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Abstract

This article surveys mathematical models and methods used for the physical layout of printed circuit
boards, in particular component placement and wire routing. The main concepts are briefly described
together with relevant references.

Mathematics Subject Classification (2000): 90C90 90-02 68R05

1 Introduction
Printed circuit boards (PCBs), see Figures 2 and 3 for an example, are ubiquituous. PCBs are the backbones
of almost every electronic device, and therefore, PCB design and manufacturing are extremly important
components of many industrial production processes. Before a PCB can serve its task it evolves through
three main steps. The first one is the logic design, which defines the components to be used and their
interconnections. The second step is the physical layout of the PCB where the geometric positions of the
components and their physical connections are decided. The final step is the industrial production of the
PCB.

In this article we give an overview on the mathematical models and methods used in the second step,
the physical design of the board. The two major issues here are component placement and wire routing as
depicted in Figure 1.

Step 1

Logical Design
Step 2

Physical Layout
Step 3

PCB Production

Determine form factor

and number of layers

Pin assignmentComponent placement

Wire routing
Layer assignment

Via minimization

Figure 1: Tasks in PCB design

A digital logic circuit consists of a collection of interconnected parts. The parts come in two varities;
active parts, i. e., integrated circuits (IC) and passive parts, such as resistors, and capacitors (Figure 2).

Due to continuously shrinking feature sizes, the functionality of ICs per area unit has significantly
increased over the years. This has led to a steady increase of the ratio between passive and active parts of
a PCB. Ratios of 20 or 30 passive to one active part are not uncommon. Each part can be represented by
the shape and area occupied on the board together with the locations of one or more pins or pads where
the electrical connections are made (Figure 3). One IC may have up to several hundred pins. To have a
single term we will call the pins and pads of the components terminals. A set of terminals that have to be
electrically connected is called a net. In PCB and chip design it is implicitly understood that the electrical
connection has to be realized by a tree (on a routing graph to be described later). This standard definition
of a net just specifies the nodes that have to be connected and leaves open how the actual wiring is done.
Two different nets (i. e., their physical realization) must be insulated from each other.

A circuit board is built as a stack of layer pairs. Each pair starts as an insulating sheet with copper
deposited on one or both sides. The copper sides of the sheet are first etched with different wiring patterns.
Then the sheets are stacked into a sandwich separated by insulating material. Small holes are drilled into
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the board. Finally, the holes are plated with metal, so that electrical contact is made with each layer that
has copper left at hole locations. Hence, a hole can form a conductive path between two or more layers.
The standard term used in PCB and chip layout for a hole is via.

Parts can be attached to boards in two ways. The classical method is to solder the pins of the com-
ponents into a via pattern on the board. The other possibility is the utilization of surface mount devices,
which are glued to the board. Little connection pads on the devices make contact with their counterparts
on the board without penetrating it. Note that the drill holes for vias that are only used to make connections
between layers can be much smaller than those holes in which pins must be inserted.

The first task of the physical design is to decide on the size of the board and on the number of layers.
In practice the form factor of the board is often predetermined or at least limited by the kind of device to
be built, such as a PCI slot card, for example. Hom and Granacki (1996) describe a statistics based model
to estimate the number of routing layers and total wire length for a printed circuit board.

The problems faced in the design of VLSI circuits are in many aspects similar to those encountered on
PCBs. Again components (cells) are to be placed and have to be connected. Many algorithms can be applied
in both cases. In fact, there are a lot more publications on the VLSI aspects of these problems than on their
PCB counterparts. On the other hand, many technical constraints in PCB design are different from those in
VLSI design. In this article, we focus on PCB based publications where possible. For an introduction into
the specifics of VLSI design and a precise definition of what is meant by this, see, e. g., Gerez (1998), Sait
and Youssef (1999), Vygen (2001).

Most of the articles dealing explicitly with PCB design describe a PCB design issue and a heuristic
for its solution. The utilization of heuristics is not surprising, as the problems encountered in physical
PCB layout are usually NP-hard in theory and computationally expensive in practice. At this point, one
particular feature of PCBs should be noted: The vast majority of the nets to be routed between components
has only two terminals. This property is an important reason why many of the heuristics used for routing
(and described later) work quite well in practice despite their simplicity.

