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Abstract. We study online multicommodity minimum cost routing prob-
lems in networks, where commodities have to be routed sequentially. Arcs
are equipped with load dependent price functions defining the routing
weights. We discuss an online algorithm that routes each commodity by
minimizing a convex cost function that depends on the demands that
are previously routed. We present a competitive analysis of this algo-
rithm showing that for affine linear price functions this algorithm is 4K

2+K
-

competitive, where K is the number of commodities. For the parallel arc
case this algorithm is optimal. Without restrictions on the price func-
tions and network, no algorithm is competitive. Finally, we investigate a
variant in which the demands have to be routed unsplittably.

1 Introduction

In this work we study the fundamental problem of sequentially routing demands
in a network. We consider a dynamic load dependent weight setting on links. In
realistic scenarios the online aspect arises due to the fact that by the time of
routing a given demand, future demands are not known. We briefly outline two
examples.

Open Shortest Path First (OSPF) is the most commonly used intra-domain
internet routing protocol today, see Moy [1]. Traffic is routed along shortest paths
from source to destination with respect to weights on the links that are under
the control of network operators. A default weight setting strategy is to make
the weight inversely proportional to the physical link capacity as suggested by
Cisco [2]. If the routing weights are interpreted as prices for reserving capacity on
the corresponding link, the OSPF protocol routes demands along the cheapest
route.

Minimum cost routing also arises in an inter domain Quality of Service (QoS)
market, where multiple service providers offer network resources (capacity) to
enable internet traffic with specific QoS constraints, cf. Yahaya and Suda [3, 4]. In
such a market, each service provider advertises prices (weights) for resources that
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he wants to sell. Buying providers reserve capacity along the cheapest available
path to route demand (coming from own customers) from source to destination.

In this paper we propose a framework, called Online Multicommodity Rout-
ing Problem (OnlineMCRP), to investigate such online routing problems. We
allow arbitrary continuous nondecreasing price functions. As far as we know this
approach has not been investigated before.

We investigate an online algorithm for this setting. We show that this algo-
rithm is 4K

2+K -competitive for affine linear price functions, where K is the number
of commodities. For the parallel arc case this algorithm is optimal. The key to
derive competitive results is to bound the bundle size for a given demand. That
is, demands are allowed to be split into infinitesimal pieces that are sequentially
routed over paths and prompt the update of the routing weights along the used
path. Without restrictions on the price functions and network, no algorithm is
competitive. We also investigate a variant in which the demands have to be
routed unsplittably.

Related Work Multicommodity routing problems have been studied in the
context of traffic engineering, see Fortz and Thorup [5, 6]. There, the goal is
to route given demands subject to capacity constraints in order to minimize a
convex load dependent penalty function. In this setting, a central planer has full
knowledge of all demands, which is not the case in our approach.

Another related line of research is the investigation of efficient routing in
decentralized noncooperative systems. This has been extensively studied using
game theoretic concepts, cf. Roughgarden and Tardos [7], Correa, Schulz, and
Stier Moses [8], and references therein. In these works the efficiency of Nash
equilibria are studied. Hence, rerouting of demands is allowed in this context.
In our model, once a routing decisions has been made this routing remains
unchanged, i.e., it is irrevocable.

In the online network routing field mainly call admission control problems
have been considered. An overview article about these problems is given by
Leonardi in [9].

2 Problem description

An instance of the Online Multicommodity Routing Problem (OnlineMCRP)
consists of a directed network D = (V,A) and nondecreasing continuous price
functions pa : R+ → R+ for each link a ∈ A. These functions define the
price of reserving capacity on a link depending on the current load, see be-
low. Furthermore, a sequence σ = 1, . . . ,K of commodities must be routed one
after the other. We assume that K ≥ 2 and denote the set of commodities by
[K] := {1, . . . ,K}. The routing decision for commodity k is online, i.e., it only
depends on the routings of commodities 1, . . . , k−1. Once a commodity has been
routed it remains unchanged. Each commodity k ∈ [K] has a demand dk > 0
that is to be routed from its source sk ∈ V to its destination tk ∈ V after it
arises.
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A routing assignment, or flow, for commodity k ∈ [K] is a nonnegative vector
fk ∈ R|A|+ . This flow is feasible if for all v ∈ V∑

a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v), (1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; further-
more, γ(v) = dk if v = sk, γ(v) = −dk if v = tk, and γ(v) = 0 otherwise. Note
that Equation (1) allows to split the demand of a commodity.

