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Abstract

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by
many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized
as precisely those graphs G where the stable set polytope STAB(G) coincides with the
clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) ⊂
QSTAB(G) holds and, therefore, it is natural to measure imperfection in terms of the
difference between STAB(G) and QSTAB(G). Several concepts have been developed
in this direction, for instance the dilation ratio of STAB(G) and QSTAB(G) which is
equivalent to the imperfection ratio imp(G) of G. To determine imp(G), both knowledge
on the facets of STAB(G) and the extreme points of QSTAB(G) is required.

The anti-blocking theory of polyhedra yields all dominating extreme points of the
polytope QSTAB(G), provided a complete description of the facets of STAB(G) is
known. As this is typically not the case, we extend the result on anti-blocking polyhedra
to a complete characterization of the extreme points of QSTAB(G) by establishing a 1-1
correspondence to the facet-defining subgraphs of G. We discuss several consequences,
in particular, we give alternative proofs of several famous results.

1 Motivation

A graph G is perfect if, in each induced subgraph G′ ⊆ G, the clique number ω(G′) equals
the chromatic number χ(G′). Perfect graphs turned out to be an interesting class with a rich
structure; in particular, both parameters ω(G) and χ(G) can be determined in polynomial
time if G is perfect [12]. The latter result relies on the characterization of the stable set
polytope of perfect graphs by means of facet-inducing inequalities. The stable set polytope
STAB(G) is the convex hull of the incidence vectors of all stable sets of G. A canonical
relaxation is the clique constraint stable set polytope QSTAB(G), given by nonnegativity
constraints xi ≥ 0 for all nodes i of G and clique constraints

∑

i∈Q xi ≤ 1 for all cliques
Q ⊆ G. We have STAB(G) ⊆ QSTAB(G) in general, but equality for perfect graphs only
[5]. Hence, if G is imperfect it follows that STAB(G) ⊂ QSTAB(G) and it is natural to
measure imperfection in terms of the difference between STAB(G) and QSTAB(G).
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Several concepts have been developed in this direction, like the description of STAB(G) by
additional sets of inequalities [19], the disjunctive index of QSTAB(G) [1] (called imperfec-
tion index, see below), or the dilation ratio of STAB(G) and QSTAB(G) [10, 11]. The latter
is equivalent to the imperfection ratio imp(G) of the graph, introduced in [10, 11] as the
maximum ratio of the fractional chromatic number χf (G, c) and the clique number ω(G, c)
in their weighted versions, taken over all positive integral vectors c. It turned out that the
imperfection ratio is an appropriate measure for imperfection [10, 11, 13, 20] and we are
interested in characterizing it in different ways. Gerke and McDiarmid [10, 11] showed that
imp(G) is the dilation ratio

imp(G) = min{t : QSTAB(G) ⊆ t STAB(G)}

of STAB(G) and QSTAB(G). To express imp(G) in a different way, let F(G) = {a ∈
[0, 1]|V | : aT x ≤ 1 facet of STAB(G)} denote the set of all normal vectors of nontrivial
facets of STAB(G) (scaled to have right hand side equal to one). Hence, t STAB(G) equals

{x ∈ R
|V |
+ : aT x ≤ t ∀a ∈ F(G)}. As QSTAB(G) fits in t STAB(G) if, for all y ∈ QSTAB(G),

aT y ≤ t holds, we have

imp(G) = max{aT y : a ∈ F(G), y ∈ QSTAB(G)}

as any smaller t would violate aT y ≤ t for some a ∈ F(G) and y ∈ QSTAB(G). It
clearly suffices to consider nontrivial facets of STAB(G) and (fractional) extreme points
of QSTAB(G) only. This suggests that both knowledge about the facet-defining system of
STAB(G) and the extreme points of QSTAB(G) helps to determine imp(G). It is well-known
that STAB(G) and QSTAB(G) form an anti-blocking pair [8, 9], in fact, QSTAB(G) =

A(STAB(G)) = {z ∈ R
|G|
+ : zT x ≤ 1 ∀x ∈ STAB(G)} where G is the complement of G.