Regarding theoretical aspects there seems to be only limited progress in recent years. On the practical
side, several commercial placement and routing software systems are purchasable. Assessing their quality
is very difficult, as there are no generally accepted benchmarks for PCB placement and routing publicly
available. (The situation is somewhat better in the area of VLSI design (Whitaker, 1996, Harlow, 2000).)
PCB layout involves a large amount of technical and other constraints (collectively called design rules),
which are specified and handled differently in each program, making any comparision difficult.

In the next section we will describe shortly the relation between placement and routing, then an
overview on placement methods is presented in Section 3 and several routing models are presented in
Section 4.

2 Placement and Routing: General Remarks
The task in placement is to position all components on the board in a way that is feasible with respect to
the limitations of the production process. After that all nets, i. e., all connections between the pins of the
components according to the logical design, have to be routed on the board. Obviously, the placement has
tremendous repercussions on the routing. Since the conditions on the placement itself are usually relatively
simple, e. g., components are not allowed to overlap and have to adhere to some minimum distances, the
main objective in placement is to allow a good and feasible routing. In principle it would be best to
perform placement and routing in one step. But due to the difficulties involved, both tasks are typically
done sequentially in practice (Mo et al., 2001, Kumar et al., 2005).

As said above, since finding a physically feasible placement is generally easy, the main objective of the
placement is to permit a high quality routing. However, it is difficult to define “high quality” in a somewhat
precise mathematical sense. Instead, substitute objectives are defined. A widely used objective in practice
is to minimize the total wire length of all connections.

Unfortunately, the exact wire length of each net is not known until the nets are actually routed. Since
even the computation of the minimum length of a single net is in general NP-hard, as it corresponds to
computing the length of a minimum Steiner tree, the total wire length has to be estimated. This is usually
done by summing up an estimate of the length of each individual net. Methods to estimate the length of a
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specific net include: heuristically computing a Steiner tree between the terminals, computing a minimum
spanning tree between the terminals, building a chain through the terminals, or taking half the length of
the perimeter of the bounding box enclosing all the terminals of the net. Keep in mind, that for nets with
two terminals and using Manhattan distances (a typical metric in PCB and VLSI design) all these measures
give the same result. A survey on placement methods and substitute objectives can be found in Preas and
Karger (1986).

Another possible objective during placement is to minimize the number of wire crossings. According
to Stallmann et al. (2001) this can be modeled as a bigraph crossing problem in the following way: Let
G = (V,E) be a bipartite graph with partitions V1 and V2 and let G be embedded in the plane so that the
nodes in Vi occupy distinct positions on the line y = i and the edges are straight lines. For an embedding
f (G) of G in the plane, the crossing number C f (G) is the number of line intersections induced by f . This
number depends only on the permutation of Vi along y = i and not on specific x-coordinates. The bigraph
crossing number C(G) is defined as C(G) = min f C f (G). The computation of C(G) is NP-hard (Garey
and Johnson, 1979). Some heuristics for crossing minimization are presented and compared in Stallmann
et al. (2001).

3 Placement Methods
As the physical restrictions on component placement are few, every method, including repeated trials of
random placements (Hanan et al., 1976a,b, Magnuson, 1977), can be used to produce a feasible placement.
Consequently, practically every known heuristic scheme, including cluster development (Areibi and Yang,
2004, Hanan and Kurtzberg, 1972a, Hanan et al., 1976a, Magnuson, 1977, Cox and Carroll, 1980), knowl-
edge based systems (Pannérec, 2003), randomized local search algorithms such as simulated annealing
(Sechen and Sangiovanni-Vincentelli, 1986, Sechen, 1988, Wong et al., 1988, Wang et al., 2000, Murata
et al., 1998), and genetic algorithms (Cohoon and Paris, 1987, Shahookar and Mazumder, 1990, Valenzuela
and Wang, 2002, Sait et al., 2005, Areibi and Yang, 2004), as well as combinations of these approaches
(Zhang et al., 2005) have been used to compute placements. Often, computed placements are improved
by iterative heuristics based on component interchange (Magnuson, 1977, Coté and Patel, 1980). Place-
ment methods can be classified roughly into three categories: recursive minimum cut placement, analytical
placement and local search methods.

