and try to derive
general conclusions. All models and results are available on-line2.

We participated with our structural prediction pipeline (see section 3.3) in the 6th
Critical Assessment of Techniques for Protein Structure Prediction (CASP) 2004 [36]
together with the Preissner group from Charité – Universitätsmedizin Berlin who were
responsible for the homology modeling part of the structure prediction pipeline. To-
tally, in CASP6 201 so called human expert groups were registered and 65 fully au-
tomated servers. 87 target sequences were released, from which 11 were cancelled
before the end and 12 after the end of the prediction season, so that totally 64 targets
representing 90 domains were assessed. After the experiment the target domains were
classified from the assessors into five categories:

• CM/easy, where similarity can be detected by simple BLAST [7] searches,

• CM/hard, where similarity only can be detected by iterated PSI-BLAST [8]
searches,

• FR/homolog, where similarity is detectable by profile-profile alignments,

• FR/analog, where only structure similarity but no sequence similarity is present,

• New Fold representing new protein fold types that are not present in current
PDB [37] database.

The main assessment method in the CASP experiments is the global distance test
total score (GDT TS) [45], which evaluates the structural similarity of a model to the
experimental structure at four distance thresholds 1, 2, 4, and 8Å. A large sample of
possible structure superpositions of the model on the experimental structure is gener-
ated by superposing all sets of three, five and seven consecutive Cα atoms along the
backbone. Each of these initial superpositions is then iteratively extended by including
all residue pairs under the threshold in the next iteration, until no new residues can
be added. For each threshold the superposition that includes the maximum number of
residues (as a percentage of the total residues this is Nn, where n is the threshold dis-
tance) is selected. Note that superimposed residues are not required to be continuous
in the sequence. The resulting score is then obtained by averaging over all thresholds:

GDT T S =
1
4
[N1+N2+N4+N8] . (24)

4.3.2 Overall Performance

THESEUS have been used to build 91 models for 39 of the totally 64 assessed CASP6
targets that have been assigned as threading targets through the prediction pipeline. In
contrast to all other groups, who have submitted five different models for every target
sequence, we have just submitted one model in different modeling stages, e.g., the first

2http://predictioncenter.org/casp6/Casp6.html
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model including only the backbone coordinates of the threading templates, the second
model including additionally the backbone coordinates of the loop residues, the third
model adding the side chains the atoms, and if possible the fourth model after model
refinement. Consecutively, our best model is not the first model, but the fourth one.
Most of the automatically CASP evaluation are done just on the first model or an all
models.

In the automated assessment of CASP6 models by CASP6-servers and human pre-
dictors conducted by the Skolnick-Group3 the THESEUS structure prediction method
was ranked on position 88 of 174 evaluated prediction groups. One have to note, that
again the first model of the five possible models was evaluated.� � � � � � � � � � 	 
 	 � � � � � 
 � � � �

� � � � � � � � � � � � � � � � � � � � � �� � � �� � �  ! " # $ % & $ #' ' $ ( ) % * + ,  ( # - ' ( $ . !% / 0 12 � % 3 4 5 6 ( / 7 � 8 � 9 �" " ( / � : �! ; � � � < �' 7 = � 0 � / / 1> < / � � 3 ' � < � � , �! � 1 * 7 /' ( % # ? ' �# % ( ! - #! % ' ' $ ## 7 0 � � � �' % 6 ! � �@ / �  A �  � � � +  � & B < / 1 3 � 5 % ' 4 . 3 # 7 � � � � �� & B < / 1 3 # 7 0 � � � �5 � � �

C D E F G F H I
Figure 9: Results for the FR/analog category.

In Fig. 9 the results for the FR/analog category for 18 selected methods out of
the 201 registered predicting groups are shown. Here, for every predicting group the
GDT TS scores for all targets in that category are averaged. The two groups ’Best’
and ’Last’ denote the particular best and respectively worst predicted model for every
target. The results show that THESEUS is competitive to groups using similar thread-
ing implementations like Raptor [11], Prospect [9], Genthreader [46] or Wurst [47] but
there are some groups with a significant better averaged GDT TS score greater than
30. These methods are based either consensus methods like Tasser/3D-Jury [48, 49] or
fragment-based like Robetta and Rosetta [50, 51].

Fig. 10 shows the results for two targets from the FR/analog category. On the left
the target structure (PDB code 1TD6, thicker line) and our model structure (thinner line)
are superimposed. The structures are colored according their alignment quality. Are
the aligned residues within a certain distance cutoff they are colored in green, yellow,
and orange, or, when residues are not aligned, the residues are colored purple for the
target structure and red for the model structure. On the right the results for all models
of all groups for the two targets are presented. The diagram shows the percentage of
residues within a certain distance cutoff. A perfect prediction would correspond with

3http://cssb.biology.gatech.edu/skolnick/files/casp6/index.shtml
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target structure       model structure       distance < 200 pm       distance < 400 pm       distance < 800 pm

Figure 10: Results for the CASP targets T0248 1 and T0248 3. Left: Superposition of target
structure and predicted model. The structures are visualized with RASMOL (100 pm = 1Å. Right:
Results of all models from all groups for one target.

a horizontal line near 1Å. The highlighted lines are marking the THESEUS models,
the dark blue line shows the model visualized on the left. All model and result files
are downloadable from the CASP6 website4. In the upper alignment (target T0248 1)
we have predicted three helices within a cutoff of 2 or 4Å, whereas the most left helix
has switched two the wrong side. The lower alignment (target T0248 3) shows only
one well predicted helix, the other helices are shifted or switched in wrong positions.
Nevertheless, for this target no group has predicted a model with all residues within a
cutoff of 10 Å. Totally our best model for T0248 3 was ranked on position 18 among
all number one models.