Hence, every facet of STAB(G) is an extreme point of QSTAB(G), but not all extreme points
of QSTAB(G) are conversely of importance for the facet-defining system of A(STAB(G)):
it suffices to consider the dominating extreme points (i.e., all x ∈ STAB(G) where y ≥ x

implies that y 6∈ STAB(G)). Applying this knowledge, we can express imp(G) in two more
ways, namely, as

imp(G) = max{aT y : a ∈ F(G), y ∈ F(G)} ,

or, alternatively, as

imp(G) = max{aT y : a ∈ QSTAB(G), y ∈ QSTAB(G)}

where we can restrict to dominating extreme points.

However, a complete description of STAB(G) (or STAB(G)) is typical not available, and
hence we do not know all dominating extreme points of the corresponding clique relaxations
either. In fact, we do not necessarily need to know the dominating extreme points: Let
(â, ŷ) be a pair of dominating extreme points that maximizes aT y and let X := {v ∈ V :
âv = 0 or ŷv = 0}. Then all pairs (ã, ỹ) with ã ∈ {a ∈ QSTAB(G) : av = âv∀v 6∈ X, 0 ≤
av < âv∀v ∈ X} and ỹ ∈ {y ∈ QSTAB(G) : yv = ŷv∀v 6∈ X, 0 ≤ yv < ŷv∀v ∈ X} maximize
aT y as well. If such pairs exist, dominated extreme pairs are among them (by setting av or
yv to zero for one or more nodes in X).
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Knowledge about the extreme points of QSTAB(G) is also of interest for determining the
imperfection index [1] of a graph. The imperfection index is given by

impI(G) = min{|J | : PJ (QSTAB(G)) = STAB(G), J ⊆ V }

where PJ(QSTAB(G)) = conv{x ∈ QSTAB(G) : xj ∈ {0, 1}, j ∈ J} describes the disjunc-
tive procedure [2] for a subset J ⊆ V of nodes (note that PV (QSTAB(G)) = STAB(G) for
all G). We have impI(G) = 0 iff G is perfect. Every fractional extreme point a indicates
that at least one node from Ga has to be included in the subset J , where Ga is the subgraph
of G induced by all v ∈ V with av > 0.

The above described relations of imperfection ratio and imperfection index with the extreme
points of QSTAB(G) have motivated us to characterize the extreme points of QSTAB(G)
completely; our main result is the following theorem. For this, let supp(a) be the vector a

restricted to the non-zero components only.

Theorem 1 A vector a 6= 0 is an extreme point of QSTAB(G) if and only if for the subgraph
Ga of G, supp(a) belongs to F(Ga).

Thus, we establish a 1-1 correspondence between the extreme points of QSTAB(G) and
facet-inducing subgraphs of G.

Example 1 Let G be a 5-wheel with center c. Its complement G is a 5-hole with an isolated
node c. Obviously, G has this 5-hole C5 as only facet-inducing subgraph different from a
clique, thus QSTAB(G) has exactly one fractional extreme point, namely (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 0).
Conversely, G has two facet-inducing subgraphs different from a clique, the 5-hole C5 and G

itself, producing the constraint x(C5) ≤ 2 and the constraint x(C5)+2xc ≤ 2. Accordingly,
QSTAB(G) has the two fractional extreme points (1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 0) and (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1). (Note

that x(C5) ≤ 2 is not a facet of STAB(G) but only of STAB(C5).)

In the above example all coefficients of the facet-defining inequalities are known. In those
cases where the dominating extreme points cannot be determined due to unknown lifting
coefficients, Theorem 1 allows to find extreme points by facet-inducing subgraphs.

The rest of this paper is structured as follows. Theorem 1 is proved in Section 2, whereas we
discuss in Section 3 some implications of this theorem by showing how several famous graph
theoretical results can be reproved by it. We conclude with some remarks on subgraphs
that determine the imperfection ratio and index for particular classes of graphs.