3.1 Recursive Minimum Cut Placement
The idea of recursive minimum cut placement is to partition the circuit into subcircuits subject to minimiz-
ing the number of wires running between the two partitions. Simultaneously, the board surface is divided
vertically or horizontally into subregions and each subcircuit is assigned to one region. This procedure
is repeatedly applied to each of the subcircuits and subregions until the remaining circuit can be trivially
placed, for instance, if it consists of a single component only.

The problem can be stated by representing the circuit as a hypergraph. The components correspond to
the nodes and the nets correspond to the hyperedges connecting these components (nodes). Thus, decom-
posing the circuit into two subcircuits with an approximately equal share of components subject to mini-
mizing the number of wires between the two subcircuits corresponds to finding a balanced bipartition (or a
bisection) of the hypergraph with a minimal cut. This results in the so called balanced hypergraph bipar-
tition problem, and hypergraph bisection problem, respectively. Both problems are NP-hard (Lengauer,
1990), but many heuristics were proposed in literature. Two very common approaches in practice are the
heuristic of Fiduccia and Mattheyses (1982) for solving the balanced hypergraph bipartition problem and
the algorithm of Kernighan and Lin (1970) for solving the bisection problem on graphs after transforming
the hypergraph to a graph by replacing each hyperedge by a clique. Both approaches are based on the
idea of iterative improvement. Starting with an initial balanced bipartition (or bisection) of the hypergraph
(graph), nodes are interchanged between the two subsets, to reduce the size of the cut.

The recursive minimum cut placement can be extended to partitions with more than two subsets. The
placement problem then becomes a multiway partition problem. Efficient implementations of the hyper-
graph multiway partition problem are presented in Karypis and Kumar (1999). Recently, Zhao et al. (2005)
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proposed a unified framework for developing and analyzing approximation algorithms for various multiway
partition problems.

A more extensive discussion on partition-based placement methods for VLSI design is given by Lengauer
(1990) and a survey is presented in Alpert and Kahng (1995). In Yang and Wong (1996) a partition ap-
proach based on the max-flow-min-cut theorem is proposed. The experimental results demonstrate that
their approach outperforms the Kernighan-Lin heuristics in terms of the number of crossings. In Mak and
Wong (2000) a fast non-flow-based algorithm for computing a minimum cut in a hypergraph is suggested.
Finally, in Papa and Markov (2006) a survey of partitioning and clustering methods is presented.

3.2 Analytical Placement
So called analytical placement is an approach widely used in VLSI design (Sigl et al., 1991, Jünger et al.,
1994, Kahng and Wang, 2004, Viswanathan and Chu, 2004), which can also be applied to PCB placement.
An advantage of analytical placement over partitioning-based methods is the global view of the problem. In
recursive minimum cut placement, minimizing the number of wires crossing a cut in the first step may lead
to poor results in the succeeding steps. We present two classes of global analytical placement approaches:
quadratic or linear assignment and quadratic placement.

3.2.1 Quadratic assignment

The quadratic assignment approach is based on the following idea: given a number of components and a
number of positions on the board surface, we want to assign each component to a position on the board, so
that certain physical constraints are satisfied and the total wire length is minimized. This can be formulated
as a linear integer optimization problem with either a linear (Akers, 1981) or a quadratic objective function
(Hanan and Kurtzberg, 1972b, Hanan et al., 1976a, Weismantel, 1992).

The board surface is assumed to be modeled as a grid which decomposes the board into rectangular
grid cells with precisely defined dimensions. A component placed on the grid covers a rectangular area
consisting of a set of grid cells.

The placement problem is to assign the components to disjoint rectangular areas of grid cells such that
the total wire length is minimized. A component i is said to be assigned to a grid cell k, if i is placed on
the board in such a way, that its lower left corner coincides with grid cell k, and a grid cell k is called
feasible for a component i, if i fits on the board when assigned to the grid cell k. Let n be the number of
components and m the number of grid cells, then we define Z(i) ⊆ {1, . . . ,m} as the set of feasible grid
cells for component i.

