
A Polyhedral Approach to Network Connectivity

Problems �Extended Abstract�

by
M� Gr�otschel �ZIB� Berlin�

C�L� Monma �Bellcore� Morristown�
M� Stoer �ZIB� Berlin�

Abstract

We present a polyhedral approach for the general problem of designing a minimum-cost
network with specified connectivity requirements. This includes identifying classes of facet-
defining inequalities and using them in a cutting plane approach for obtaining optimal or
near-optimal solutions. Preliminary computational results with this approach are presented.

� Introduction

This extended abstract focuses on the important practical and theoretical problem of design-

ing a minimum-cost network with specified connectivity requirements. Our initial interest in

this area was motivated by the problem of designing survivable “two-connected” topologies

for fiber optic communication networks for the regional telephone companies; see [CMW89]

for an overview. Work on the two-connected network design problem naturally leads to

theoretical and algorithmic questions for network design problems with higher connectivity

requirements. There has been a great deal of research activity in this area in recent years;

for a survey of research in this area, see [GMS93] and [S91].
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In this extended abstract, we describe polyhedral results, including natural integer pro-

gramming formulations, classes of valid and facet-defining inequalities, and their associated

separation problems for network design problems with higher connectivity requirements. We

also report some preliminary computational results with a cutting plane algorithm on some

random problems and on some real-world problems with higher connectivity requirements.

This builds upon our earlier success with this approach for network design problems with

low-connectivity requirements; see [GM90], [GMS89] and [GMS92].

In order to formalize the problem, we need to introduce the following notation. A set V

of nodes is given which represent the locations that must be interconnected into a network.

A collection E of edges is also specified that represent the possible pairs of nodes between

which a direct link can be placed. We let G = (V,E) be the (undirected) graph of possible

direct link connections. Each edge e ∈ E has a nonnegative fixed cost ce of establishing

the direct link connection. The graph G may have parallel edges but contains no loops. The

cost of establishing a network consisting of a subset F ⊆ E of edges is the sum of the costs

of the individual links contained in F .

The goal is to build a minimum-cost network so that the required connectivity requirements

are satisfied. To model these requirements, we introduce the concept of node types. For

each node s ∈ V a nonnegative integer rs, called the type of s, is specified. We say that

the network N = (V, F ) to be designed satisfies the survivability conditions if, for each
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pair s, t ∈ V of distinct nodes, N contains at least rst := min{rs, rt} disjoint [s, t]-paths.

These paths may be required to be either edge disjoint or node disjoint depending on the

application. We note that much of this work generalizes easily to the case where arbitrary

connectivity requirements are given between every pair of nodes. However, we have found

that node types capture the important aspects of practical problems while still providing an

interesting theoretical and algorithmic framework. So we choose to present our results in

this manner.

We introduce further symbols and conventions to denote these node- or edge-connectivity

models: Let r(W ) := max{ru : u ∈ W}; and let con(W ) := max{rst : s ∈ W, t ∈ V −W}

for any W ⊆ V . Let G = (V,E) be a graph. For Z ⊆ V , let δG(Z) denote the set of edges

with one endnode in Z and the other in V \Z. It is customary to call δG(Z) a cut. For any

subset of edges F ⊆ E, we let x(F ) stand for the sum
∑

e�F xe.

Consider the following integer linear program for a graph G = (V,E) with edge costs ce for

all e ∈ E and node types rs for all s ∈ V :
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(1.1) min
∑

e�E cexe

subject to

(i) x(δ(W )) ≥ con(W ) for all W ⊆ V, ∅ �= W �= V ;
(ii) x(δG�Z(W )) ≥ con(W )− |Z| for all pairs s, t ∈ V , s �= t,

and for all Z ⊆ V \{s, t} with
1 ≤ |Z| ≤ rst − 1, and for all
W ⊆ V \Z with s ∈ W, t �∈ W ;

(iii) 0 ≤ xe ≤ 1 for all e ∈ E;
(iv) xe integral for all e ∈ E.

It follows from Menger’s theorem that the feasible solutions of (1.1) are the incidence vectors

of edge sets F such that N = (V, F ) satisfies all node connectivity requirements; i.e., (1.1)

is an integer programming formulation of the node connectivity network design problem.

Deleting inequalities (ii) from (1.1), we obtain, again from Menger’s theorem, an integer

programming formulation for the edge connectivity network design problem. The inequalities

of type (i) will be called cut inequalities, and those of type (ii) will be called node cut

inequalities. We call the associated problems the NCON and ECON problems, respectively.