2 Proof of the main theorem

Suppose that G contains a subgraph G
′

such that aT x ≤ 1 is a facet of STAB(G
′
) with

0 < ai ≤ 1 for i ∈ G
′
. Then there exist n′ = |G

′
| stable sets S′

1, . . . , S
′
n′ of G

′
such that

aT χS′
i = 1 for 1 ≤ i ≤ n′ and χS′

1 , . . . , χS′
n′ are linearly independent (here χS denotes the

characteristic vector defined by S).
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These stable sets clearly correspond to n′ cliques Q′
1, . . . , Q

′
n′ of G′. For any such clique Q′

i,
choose a maximal clique Qi ⊆ G with Qi ⊇ Q′

i. Let (x, a) denote the element-wise product
of two vectors. The vector x′ = (χG′

, a) satisfies the n′ clique constraints associated with
the maximal cliques Q1, . . . , Qn′ at equality, as

x′(Qi) =
∑

j∈Q′
i
⊆Qi

aj = aT χQ′
i = aT χS′

i = 1

holds by the choice of G′. Furthermore, x′ satisfies the n−n′ = |G \G′| nonnegativity con-
straints −x′

j ≤ 0 ∀j 6∈ G′ with equality. Hence, x′ belongs to n = |G| facets of QSTAB(G).
In order to show that x′ is an extreme point it remains to ensure that these facets are
linearly independent. For that, construct an (n × n)-matrix A as follows: Let the first n′

columns of A correspond to nodes in G′ and the last n − n′ columns to nodes in G \ G′.
Choose further the incidence vectors of the cliques Q1, . . . , Qn′ as first n′ rows and the
incidence vectors of the nonnegativity constraints −x′

j ≤ 0 ∀j 6∈ G′ as last n − n′ rows, see
Figure 1 (with Id representing an identity matrix of appropriate size).

A =

(

A1 A2

0 −Id

)

Figure 1: The (n × n)-matrix A

As the submatrix A1 corresponds to the independent cliques Q′
1, . . . , Q

′
n′ of G′, the whole

matrix A is invertible due to its block structure. Thus, x′ is indeed an extreme point of
QSTAB(G).

Conversely, suppose that x′ = (χG′
, a) with 0 < ai ≤ 1 for i ∈ G

′
and ai = 0 otherwise is an

extreme point of QSTAB(G). Then x′ satisfies n linearly independent facets of QSTAB(G)
with equality. Among them are clearly the n−n′ nonnegativity constraints −x′

j ≤ 0 ∀j 6∈ G′

and none of the remaining n′ nonnegativity constraints. As QSTAB(G) has only two types
of facets, x′ satisfies also n′ maximal clique facets with equality, say the clique constraints
associated with the maximal cliques Q1, . . . , Qn′ of G. Let Q′

i = Qi ∩ G′, then

1 = x′(Qi) =
∑

j∈Qi

aj =
∑

j∈Q′
i
⊆Qi

aj = aT χQ′
i

follows by the choice of the vector a. Clearly, the cliques Q′
1, . . . , Q

′
n′ of G′ correspond

to stable sets S′
1, . . . , S

′
n′ of G

′
and aT χS′

i = 1 holds for 1 ≤ i ≤ n′. In order to show

that aT x ≤ 1 is a facet of STAB(G
′
), it remains to verify that χS′

1 , . . . , χS′
n′ are linearly

independent. For that, construct an (n×n)-matrix A as above, choosing the nodes in G′ and
in G\G′ as first n′ and last n−n′ columns, respectively, the incidence vectors of the cliques
Q1, . . . , Qn′ as first n′ and the unit vectors corresponding to −x′

j = 0 ∀j 6∈ G′ as last n−n′

rows, see again Figure 1. As x′ is an extreme point, the matrix A is invertible. In order to
show invertibilty for the submatrix A1, we add, for each 1-entry in A2, the corresponding
unit vector in (0,−Id). That way, we turn A2 into a matrix with 0-entries only but maintain
all entries in A1. This shows that the rows of A1 are linearly independent and, therefore, the
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incidence vectors of the cliques Q′
1, . . . , Q

′
n′ of G′ respectively of the corresponding stable

sets S′
1, . . . , S

′
n′ in G

′
. Hence, aT x ≤ 1 is indeed a facet of STAB(G

′
).

3 Some implications

With the help of Theorem 1 we are able to present alternative proofs for several famous
results in the field of perfect graphs and stable sets: the Perfect Graph Theorem, the
characterization of minimally imperfect graphs, and the half-integrality of QSTAB(G) for
certain graph classes.