For each component i∈ {1, . . . ,n} and each feasible grid cell k ∈ Z(i) a binary variable xik is introduced,
such that xik is equal to one if and only if component i is assigned to grid cell k. The quadratic assignment
model for component placement proposed by Weismantel (1992) is then defined as follows:

min
n−1

∑
i=1

n

∑
j=i+1

∑
k∈Z(i)

∑
l∈Z( j)

ci j d(i,k, j, l)xik x jl (1)

+λ0

n−1

∑
i=1

n

∑
j=i+1

∑
k∈Z(i)

∑
l∈Z( j)

o(i,k, j, l)xik x jl (2)

subject to ∑
k∈Z(i)

xik = 1 for all i = 1, . . .n (3)

xik ∈ {0,1} for all i = 1, . . .n,k ∈ Z(i) (4)

The objective function is composed of two terms: (1) is an approximation of the total wire length
computed in the following way: ci j ≥ 0 denotes the affinity coefficients between the components i and j
and can be calculated by ci j = ∑t∈T

1
αt−1 if t is a net connecting i and j, and zero otherwise. T is the set

of all nets, αt the cardinality of a net t ∈ T . d(i,k, j, l) defines the shortest Manhattan distance between the
components i and j when assigned to the grid cells k and l.

4



The second term (2) of the objective function evaluates the number of overlaps. The coefficients
o(i,k, j, l) defined for i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n}, k ∈ Z(i) and l ∈ Z( j) counts the number of grid cells
that are shared by components i and j when assigned to grid cells k and l. Since a feasible placement has
to be free of overlaps, the second term of the objective function is scaled with a large penalty factor λ0.
Equations (3) ensure that each component is assigned to exactly one grid cell.

This quadratic optimization formulation allows the following extension: when some components are
allowed to be rotated 90◦, four different realizations exist to place each of these components. In this case,
binary variables xa

ik are defined for a component i in grid cell k ∈ Z(i) and for realization a ∈ A(i), such that
xa

ik is equal to one if and only if the component i is assigned to the feasible grid cell k in realization a. The
extended quadratic placement problem is the following:

min
n−1

∑
i=1

n

∑
j=i+1

∑
k∈Z(i)

∑
l∈Z( j)

∑
a1∈A(i)

∑
a2∈A( j)

ci jd(i,k,a1, j, l,a2)xa1
ik xa2

jl

+λ0

n−1

∑
i=1

n

∑
j=i+1

∑
k∈Z(i)

∑
l∈Z( j)

∑
a1∈A(i)

∑
a2∈A( j)

o′(i,k,a1, j, l,a2)xa1
ik xa2

jl

subject to ∑
k∈Z(i)

∑
a∈A(i)

xa
ik = 1 for all i = 1, . . .n

xa
ik ∈ {0,1} for all i = 1, . . .n,k ∈ Z(i),a ∈ A(i).

Where d(i,k,a1, j, l,a2) denotes the shortest Manhattan distance between components i and j when
placed on grid cells k and l in realization a1 and a2, and o′(i,k,a1, j, l,a2) counts the number of overlapping
components i and j when placed on grid cells k and l in realization a1 and a2. The quadratic model for
component placement described above belongs to the class of NP-hard problems. In Weismantel (1992),
a decomposition approach is applied to the placement problem.

3.2.2 Quadratic Placement

The main idea in the quadratic placement approach is to model the placement in such a way, that it can be
solved with methods of convex optimization. Some quadratic placement approaches (Quinn and Breuer,
1979, Quinn, 1975, Johannes and Eisenmann, 1998, Kleinhans et al., 1991, Khan and Sait, 2004) use a
physical force scheme to model the placement problem as a convex optimization problem.

Other approaches use an approximation of the squared total wire length as an objective function, that is
minimized under certain constraints (Hall, 1970, Blanks, 1985). With this quadratic program, a placement
is first computed without worrying about overlaps, then the overlaps are removed by adding certain con-
straints to the quadratic program. Viswanathan and Chu (2004) give an overview of analytical placement
methods and presents an algorithm called ”FastPlace” for the quadratic placement approach in standard cell
VLSI design. Recently, new theoretical results on quadratic placement were presented by Vygen (2006).