Alternatively, one can consider a path flow for a commodity k ∈ [K]. Let Pk

be the set of paths from sk to tk in D. A path flow is a nonnegative vector
(fk

P )P∈Pk
. The corresponding flow on link a ∈ A for commodity k ∈ [K] is then

fk
a :=

∑
P3a

fk
P .

We define Fk with k ∈ [K] to be the set of vectors (f1, . . . ,fk) such that f i

is feasible for commodity i for i = 1, . . . , k. If (f1, . . . ,fk) ∈ Fk, we say that it is
feasible for commodities 1, . . . , k. The entire flow for a sequence of commodities
is denoted by f = (f1, . . . ,fK). Furthermore, the cost of a flow on link a ∈ A
of commodity k is defined by

Ck
a (f1

a , . . . , fk
a ) =

fk
a∫

0

pa

( k−1∑
i=1

f i
a + z

)
dz. (2)

This expression can be obtained as the cost of a shortest path routing, where
the demand is split into infinitesimal pieces that are routed consecutively. Hence,
the integral represents the fact that an infinitesimal amount of flow increases the
price for each consecutive piece. Note that Ck

a is a convex function.
The cost for fk is

Ck(fk) :=
∑
a∈A

Ck
a (f1

a , . . . , fk
a ), (3)

and the total cost is defined by C(f) :=
∑K

k=1 Ck(fk).
In this paper we study the online algorithm Seq that sequentially routes the

requested demands with minimum cost. Therefore, it solves for every k ∈ [K]
the following convex program

min Ck(fk)

s.t.
∑

a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v) ∀ v ∈ V (4)

fk
a ≥ 0 ∀a ∈ A,

where the vectors f1, . . . ,fk−1 are fixed by solving the first k−1 problems. This
problem can be efficiently solved within arbitrary precision in polynomial time
(see Grötschel, Lovász, and Schrijver [10]).
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Using the relation
∂Ck

∂fk
a

(fk) = pa

( k∑
i=1

f i
a

)
,

we state necessary and sufficient optimality conditions of the above K problems:

Lemma 1. A flow f = (f1, . . . ,fK) is generated by Seq if and only if for all
k ∈ [K] the following two equivalent conditions are satisfied. Let x be any feasible
flow, and let P,Q ∈ Pk where P is flow carrying w.r.t. fk

∑
a∈A

pa

( k∑
i=1

f i
a

)
(fk

a − xk
a) ≤ 0 (5)

∑
a∈P

pa

( k∑
i=1

f i
a

)
≤

∑
a∈Q

pa

( k∑
i=1

f i
a

)
. (6)

The proof is based on the first order optimality conditions and the convexity
of Ck, see Dafermos and Sparrow [11].

For the sequence σ = 1, . . . ,K, an optimal offline flow is given by the solu-
tion f? of the following convex optimization problem:

min C(f)

s.t.
∑

a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v) ∀ v ∈ V, k ∈ K (7)

fk
a ≥ 0 ∀ a ∈ A, k ∈ K,

where γ(v) is defined as in (1). We denote by Opt(σ) = C(f?) its value.
Using the relation

∂C

∂fk
a

(f) = pa

( K∑
i=1

f i
a

)
,

the necessary and sufficient optimality conditions of the above problem are:

Lemma 2. A flow f = (f1, . . . ,fK) is offline optimal if and only if for all
k ∈ [K] the following two equivalent conditions are satisfied. Let x be any feasible
flow, and let P,Q ∈ Pk, where P is flow carrying w.r.t. fk

∑
a∈A

pa

( K∑
i=1

f i
a

)
(fk

a − xk
a) ≤ 0 (8)

∑
a∈P

pa

( K∑
i=1

f i
a

)
≤

∑
a∈Q

pa

( K∑
i=1

f i
a

)
. (9)

Note that the only difference to the optimality conditions in Lemma 1 is the
summation in the price function up to commodity K instead of k. This reflects
the offline aspect since all demands are known.



Competitive Online Multicommodity Routing 5

1

2

3

4

(a)

s

n

1

t

2

...

(b)

Fig. 1: Construction for the proofs of lower bounds.