3.1 Characterizing perfect graphs

The Perfect Graph Theorem [15] states that a graph is perfect iff its complement is perfect.
For perfect graphs, the assertion of Theorem 1 follows directly from the Perfect Graph
Theorem and STAB(G) = QSTAB(G): If G is perfect, then QSTAB(G) has integral extreme
points only, namely χG′

where G′ ⊆ G is an arbitrary stable set; as G is perfect as well, its
only facet-inducing subgraphs are all cliques G

′
⊆ G.

Conversely, we obtain both the Perfect Graph Theorem and the polyhedral characterization
of perfect graphs with the help of Theorem 1 as follows.

First, consider an arbitrary graph G, an integral node weighting c ≥ 0, and the following
chain of inequalities and equations, obtained by dropping or adding integrality constraints
and linear programming duality (with α(G, c) the weighted stability number and χ(G, c)
the weighted clique cover number):

α(G, c) = max{cT x : x ∈ STAB(G)}

= max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ∈ {0, 1}|G|}

≤ max{cT x : x(Q) ≤ 1 ∀cliques Q ⊆ G, x ≥ 0}

= min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ≥ 0 ∀cliques Q ⊆ G}

≤ min{
∑

Q yQ :
∑

Q∋i yQ ≥ ci ∀i ∈ G, yQ ∈ Z+ ∀cliques Q ⊆ G}

= χ(G, c)

The last program is an integer programming formulation of the weighted clique cover prob-
lem, the intermediate steps yield the fractional stability and clique cover numbers, αf (G, c)
and χf (G, c), which are equal by linear programming duality.

If STAB(G) = QSTAB(G) then obviously α(G, c) = αf (G, c) follows; in particular αf (G, c)
is integer valued for all c ≥ 0 and comes from an integer solution. By duality, χf (G, c) is
integer valued for all c ≥ 0 as well. Hence, also the optimal solution of the fractional clique
cover problem is integral for all c ≥ 0, and consequently there always exists an integral
optimal solution (totally dual integrality). Turning to the complementary graph yields
ω(G, c) = χ(G, c) for all c ≥ 0. This is particularly true for all 0/1-weightings, implying

equality for the unweighted case ω(G
′
, 1l) = χ(G

′
, 1l) for all induced subgraphs G

′
of G.
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Hence, G cannot contain any minimal imperfect graph as induced subgraph (as clique and
chromatic number would differ for such subgraphs) and is, therefore, perfect.

Conversely, if G contains a minimal imperfect subgraph G
′
, then we have ω(G

′
, 1l) <

χ(G
′
, 1l), implying α(G′, c) < χ(G′, c). We obtain STAB(G) ⊂ QSTAB(G) since other-

wise we would have equality through the whole chain, in particular α(G′, c) = αf (G′, c) =
χf (G′, c) = χ(G′, c), a contradiction.

This implies that STAB(G) = QSTAB(G) if and only if G is perfect. With the help of this
fact and Theorem 1 we easily obtain the following:

Corollary 2 For any graph G, the following assertions are equivalent:

(1) G is perfect;

(2) STAB(G) = QSTAB(G);

(3) STAB(G) = QSTAB(G);

(4) G is perfect.

Proof. We have seen that the graph G is perfect if and only if STAB(G) = QSTAB(G) holds.
This is equivalent to having QSTAB(G) 0/1-valued extreme points only, namely the extreme
points associated with stable sets in G. Due to Theorem 1, this is the case if and only if G

has cliques as only facet-inducing subgraphs or, equivalently, that STAB(G) = QSTAB(G).
Finally, this is true if and only if G is perfect. 2

3.2 Near-perfect graphs

A graph G is said to be minimal imperfect if G is not perfect but every proper induced
subgraph is perfect (by the Strong Perfect Graph Theorem these are exactly the odd holes
and the odd antiholes [4]). For minimally imperfect graphs, Theorem 1 corresponds to the
well-known characterization of Padberg [16], stating that a graph G is minimally imperfect
if and only if STAB(G) has the full rank facet as only nontrivial, nonclique facet and
QSTAB(G) has exactly one fractional extreme point, namely 1

ω(G)χ
G (a rank facet is defined

by the inequality x(G′) ≤ α(G′) for some G′ ⊆ G; it is full if G′ = G).