In quadratic placement the clique model and the star model are traditionally used as models for wire
length estimation. In the clique model, each multi-terminal net is represented by a clique and the wire
length is approximated by the sum of rectilinear distances over all pairs of points. In the star model, a set
of terminals in a net is replaced by a star with uniform edge weights through connecting all terminals to a
new additional point, the so called the star node.

4 Modelling Routing
Although wire routing is a long studied problem, fully automatic routing of densely packed boards is a goal
difficult to achieve. Even showing the existence of a feasible routing is NP-complete. Since all routing
programs used in practice employ heuristics, it is never clear if the problem is infeasible per se or if just
the algorithm is not able to find a feasible routing. To quote Dion (1988):
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It is always easy to specify a routing problem that is too hard for a program to solve. One need
only add wiring to the problem, or remove routing layers. In this sense, designing a completely
automatic router is an impossible task. A better program will simply encourage engineers to
design harder problems. The only realistic goal for a routing program is to solve practical
layout problems well enough that manual intervention is unnecessary.

4.1 Steiner trees
Mathematically, routing a single net can be seen as a Steiner tree problem: Given an edge-weighted graph
G = (V,E,c) and a non-empty subset of nodes T ⊆ V called terminals, find a minimal weight tree in G
that spans T . The problem is NP-hard (Karp, 1972), but it is easy to find feasible suboptimal solutions.
As a result a large variety of heuristics exists, e. g., Takahashi and Matsuyama (1980), Rayward-Smith and
Clare (1986), Winter and Smith (1992), Duin and Voß (1994), Duin and Voß (1999), Ribeiro et al. (2002).
Solving large-scale Steiner tree problems to optimality is also possible, see, e. g., Wong (1984), Chopra
et al. (1992), Koch and Martin (1998), Polzin and Daneshmand (2001), Polzin (2003).

Integrated circuits sometimes have several pins with the same functionality. It suffices to connect a
net to any of several possible terminals. This can be modelled as a Group Steiner tree problem: Given a
weighted graph G = (V,E,c) and N ∈N pairwise disjoint non-empty subsets of nodes Zn ⊆V , n∈ {1, . . .N}
called terminal groups, find an edge set S∗ such that (V (S∗),S∗) is a tree with minimal weight containing
at least one node from each group, i. e., V (S∗)∩Zn 6= /0 for all n ∈ N. For a graph G = (V,E) we denote,
for a subset of edges F ⊆ E, by V (F) the set of all nodes incident to some edge e ∈ F .

It is possible to transform a group Steiner tree problem back into a normal Steiner tree problem by
introducing an artificial node for each terminal group and connecting all terminals of the group with this
node. The edges need to have weights that are high enough to ensure that only one of these edges per
terminal group is part of the solution. In the transformed problem, only the artificial nodes are terminals.
The approach usually taken in practice is to choose the terminal to use from each group before the routing.
This is called the pin assignment problem (Koren, 1972, Mory-Rauch, 1978, Brady, 1984). Usually the
objective is similar to the one used in component placing. For large ICs, e. g., microprocessors, even the
routing between the chip itself and the pins of the package has to be considered (Yu et al., 1996, Kubo and
Takahashi, 2005). Zachariasen and Rohe (2003) present an algorithm to solve group Steiner tree problems
to optimality in the context of VLSI design.

4.2 Steiner tree packing
Routing all the nets at once can be modelled as a Steiner tree packing problem: Given a weighted graph
G = (V,E,c) and a set of N ∈ N pairwise disjoint non-empty subsets of nodes Tn ⊆V , n ∈ {1, . . . ,N} called
nets, find for each net an edge set S∗

n such that (V (S∗n),S
∗
n) is a tree that spans Tn, all edge sets are pairwise

disjoint, and the total weight ∑e∈
⋃

n∈N S∗n ce is minimal. Since the Steiner tree problem is a special case of the
Steiner tree packing problem, the packing problem is also NP-hard. But there is an important difference:
for the packing problem even finding a feasible solution, without regarding the weights, is NP-complete,
see Kramer and van Leeuwen (1984). A survey of different integer programming models for Steiner tree
packing can be found in Chopra (1994). We will examine two of the models, which have been subject to
mathematical and practical investigation, in more detail.