� Polyhedral Results

The goal of the polyhedral approach is to convert the integer programming problem (1.1) into

a linear programming problem and solve it using LP techniques. This involves identifying

classes of inequalities valid for the ECON and NCON problems, and algorithmically finding

valid inequalities as necessary. For an overview of the polyhedral approach, see [P83], [GP85],
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and [PG85].

The integer programming formulation (1.1) provides natural classes of inequalities. For

the cut inequalities (1.1)(i) and node cut inequalities (1.1)(ii), we can solve the associated

separation problems in polynomical time and have (complicated) characterizations of when

they are facets; see [GMS89] and [S91]. We will introduce further useful classes of valid

inequalities.

The first such class is the class of partition inequalities that generalize the cut inequalities

(1.1)(i). Let [W1 : . . . : Wp] be the set of all edges having their endpoints in different sets

Wi of the partition of V with r(Wi) ≥ 1 for i = 1, ..., p, and let I1 := { i | con(Wi) = 1 }

and I2 := { i | con(Wi) > 1 }. Then the partition inequality induced by {W1, . . . ,Wp} is

defined as

(2.1) x([W1 : . . . : Wp]) ≥
{
p− 1, if I2 = ∅,
�1
2

∑
i�I2 con(Wi)	+ |I1|, otherwise.

It is not hard to see that the partition inequalities (2.1) are valid for the ECON and NCON

problems. The separation problem for partition inequalities is known to be NP-hard; see

[GMS92]. However, there are fast heuristics for the separation of partition inequalities and

our computational experiments have revealed that partition inequalities are very helpful

for solving network connectivity problems. We know of no general necessary and sufficient

conditions for partition inequalities to define facets. Some special cases are dealt with in
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[GM90] and [S91].

We next consider the class of node partition inequalities which generalize the node cut

inequalities (1.1)(ii) in a manner similar to how the partition inequalities (2.1) generalize

the cut inequalities (1.1)(i). Consider a graph G = (V,E) and requirement vector r. Let

Z2 ⊆ . . . ⊆ Zk ⊆ V , k ≥ 2 be node sets with |Zj | = j − 1 for j = 2, . . . , k. Let {W1, . . .Wp}

be a partition of V \Zk, with r(Wi) ≥ 1 for i = 1, . . . , p, such that at least two node sets in

the partition contains nodes of largest type k. Define Ij := { i | r(Wi) ≥ j } for j = 1, . . . , k.

The node partition inequality induced by W1, . . . ,Wp and Z2, . . . , Zk is given by

(2.2) x([W1 : . . . : Wp : Zk]) − x(
⋃k

j=2

⋃
i�Ij [Zj : Wi])

≥ p− 1.

It is not difficult to show that the node partition inequalities are valid for the NCON problem.

It is known to be NP-hard to separate this class of inequalities; see [GM90]. Some necessary

and some sufficient conditions for these inequalities to define facets are known only in a few

special cases; see [GMS89] and [S91].

A nice combinatorial relaxation of the ECON problem is the r-cover problem that can be

defined as follows. Given a graph G = (V,E) and positive integers rv for all v ∈ V , an

r-cover is a set F ⊆ E of edges such that |F ∩ δ(v)| ≥ rv for all r ∈ V . Cleary, every
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solution of the ECON problem defined by a graph G and node types r ∈ NV is an r-cover.

Edmonds’ [E65] blossom inequalities for the 1-capacitated b-matching polytope of a graph

G = (V,E) can be transformed to the r-cover case to yield the r-cover inequalities, valid

for the ECON problem, that have the following form:

(2.3) x(E(H)) + x(δ(H)\T ) ≥ �(∑v�H rv − |T |)/2� for all H ⊆ V,
and all T ⊆ δ(H).

The separation problem for the class of r-cover inequalities can be solved in polynomial time

using the separation algorithm of [PR82] for Edmond’s blossom inequalities. In case some

of the nodes have type 1, the r-cover inequalities can be strengthened as follows:

(2.4) x(E(H))+x(δ(H)\T ) ≥ �( ∑
v�H,
rv�2

rv−|T |)/2	+|{ v ∈ H | rv = 1 }|.

These inequalities are valid for the ECON problem but not for the r-cover polytope. We solve

the separation problem for the class of strengthened r-cover inequalities (2.4) heuristically.