By the Perfect Graph Theorem, G is minimally imperfect as well, and its only facet-inducing
subgraph different from a clique is G itself, producing the full rank constraint x(G) ≤
α(G) = ω(G). Therefore, 1

ω(G)χ
G is the only fractional extreme point of QSTAB(G), and

conversely.

A graph G is said to be near-perfect if the full rank facet is the only nontrivial, nonclique
facet of STAB(G). Clearly, every perfect or minimally imperfect graph is near-perfect; we
call a near-perfect graph proper if it is neither perfect nor minimally imperfect. For such
graphs, we obtain:

Lemma 3 If G is properly near-perfect, then both QSTAB(G) and QSTAB(G) have at least
two fractional extreme points.
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Proof. As G is properly near-perfect, there is a proper induced minimally imperfect sub-
graph G′ ⊂ G. Hence G has at least two facet-defining subgraphs (namely G′ and G

itself). By Theorem 1, QSTAB(G) has, therefore, at least two fractional extreme points
(corresponding to the rank constraints associated with G′ and G).

According to Shepherd [17], G is not near-perfect. Thus STAB(G) has at least two non-
trivial, non-clique facets, say atx ≤ 1 and btx ≤ 1. Theorem 1 implies that QSTAB(G) has,
therefore, at least two fractional extreme points (namely a and b). 2

Even worse, the following example exhibits a sequence of near-perfect graphs G where the
number of fractional extreme points of QSTAB(G) and QSTAB(G) tends to infinity.

Example 2 Webs are graphs W k
n with n nodes 1, . . . , n where ij is an edge if |i − j| ≤

n mod k and i 6= j, and antiwebs are their complements. According to [17, 19], all webs
with stability number two are near-perfect, that are the webs W k

n with n < 3(k + 1). With
the help of Trotter’s formula [14], it is easy to check that the odd antihole W l

2(l+1)+1 is an

induced subgraph of W k
2(k+1)+2 for all k ≥ 2 if l ≤ k

2 . In particular, we have

W l
2(l+1)+1 ⊂ W 2l

2(2l+1)+2 for all l ≥ 1.

Since, by this choice, the number of nodes 2(l + 1) + 1 of the odd antihole does not divide
the number of nodes 2(2l + 1) + 2 of the whole web, we obtain that there are 2(2l + 1) + 2
different odd antiholes in W 2l

2(2l+1)+2, namely,

C(i) = {i, i + 1, (i + 1) + 2, . . . , (i + 1) + 2l, i + 2(l + 1), . . . , i + 2(2l + 1)}

for every node i (thus, we choose i, the next node i + 1, then l times the next but one
node, once more the next node, and finally l + 1 times the next but one node again). Thus,
the web W 2l

2(2l+1)+2 contains as many different odd antiholes as nodes (resp. the antiweb

W
2l

2(2l+1)+2 as many different odd holes as nodes). According to Theorem 1, each of them

yields a fractional extreme point of QSTAB(W
2l

2(2l+1)+2) (resp. QSTAB(W 2l
2(2l+1)+2)). Thus,

the number of fractional extreme points is at least 2(2l+1)+2 for both and tends to infinity
if l does. In particular, the odd antiholes in W 2l

2(2l+1)+2 correspond to fractional extreme

points of QSTAB(W
2l

2(2l+1)+2) which are not dominating (as W 2l
2(2l+1)+2 does not have odd

antihole facets).

3.3 Half-integral fractional stable set polytopes

We say that an inequality aT x ≤ b is given in its integer form if all entries in a and the
rhs b are integers with greatest common divisor 1 (i.e., cannot be scaled down to smaller
integer values).

An immediate consequence of Theorem 1 is the following.

Corollary 4 QSTAB(G) is half-integral if and only if any facet-producing subgraph G
′
of

G induces a facet having rhs ≤ 2 in its integer form.
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This is clearly true for all graphs G such that α(G) ≤ 2 holds. This implies, for any graph G

with ω(G) ≤ 2, that QSTAB(G) is half-integral. As for such graphs QSTAB(G) obviously
coincides with the edge constraint stable set polytope ESTAB(G) (given by nonnegativity
and edge constraints only), the above corollary yields the well-known result that ESTAB(G)
has half-integral extreme points only.