4.2.1 Multicommodity flow formulation

The multicommodity flow formulation as proposed by Wong (1984) has the advantage that it has only a
polynomial number of variables and constraints: Given a weighted bidirectional grid digraph G = (V,A,c),
and sets T1, . . . ,TN , N > 0, N = {1, . . . ,N} of terminals, we arbitrarily choose a root rn ∈ Tn for each
n ∈ N . Let R = {rn|n ∈ N } be the set of all roots and T =

⋃

n∈N Tn be the union of all terminals. We
introduce binary variables x̄n

i j for all n ∈ N and (i, j) ∈ A, where x̄n
i j = 1 if and only if arc (i, j) ∈ Sn.

Additionally we introduce non-negative variables yt
i j, for all t ∈ T \R. For all i ∈ V , we define δ +

i :=
{(i, j) ∈ A| j ∈V} and δ−

i := {( j, i) ∈ A| j ∈V}. For all t ∈ Tn, n ∈ N , we define σ(t) := n. The following
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formulation models the Steiner tree packing problem for any graph requiring edge disjoint but not node
disjoint routings of all nets.

min ∑
n∈N

∑
(i, j)∈A

cn
i j x̄

n
i j

∑
(i, j)∈δ−

j

yt
i j − ∑

( j,k)∈δ +
j

yt
jk =







1 if j = t
−1 if j = rσ(t)

0 otherwise







for all j ∈V, t ∈ T \R (5)

0 ≤ yt
i j ≤ x̄σ(t)

i j for all (i, j) ∈ A, t ∈ T \R (6)

∑
n∈N

(x̄n
i j + x̄n

ji) ≤ 1 for all (i, j) ∈ A (7)

x̄n
i j ∈ {0,1} for all n ∈ N ,(i, j) ∈ A (8)

In the model above two different nets may share a common node. To obtain a node disjoint solution we
have to add:

∑
n∈N

∑
(i, j)∈δ−

j

x̄n
i j ≤

{

0 if j ∈ R
1 otherwise for all j ∈V (9)

Results using this model to compute optimal routings can be found in Koch (2004). The advantage of
the formulation is that it modells all the layers simultaneously. On the other hand the size of the graph
grows rapidly with the number of terminals. To circumvent this problem another formulation can be used.

4.2.2 Undirected partitioning formulation

This formulation is used by Grötschel et al. (1996a) and by Jorgensen and Meyling (2002). Given a
weighted grid graph G = (V,E,c), and terminal sets T1, . . . ,TN , N > 0, N = {1, . . . ,N}, we introduce
binary variables xn

i j for all n ∈ N and i j ∈ E, where xn
i j = 1 if and only if edge i j ∈ Sn. We define

δ (W ) = {i j ∈ E|i ∈ W, j 6∈ W} for W ⊆ V . The following formulation models edge disjoint one-layer
routing:

min ∑
n∈N

∑
i j∈E

ci jxn
i j

∑
i j∈δ (W)

xn
i j ≥ 1 for all W ⊂V,W ∩Tn 6= /0,(V \W )∩Tn 6= /0,n ∈ N (10)

∑
n∈N

xn
i j ≤ 1 for all i j ∈ E (11)

xn
i j ∈ {0,1} for all n ∈ N , i j ∈ E (12)

The model can be further strengthened with several valid inequalities as described in Grötschel et al.
(1996a,b), Grötschel et al. (1997). By using capacities on the edges the formulation can be extended to
model an arbitrary number of layers.

Since there is only one layer explicitly in the model, the assignment of the wires to the layers has to be
done in a subsequent step. This is called the layer assignment problem. Assigning layers means deciding
the number and location of the vias on the PCB. As every via increases the poduction costs and decreases
the production yield, via minimization is the goal of this step. Brady and Brown (1984) have designed an
algorithm that guarantees that any solution in the above model can be routed in four layers, but deciding
whether three layers are enough is shown to be NP-complete by Lipski (1984).