� Computational Results

At present, we have a preliminary version of a code for solving survivability problems with

higher connectivity requirements. We first report about our computational results on random

problems. We used the same set of random data as Ko and Monma [KM89] used for their

high-connectivity heuristics so we will be able to compare results later. The test set consists
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of five complete graphs of 40 nodes and five complete graphs of 20 nodes, whose edge costs

are independently drawn from a uniform distribution of real numbers between 0 and 20. For

each of these 10 graphs, a minimum-cost k-edge connected subgraph for k = 3, 4, 5 is to be

found. The table below reports the number of iterations (minimum and maximum) and the

average time (in seconds on a SUN 4/50 IPX, a 28.5-MIPS machine) taken by our code to

solve these problems for k = 3, 4, and 5, respectively. Only the time for the cutting plane

phase is given.

# Nodes # Iterations Average Time (secs)
K = 3 4 5 3 4 5

20 nodes 1-2 1-5 1-4 0.43 0.51 0.58
40 nodes 1-2 1-2 1-4 1.54 1.95 2.36

These excellent results were surprising, because we always thought high-connectivity prob-

lems to be harder than low-connectivity problems. But this does not seem to be true for

random costs. The high-connectivity heuristics of Ko and Monma performed reasonably

well. The relative gap between the heuristic (h) and the optimal solution value (o), namely

100 × (h − o)/o, computed for the above set of random problems, ranged between 0.8 and

12.8 with an average of 6.5 % error (taken over all problems).

One real-world application of survivable network design, where connectivities higher than

two are needed, is the design of a fiber communication network that connects locations on a

military ship containing various communication systems. The reason for demanding higher

survivability of this network is obvious. The problem of finding a high-connected network
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topology minimizing the cable installation cost can be formulated as an NCON problem.

We will describe the characteristics of this problem in the following. We obtained the graph

and edge cost data of a generic ship model. It has the following features. The graph of

possible link installations has the form of a three-dimensional grid with 15 layers, 494 nodes,

and 1096 edges. Of the grid’s 494 nodes, there are 461 regular nodes, 30 special nodes in

the main part of the ship, and 3 priority nodes in the ship’s tower. The notation ”shipxyz”

will be used to indicate that the regular nodes are of type x, special nodes are of type y,

and priority nodes are of type z. So ”ship013” is the problem, where the three nodes in

the tower are of type 3, the 30 special nodes in the body of the ship are of type 1, and all

other 461 grid nodes are of type 0. The cost structure is highly regular. So the problem is

highly degenerate. Degeneracy together with the size of the ship problem caused us some

difficulties. We were only able to obtain optimal solutions in two cases after considerable

computational efforts.

Table 3.1 gives some computational results of our cutting plane algorithm on the several

versions of the ship problem. The entries from left to right are:

PROBLEM Problem name
IT Number of iteration (i.e., LPs solved)
PART Number of partition inequalities (2.1) added
RCOV Number of r-cover inequalities (2.4) added
LB Lower bound (i.e., optimal LP value)
GAP (UB-LB)/LB in percent
TIME in minutes:seconds
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PROBLEM VAR IT PART RCOV LB UB GAP TIME
ship013 1088 3252 777261 0 211957.1 217428 2.58 10122:35
ship023 1088 15 4090 0 286274.0 286274 0 27:20
ship033 1082 42 10718 1 461590.6 483052 4.64 55:26
ship113 1090 128 17199 0 902691.0 918691 1.77 4724:55
ship123 1088 61 13210 0 906691.0 930691 2.57 1167:37
ship133 1084 176 21564 0 945052.0 1008808 6.74 119:15
ship223 1085 5 541 0 940925.0 940925 0 0:43
ship233 1081 5 532 0 1028193.0 1029176 0.09 0:54

Table 3.1: Performance of cutting plane algorithm on ship problems

Summarizing our computational results, we can say that for survivability problems with high

connectivity requirements, many nodes of type 0 and highly regular cost structure (such as

the ship problems) much still remains to be done to speed up our code and enhance the

quality of solutions. This is in contrast to our previous work (see [GMS92]) on applications

in the area of telephone network design, where we were able to obtain optimal solutions

in a few minutes. However, these preliminary results provide hope for similar success in

the future for these difficult network design problems. Further research on the polyhedral

structure of these problems is needed along with algorithmic advances. Some steps in this

direction have been taken by [C90] and [C91].
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