4.4 Runtime Analysis
In this section the performance of the Branch-and-Bound algorithm is tested against
two integer linear programming (ILP) approaches for solving the optimal protein

4http://predictioncenter.org/casp6/Casp6.html
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Figure 11: Runtime analysis. Top: Runtime (in seconds) for RAPTORthreading (dots)
and THESEUS (circles) (68 sequences against template 1aaj (4 core segments). Bot-
tom: Runtime ratio RAPTORthreading/THESEUS (68 sequences against template
structure 1a45 1 (8 core segments))
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Table 4: Template proteins.
Protein Length Cores Contacts Class
1aaj 105 6 59 Mainly Beta
1aep 153 5 149 Mainly Alpha
1arb 263 22 164 Mainly Beta
1bbt1 208 10 94 Mainly Beta
1caub 184 16 110 Mainly Beta
1chra1 244 17 126 Alpha/Beta
1cid 2 72 7 71 Mainly Beta

threading problem as presented as RAPTOR by Xu et al. [11] and ANDONOVMYZ by
Andonov et al. [52]. The implementation of both ILP formulation adopts the original
approaches in most instances with a few little changes that had to be done for reasons of
compatibility to THESEUS. Both ILP formulations were implemented through C++
interfaces that directly can be plugged into the THESEUS threading environment by
exchanging the Branch-and-Bound algorithm module with the corresponding ILP mod-
ule. The three algorithms work on the same protein template model (see section 2.2)
and on the same energy function (see section 2.5). To solve the integer linear program
the ILP implementations use the commercial optimization package CPLEX 5. All tests
were performed on a 1.6 GHz AMD64 computer system with 2 GB of main memory.
The test set used for evaluation is the Fischer benchmark set with 68 target sequences
and 301 template structures [13] (see section 4.1).

Figure 12: Runtime comparisons. Left: Runtime (in seconds) for threading seven
sequences against the Fischer database. Right: Runtime (in seconds) for threading of
1ATNA against seven template structures with THESEUS.

In Fig. 11 (top) we compared runtimes for the Branch-and-Bound algorithm and
the RAPTORthreading approach in dependence of the query sequence length. For short
query sequences (length < 200) the runtimes of the ILP and the Branch-and-Bound
implementation are very close, but for longer query sequences the Branch-and-Bound
algorithm is eminently faster than the ILP formulation. This effect is even stronger for
templates with more core segments. A graphical presentation of the relation between
runtime of both implementations given by the ratio of the CPU times for threadings
with RAPTOR vs. Branch-and-Bound with respect to the sequence length is shown

5ILOG Inc., http://www.cplex/com
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in Fig. 11 (bottom). In this test we used a template with 8 core segments. Here,
the Branch-and-Bound algorithm clearly outperforms the RAPTORthreading for query
sequences longer than 100 and is up to 30 times faster for sequences longer than 250.

We compared the runtimes of THESEUS, RAPTORthreading, and AN-
DONOVMYZ for seven sequences against the complete Fischer database (shown in
Fig. 12 (left)). The lengths of the target sequences are listed in Table 4. For shorter se-
quences the three algorithms have similar runtimes, but the longer the target sequence
the more THESEUS outperforms the ILP implementations. These results are in con-
flict with the performance comparison in [52], where it is stated that the ILP formu-
lations would clearly outperform the Branch-and-Bound strategy. Nevertheless, there
was not clearly described, how they had implemented the Branch-and-Bound algo-
rithm, i.e., what kind of lower bound they used and if they implemented the multi-
queued variant of the algorithm. The runtime ratios between RAPTORthreading and
ANDONOVMYZ agree with the results given in [52].

To show that the runtimes of threading alignments depend on a variety of features of
the template structure, we performed alignments (shown in Fig. 12 (right)) of the target
sequence 1atna consisting of 373 amino acids against seven template structures with
different structural features (shown in Table 4) using THESEUS. The template struc-
tures are described by the number of amino acids, the number of core segments, the
number of interactions between the core segments, and the corresponding SCOP [31]
class characterizing the main secondary structure topology of the protein fold. The
template structure with the most core segments and the most contacts between core
segments shows the worst performance, whereas template structures with few core
segments have better runtimes. Interestingly, templates containing α-helices (1chra1
and 1aep) show better runtimes than comparable template structures consisting mainly
β-strands, e.g., 1chra1 contains more amino acids, core segments, and contacts than
1caub but shows a better runtime.
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5 Summary
An open and extensible framework for protein structure prediction was designed and
implemented. The work started with the implementation of reliable fold recognition
methods known at the time of the project start in 2001. The implementation of the
THESEUS framework focused on the following design features:

• robust to be suitable for production environments,

• flexible and extensible for the evaluation of new scoring functions and different
search algorithms,

• fast and efficient through single CPU optimization and parallelization,

• re-usable as building block in complex workflow scenarios through command
line and Web service interface.

THESEUS was and is used routinely as core component of a fully-automated
pipeline for protein structure prediction in the CASP6 and CASP7 contests, respec-
tively, and thus demonstrates is robustness. For the first time we provide an efficient
and parallelized implementation of the Branch-and-Bound search strategy for protein
threading as formulated by Lathrop et al [5]. THESEUS uses a new scoring schema
that enhances traditionally threading energy functions by averaging over homologs and
by additional scoring terms for assessing the alignment of secondary structure elements
and scoring loop alignments. Our THESEUS implementation outperforms various
threading approaches with respect to the required computational time and the reliabil-
ity of the fold recognition results as additionally proven in the CASP6 contest. Our
results show also that protein threading is superior above sequence-based methods for
protein alignment and classification tasks.

Furthermore, THESEUS will be used as part of a complex workflow for protein-
protein interaction and functional prediction within the MediGRID [53] project.
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