In practice, since the components are already placed (and can only be placed on the outer layers of
the PCB) the layers for the terminals are already fixed. Grötschel et al. (1989) show how to transform this
problem into a max-cut problem and describe exact and heuristic solution approaches. Further graph based
approaches can be found in Chen et al. (1983), Naclerie et al. (1987), Xiong and Kuh (1988), Fang et al.
(1991), Chang and Cong (1997), Chou and Lin (1998).
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4.3 Heuristic routing
In practice heuristics are used to route the nets (Dysart and Koifman, 1979, Aranoff and Abulaffio, 1981,
Naveda et al., 1986, Dion, 1988). There are two basic techniques for finding paths between terminals
(Pecht, 1993): grid based maze routers as introduced by Lee (1961), Akers (1972) and gridless routers,
as described by Lauther (1980), Finch et al. (1985), Schiele et al. (1990). Since just trying to route each
connection one after the other is not likely to result in a feasible routing usually one of the following
two techniques is employed: In so-called dynamic or rip-up and retry routing whenever a wire cannot be
routed, the blocking wires are removed and rerouted later after the new wire has been successfully routed
(Dees and Smith, 1981, Rosenberg, 1987, Raith and Bartholomeus, 1991). In iterative routing several
passes are made. In each pass all the connections are routed regardless whether illegal crossings occur.
In the next iteration some penalty on those areas of the board is increased that experience congestion.
The hope is that this will lead to different routes of some wires in the next pass (Fisher, 1978, Moosa
and Edwards, 1995). Even hybrid approaches of these techniques are possible (Cong and Madden, 1998,
Hadsell and Madden, 2003). A further technique that can be used on top of the ones described is to build
routing hierarchies by partitioning the board and first routing between important (congested) areas only
and then going into smaller detailed areas (Ozdal and Wong, 2004b). For example, Kawamura et al. (1986)
describe a hierarchical dynamic router that employs three levels of hierarchy. The hierarchy can also be
used to include further concepts like electromagnetic compatibility as reported by Schmidt et al. (1995).
Ozdal and Wong (2004a) describe an algorithm for high performance single-layer bus routing, where the
objective is to match the lengths of all nets belonging to each bus.

5 Conclusion
Continuing advances in production techniques increase the requirements on physical layout algorithms.
From a theoretical point of view it would be obviously best to use a holistic approach to find a physical PCB
design. It is clear that this is far from reality in practice. While some subproblems such as via minimization
and layer assignment tend to be reintegrated with routing, new subproblems like pin assignment for the IC
packages emerge.

For research, one of the biggest shortcomings is the absence of publicly available benchmark cases.
Readers with more than superficial interest in the subject presented here may have wished to obtain a
sound and fact based judgment of the relative merits and disadvantages of the various approaches to place-
ment and routing surveyed in this paper. We would love to present such findings, but for many reasons
it is impossible to make fair test runs necessary for such comparisons. Clearly, every group of authors
shows in their papers that their approach has some advantages in comparison to other methods on the
examples considered. But it is not possible to obtain the codes and the test instances to make “neutral”
runs. Moreover, production codes are usually fine tuned to specific customer demands, particular layout
properties, and design rules to which competititors (usually) do not get access. In this sense no two routing
or no two placement programs address exactly the same problem. This deficiency could be remediated if
the PCB/VLSI layout community would have access to a large collection of real instances, including all
specific layout requirements, allowing to test new codes and ideas in an open competitive environment.
Unfortunately, the electronic industry does not seem to be ready to make up-to-date realistic test instances
publicly available and thus, “benchmarking suites” consist only of small academic (made-up) examples
with questionable bearing on real layout problems.

This situation not only makes it difficult to test new ideas, especially for people without access to tool
suites, it also makes it difficult to measure advancement in the field. While finding an optimal solution for
a contemporary PCB layout problem might be completely out of reach, it could be possible to solve the
problems from 20 years ago to optimality. This might give an interesting insight in how much is lost by the
standard approach of partitioning the problem into several hierarchically executed steps.
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Figure 2: Component side of a printed circuit board
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Figure 3: Bottom side of a printed circuit board
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