Further examples are line graphs. A line graph is obtained by taking the edges of an original
graph as nodes and connecting two nodes iff the original edges are incident.

Shepherd [18] gave a complete description of the stable set polytopes of their complements
by showing that the only nontrivial facets of stable set polytopes of complements of line
graphs are constraints

∑

i≤k

x(Ai) + 2x(Q) ≤ 2

associated with complete joins of odd antiholes A1, . . . , Ak and a clique Q (a complete join
of two graphs G1 and G2 is the graph obtained by adding all edges joining a node of G1

with a node of G2). This implies, that the fractional stable set polytopes of line graphs are
half-integral.

As the stable set polytopes of line graphs correspond to the matching polytope introduced
and described by Edmonds [7], we obtain an alternative proof that the fractional matching
polytope has half-integral extreme points only.

4 Concluding remarks

We established a 1-1 correspondence between the extreme points of QSTAB(G) and the
facet-inducing subgraphs of G. We discussed how to use this result to reprove several
famous results. Returning to the original motivation, we finally discuss consequences of
Theorem 1 for determining the imperfection ratio and the imperfection index of a graph.
Our characterization is of interest for this purpose since it helps to indentify both

• minimum node subsets J ⊂ V such that PJ(QSTAB(G)) = STAB(G) holds (here it
even suffices to consider “minimal” fractional extreme points which do not dominate
any other fractional extreme point of QSTAB(G)),

• facet-defining subgraphs of G and G such that the associate extreme point y of
QSTAB(G) and normal vector a ∈ F(G) satisfy supp(y) = supp(a) and yT a =
imp(G).

In both cases, it is thus worth to consider not only the known facet-defining vectors of
STAB(G) and STAB(G), but also those for their subgraphs without lifting. Of particular

interest are those subgraphs G′ of G for which both G′ and G
′
induce facets (we call a graph

H facet-inducing if there is an a ∈ F(H) with av > 0 for all v ∈ V (H)).

In particular, the following lower bound for the imperfection ratio

imp(G) ≥ max{ |G′|
α(G′)ω(G′) : G′ ⊆ G} (1)
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obtained by combining two bounds from [10, 11], was discussed in [6]. The question is to find
the crucial subgraphs where the bound is indeed attained. Theorem 1 and the invariance
of the imperfection ratio under taking complements imply that such crucial subgraphs G′

are those where both G′ and G
′
induce facets. Indeed, we have the following examples:

• Minimally imperfect graphs I, as both I and I induce the full rank facet [16]. For

graphs G with imp(G) = max{ |I|
α(I)ω(I) : I ⊆ G}, we have imp(G) ≤ 5

4 (since the 5-

hole is the smallest such graph). This is the case for, e.g., minimally imperfect graphs
itself and all line graphs [10, 11].

• Partitionable graphs, that are graphs P where for any node x, P − x partitions into
ω(P ) maximum stable sets or into α(P ) maximum cliques. Both P and P induce the

full rank facet [3]. For graphs G with imp(G) = max{ |P |
α(P )ω(P ) : P ⊆ G}, we have

imp(G) ≤ 5
4 [13] (since the 5-hole is again the smallest such graph).

• Webs W k
n and antiwebs W

k

n produce both the full rank facet iff k+1 and n are relatively

prime [14]. For graphs G with imp(G) = max{ n
αω

: W k
n ,W

k

n ⊆ G}, α = α(W k
n ), and

ω = α(W
k

n), we have imp(G) < 3
2 [6]. This is true for webs and antiwebs itself and

for so-called quasi-line and near-bipartite graphs [6].

In order to find further subgraphs which are crucial for the imperfection ratio, the task is
to find such graphs G where G and G are both facet-producing, but induce not necessarily
the full rank facet.

Finally, it should be noted that Theorem 1 can be generalized to general anti-blocking
pairs. Possible applications of this theorem within other contexts is a direction for further
research.
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