For a given sequence of commodities σ = 1, . . . ,K and a solution f produced
by an online algorithm Alg for σ we denote by Alg(σ) = C(f) its cost. The
online algorithm Alg is called c-competitive if the cost of Alg is never larger
than c times the cost of an optimal offline solution. The competitive ratio of Alg
is the infimum over all c ≥ 1 such that Alg is c-competitive, see Borodin and
El-Yaniv [12].

Remark 1. If the price functions are constant, i.e., pa(z) = qa for every arc a ∈ A,
the algorithm Seq is optimal for the offline problem. This holds because in this
case the routing problems are independent from each other. In fact, each routing
decision is just a shortest path problem with respect to the constant costs qa

and the offline problem is a min-cost flow problem without capacity constraints.
Hence, both problems can be solved more efficiently than in the general case.

Clearly, also in the case K = 1, the competitive ratio of Seq is 1.

3 Competitive Analysis of Seq

First, we show that there exists, in general, no competitive deterministic online
algorithm.

Proposition 1. If neither the network nor the price functions are restricted,
there exists no competitive deterministic online algorithm for OnlineMCRP.

Proof. Consider the network depicted in Figure 1 (a). For all arcs a in the
network, the price function is pa(z) = m · zm−1 with m > 2. Note that the
integral of this function is zm. Let Alg be an arbitrary deterministic online
algorithm. The first commodity has demand d1 = 1, which has to be routed
from s1 = 1 to t1 = 4. There are two possible paths for this commodity: path
P1 = (1, 2, 4) and P2 = (1, 3, 4).

Assume that the algorithm Alg splits this demand evenly. This leads to the
cost 4 · ( 1

2 )m. Now commodity 2 arises with demand d2 = 1, source s2 = 1,
and target t2 = 2. This demand has to be routed along P3 = (1, 2). For this
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sequence σ we have the total cost Alg(σ) = 4 · ( 1
2 )m + ( 1

2 + 1)m. Routing the
first commodity completely over path P2 and the second over path P3 leads to
the total cost Opt(σ) ≤ 2 · 1m + 1m = 3. Letting m tend to infinity shows that
Alg is not competitive.

Consider now the case where the algorithm Alg does not split commodity 1
evenly. If the algorithm routes the greater portion over path P1, we reveal the
same commodity 2 as in the previous case. Otherwise, the second commodity
has a demand d2 = 1, source s2 = 1, and target t2 = 3. It is obviously that
in both cases this lead to the cost for the algorithm strictly greater than in the
evenly split case. Again for m →∞, it follows that Alg is not competitive, since
still Opt(σ) ≤ 3. ut

This shows that to obtain any competitive result, the network or the price
functions have to be more restricted. Now we will show that if the price functions
are affine, Seq is 4K

2+K -competitive. For affine price functions pa(z) = qa · z + ra

with qa > 0, ra ≥ 0 (a ∈ A), we have for a feasible flow (f1, . . . ,fk)

Ck
a (f1, . . . ,fk) = qa

( k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a + ra fk
a .

It follows from the optimality conditions (5) that if (f1, . . . ,fk) is generated
by Seq, we have ∑

a

(
qa

k∑
i=1

f i
a + ra

)
(fk

a − xk
a) ≤ 0, (10)

for all feasible flows xk.

Theorem 1. If the price functions are affine, Seq is 4K
2+K -competitive.

Proof. Let f be the flow generated by Seq for a given sequence and let x be
any other feasible flow. We start with the following inequality:

0 ≤
(

1
2

K∑
k=1

fk
a −

K∑
k=1

xk
a

)2

= 1
4

K∑
k=1

K∑
i=1

f i
a fk

a −
K∑

k=1

K∑
i=1

f i
a xk

a +
K∑

k=1

K∑
i=1

xi
a xk

a.

We use the following useful relation

K∑
k=1

K∑
i=1

f i
a fk

a = 2
K∑

k=1

( k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a , (11)

for the first and last sum and obtain:

0 ≤ 1
2

K∑
k=1

( k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a −
K∑

k=1

K∑
i=1

f i
a xk

a + 2
K∑

k=1

( k−1∑
i=1

xi
a + 1

2xk
a

)
xk

a.
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Multiplying with qa and adding over all arcs yields:

0 ≤
∑
a∈A

qa

(
1
2

K∑
k=1

( k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a −
K∑

k=1

K∑
i=1

f i
a xk

a + 2
K∑

k=1

( k−1∑
i=1

xi
a + 1

2xk
a

)
xk

a

)
.

We now add the inequality

0 ≤
∑
a∈A

K∑
k=1

(
1
2ra fk

a − ra xk
a + 2ra xk

a

)
− 1

K

∑
a∈A

K∑
k=1

ra fk
a ,

which holds because K ≥ 2, leading to:

0 ≤ 1
2 C(f)−

∑
a∈A

K∑
k=1

(
qa

K∑
i=1

f i
a + ra

)
xk

a + 2 C(x)− 1
K

∑
a∈A

K∑
k=1

ra fk
a .

We drop part of the second term and apply (10):

0 ≤ 1
2 C(f)−

∑
a∈A

K∑
k=1

(
qa

k∑
i=1

f i
a + ra

)
fk

a + 2 C(x)− 1
K

∑
a∈A

K∑
k=1

ra fk
a

=− 1
2 C(f) + 2 C(x)− 1

2

∑
a∈A

qa

K∑
k=1

fk
a fk

a − 1
K

∑
a∈A

K∑
k=1

ra fk
a .

This yields:

C(f) ≤ 4 C(x)−
∑
a∈A

qa

K∑
k=1

fk
a fk

a − 2
K

∑
a∈A

K∑
k=1

ra fk
a

≤ 4 C(x)− 1
K

∑
a∈A

qa

( K∑
k=1

fk
a

)2

− 2
K

∑
a∈A

K∑
k=1

ra fk
a

= 4C(x)− 2
K

∑
a∈A

qa

K∑
k=1

( k−1∑
i=1

fk
a + 1

2fk
a

)
fk

a − 2
K

∑
a∈A

K∑
k=1

ra fk
a ,

where the second inequality follows from the inequality of Cauchy-Schwarz and
the last equation follows by (11). Hence, we get C(f) ≤ 4 C(x)− 2

K C(f), from
which the claim follows. ut

We do not know whether this result is tight. The best known lower bound is
the following.

Theorem 2. In case of linear cost functions no deterministic online algorithm
for OnlineMCRP is c-competitive for any c < 1.309.

Proof. The proof is similar to the proof of Proposition 1. Consider the network
displayed in Figure 1 (a). Each arc a of the network has the same price function
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pa(z) = 2 z. Let Alg be an arbitrary deterministic online algorithm. We first
present Alg commodity 1 with demand 1 that has to be routed from s1 = 1
to t1 = 4.

Assume the algorithm behaves like Seq. This means that the demand gets
evenly divided into two pieces: one half is routed over path P1 = (1, 2, 4) and
the other over path P2 = (1, 3, 4). In this case we reveal commodity 2 with
demand d ≥ 1 between 1 and 2 and then commodity 3 with demand d between 2
and 4. For these commodities there exists a unique path. Therefore, Alg yields
for this sequence σ the cost:

Alg(σ) = Seq(σ) = 4 · ( 1
2 )2 + 2 ·

(
1
2 + 1

2d
)
· d + 2 ·

(
1
2 + 1

2d
)
· d = 1 + 2d + 2d2.

Since d ≥ 1, the optimal offline solution is to route commodity 1 only over
path P2 and the other along its unique path. Therefore,

Opt(σ) = 2 · 12 + 2 ·
(

1
2 · d

)
· d + 2 ·

(
1
2 · d

)
· d = 2 + 2d2.

This leads to

Alg(σ)
Opt(σ)

=
1 + 2d + 2d2

2 + 2d2
.

Hence, Alg cannot have a competitive ratio less than

max
d≥1

1 + 2d + 2d2

2 + 2d2
≥ 1.309.

If Alg does not behave like Seq for the first commodity, Alg has to route
more than one half of the demand over path P1 or path P2. If it is path P1, then
we present commodities 2 and 3 as above. Otherwise, we present commodities 2
with demand d between 1 and 3 and commodity 3 with demand d between 3
and 4. W.o.l.g. we assume that Alg routes the greater portion over path P1.
Let α be the demand routed over path P1; by assumption, 1

2 < α ≤ 1. The cost
of Alg for the sequence σ is

Alg(σ) = 2 · α2 + 2 · (1− α)2 + 2 · (2αd + d2).

Since d ≥ 1, the optimal cost stays the same and we obtain:

Alg(σ)
Opt(σ)

=
2α2 + 2(1− α)2 + 4αd + 2d2

2 + 2d2
>

1 + 2d + 2d2

2 + 2d2
.

Therefore, Alg cannot have a competitive ratio less than 1.309. ut

The proof of Theorem 2 also shows that Seq is not dominated by any other
deterministic online algorithm. In fact, as we show next, possible good algorithms
for the OnlineMCRP have to split the demands.

Theorem 3. An deterministic online algorithm for the OnlineMCRP that
routes all demands unsplittable is not competitive.
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Proof. Consider the network shown in Figure 1 (b). This network contains n+2
nodes and n paths from node s to node t. The price functions are pa(z) = 2 z for
all a ∈ A. Let Alg be an arbitrary deterministic online algorithm which does
not split demands. We consider a single commodity with demand 1 between s
and t. Since Alg does not split, the cost of its routing is independent from the
chosen path:

Alg(σ) = 2 · ( 1
2 · 1) · 1 + 2 · ( 1

2 · 1) · 1 = 2.

An optimal solution splits the demand into n evenly divided pieces and sends
each piece over an different path. This leads to an optimal cost of

Opt(σ) = 2 · n · ( 1
n )2 = 2

n .

Therefore, the competitive ratio of Alg is not smaller than n. Since this holds
for all n ∈ N, Alg is not competitive. ut

In Section 4 we further investigate the case where we are not allowed to split
demand.

We now consider the parallel arc case, i.e., D consists of two nodes and
parallel arcs only. Recall from Lemma 1 and 2 that a flow x solves the offline
problem (7) and f is generated by Seq if and only if:

for all a ∈ A with
K∑

k=1

xk
a > 0 : pa

( K∑
i=1

xi
a

)
≤ pâ

( K∑
i=1

xi
â

)
for all a ∈ A, k ∈ [K] with fk

a > 0 : pa

( k∑
i=1

f i
a

)
≤ pâ

( k∑
i=1

f i
â

)
.

Lemma 3. Given a sequence σ = 1, . . . ,K, let f be the flow generated by Seq.
Define A+

k := {a ∈ A : fk
a > 0} for k ∈ [K]. Then,

pa

( k+1∑
i=1

f i
a

)
≤ pâ

( k+1∑
i=1

f i
â

)
, ∀a ∈ A+

k , â ∈ A, k = 1, . . . ,K − 1.

Proof. Let a ∈ A+
k . First assume that a ∈ A+

k+1. Then by the optimality condi-
tions above for (f1, . . . ,fk+1) the claim follows.

Now assume a /∈ A+
k+1. Then we have for all â ∈ A:

pa

( k+1∑
i=1

f i
a

)
= pa

( k∑
i=1

f i
a

)
≤ pâ

( k∑
i=1

f i
â

)
≤ pâ

( k+1∑
k=1

f i
â

)
,

where the first inequality follows from the optimality condition for the flow
(f1, . . . ,fk+1), and the second follows from the assumption that the price func-
tions are nondecreasing. ut
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sn

...

s2

s1

uK

...

u1

t

Fig. 2: Construction for the proof of Theorem 5.

Theorem 4. Given a sequence of commodities, let f be the flow generated by
Seq for this sequence. Then, C(f) ≤ C(x) for any feasible x, i.e., f is also an
offline optimum.

Proof. For the last commodity K we have the following optimality condition:

pa

( K∑
i=1

f i
a

)
≤ pâ

( K∑
k=1

f i
â

)
, ∀a ∈ A+

K . (12)

Using Lemma 3 for k = K − 1 we obtain:

pa

( K∑
i=1

f i
a

)
≤ pâ

( K∑
k=1

f i
â

)
, ∀a ∈ A+

K−1.

Inequality (12) and applying Lemma 3 iteratively K − 1 times yields the opti-
mality conditions (2) for the offline optimum. ut

4 Unsplittable Routings

In this section we study the variant of the OnlineMCRP in which demands are
not allowed to be split, i.e., unsplittable routings. Such a restriction often occurs
in practice, e.g., in single path routing problems in telecommunication networks.
It is possible to formulate a mixed integer convex program for this setting. In
contrast to the splittable case, however, the offline problem is NP-hard in this
case.

Theorem 5. The offline problem for the unsplittable OnlineMCRP is NP-
hard, even when the price functions are linear.

Proof. Consider an instance of the minimum sum of squares problem, which is
NP-complete in the strong sense (see Garey and Johnson [13]). Here, one is
given nonnegative integers d1, . . . , dK and positive integers N ≤ K and J . The
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question is whether there exists a partition of [K] into N sets A1, . . . , AN such
that

N∑
i=1

( ∑
k∈Ai

dk

)2

≤ J?

For the reduction to the offline problem, we construct a directed graph D with
nodes {s1, . . . , sK , u1, . . . , uN , t} and the following arcs: For each k ∈ [K] and
i ∈ [N ] we have an arc (sk, ui) with price function 0. For each i ∈ [N ] we add
an arc a = (ui, t) with price function pa(z) = 2 z; see Figure 2. Furthermore,
for k ∈ [K] there are demands dk between sk and t.

We now claim that there exists an unsplittable solution to the offline problem
of value at most J if and only if the answer to the minimum sum of squares
problem is positive. First assume that A1, . . . , AN is the wanted partition. Then
if k ∈ Ai, we route commodity k along ui to t. Using (11), we obtain the following
costs:

2
N∑

i=1

∑
k∈Ai

( ∑
j∈Ai
j<k

dj + 1
2dk

)
dk =

N∑
i=1

∑
k∈Ai

∑
j∈Ai

dk dj =
N∑

i=1

( ∑
k∈Ai

dk

)2

.

This proves the forward direction of the claim. Conversely, assume that there
exists an unsplittable flow of value J . For i = 1, . . . , N , let Ai be the set of
indices k whose corresponding demands are routed over the arc (ui, t). Again the
cost is given as above, which shows that there exits a solution to the minimum
sum of squares problem. ut

When the price functions are constant, both the unsplittable variants of (4)
and (7) are min cost flow problems and hence polynomial time solvable.

Theorem 6. In general there exists no competitive deterministic online algo-
rithm for the unsplittable OnlineMCRP.

Proof. Given the network shown in Figure 1 (a), where each arc a has a price
function pa(z) = m · zm−1 with m > 2. Let Alg be an arbitrary deterministic
online algorithm for the considered problem. First, we reveal a commodity with
demand d1 = 1, source s1 = 1, and target t1 = 4. W.l.o.g. we assume that Alg
uses path P = (1, 2, 4) to route this demand. Commodity 2 is released with
demand d2 = 1, source s2 = 1, and target t2 = 2. For this sequence σ, Alg
yields the cost

Alg(σ) = 2 · 1m + (1 + 1)m = 2 + 2m.

The optimal cost is Opt(σ) = 3. Therefore, as m → ∞, it follows that Alg is
not competitive. ut

Theorem 7. If we consider only linear price functions, no deterministic online
algorithm has a competitive ratio less than 2 for the unsplittable OnlineMCRP.
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Proof. Consider the network shown in Figure 1 (a), where each link a has the
same price function pa(z) = 2 z. Let Alg be an arbitrary deterministic online
algorithm. We first reveal commodity 1 with demand d1 = 1, source s1 = 1, and
target t1 = 4. This request can be routed over path P1 = (1, 2, 4) or over path
P2 = (1, 3, 4). W.l.o.g. assume that Alg chooses path P1. Now we release two
more commodities. Both have a demand of 1. One has to routed from 1 to 2 and
the other from 2 to 4. The assignment by Alg for this sequence σ leads to a
cost of

Alg(σ) = 2 · 12 + (2 + 12) + (2 + 12) = 8.

Since the optimal cost for σ is Opt(σ) = 4, the competitive ratio of Alg is at
least 2.

5 Final Comments and Future Research

In practice, routings have to consider capacities, which we ignored in our ap-
proach. In this case, however, one can easily construct examples in which Seq
does not even produce a feasible solution. Further requirements in practice in-
clude path length restrictions and survivability issues.

In the future, we plan to investigate the competitiveness of Seq for nonlinear
prices functions. It is also an open issue whether the competitiveness bound in
Theorem 1 is tight and whether the optimality results in Theorem 4 can be
extended.
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