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Abstract

The dynamic behavior of molecules can often be described by Markov
processes. From computational molecular simulations one can derive
transition rates or transition probabilities between subsets of the dis-
cretized conformational space. On the basis of this dynamic informa-
tion, the spatial subsets are combined into a small number of so-called
metastable molecular conformations. This is done by clustering meth-
ods like the Robust Perron Cluster Analysis (PCCA+). Up to now
it is an open question how this coarse graining in space can be trans-
formed to a coarse graining of the Markov chain while preserving the
essential dynamic information. In the following article we aim at a con-
sistent coarse graining of transition probabilities or rates on the basis
of metastable conformations such that important physical and mathe-
matical relations are preserved. This approach is new because PCCA+
computes molecular conformations as linear combinations of the domi-
nant eigenvectors of the transition matrix which does not hold for other
clustering methods.

AMS MSC 2000: 65C40, 65P99, 65L99, 65F15, 80A30

Keywords: Markov chains, soft clustering, coarse graining, master
equation, molecular kinetics

1 Introduction

The understanding of transition pathways between different conformations of a
molecule is an important issue in structural biology. Although the restriction of
degrees of freedom to a few dihedral angles significantly reduces the complexity of
the problem, it is still very difficult to identify conformations and their transition
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probabilities or transition rates. Often, scientists are interested in single pathways,
for example those over lowest energy barriers [2]. On the other hand, it is well known
that molecular kinetics is not purely deterministic. All kinds of trajectories could
appear, some with higher probability than others. Therefore it seems natural to
consider population densities. Starting with a given probability density in position
space, we are interested in the evolution of the density to figure out intermediate
states.

A description of molecular dynamics based on single positions in phase space
is infeasible for large molecules. Therefore we work with a set concept based on
metastable conformations as introduced in [6, 5]. From our point of view, confor-
mations are not only single molecular geometries but are formed by sets of several
geometries. These sets are characterized by the property that the large scale geo-
metric structure is conserved during the molecular dynamical process over a long
period of time before a transition to another conformation occurs. The behavior
of such high dimensional dynamical systems can be described by continuous-time
Markov chains. To identify the metastable sets, we first reduce the dihedral space
to a number of N states represented by basis functions [23] or boxes [20, 8]. By
applying Markov chain—-Monte Carlo sampling techniques, we construct a transition
probability matrix P € RV*N or a transition rate matrix Q € RV*Y and cluster
states into metastable conformations by applying PCCA+. In other words, we find
out which states of our discretization belong to the same metastable conformation.
Thus we are able to reduce our model not only to a set of basis functions whose
number can be very large, but to the few metastable sets which contain all impor-
tant information about the system. Thus, the essential dynamic behavior can be
described by transition probabilities or transition rates between these sets.

Transition rates provide chemical information concerning transition pathways
between different geometrical conformations. Given an initial weighting x4 of the
states, one can compute the corresponding weights and the spatial configuration
density at any time by the master equation & = Q" x. This is the desired dynamic
in configuration space, which is not based upon single molecules but upon ensembles.
The entry Q(7,j),i # j, can be considered as the reaction rate of the monomolecular
reaction

Z; — Z;j

where x; stands representatively for the weight or “concentration” of state i.

The extraction of the essential dynamic behavior is achieved by a reduction of
the corresponding transition matrices P or ) to low-dimensional matrices P. or
Q. as illustrated in Figure 1. If P is embeddable [4], i. e. there exists a unique
rate matrix @ with P(t) = exp(tQ) where exp(-) denotes the matrix exponential
function [11], then @ can be obtained directly from the transition probability ma-
trix P by @ = log(P)/t. However, in most cases P(t) stemming from discrete-time
observations is not embeddable. There exist several techniques to find an approx-
imate generator [15, 1, 4] which are very useful if solely the transition probability
matrix P(t) or a discrete timeseries is given. If information about the underlying
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Figure 1: Coarse graining scheme. The goal is to reduce the transition probability
matrix P or its generator ) to low-dimensional coarse-grained matrices P, or Q.
such that they reflect the correct essential dynamic behavior of the system.

continuous-time process is available, we recommend to approximate the rate matrix
directly from the simulation data, as we will do in our example. Thus, the embed-
ding problem is circumvented. However, our goal is to develop a coarse-graining
method which covers the ideal case of an embeddable matrix P. Therefore the
coarse-grained matrices are required to satisfy several properties.

e P. is a stochastic matrix which contains the transition probabilities between
the metastable conformations.

e P reflects the correct dynamic behavior of the system.

e (). is arate matrix which contains the transition rates between the metastable
conformations.

o (). reflects the correct dynamic behavior of the system.
e If @ is the generator of P, . should be the generator of P..

However, it will turn out that in general it is not possible to meet all requirements
at the same time. From our point of view, the most important fact is the conserva-
tion of the dynamic behavior. In the following we present different coarse-graining
schemes and explain their qualities w. r. t. the above mentioned items.

2 Clustering of States

Biological systems can often be described by a continuous-time Markov chain { X (¢) :
t > 0}, represented by a discrete-time sample path {X,,},cn in a finite state space
E = {1,...,N} [12, 3, 16, 10]. Assume we have discretized our space of inter-
est 2 into N states and counted the transition frequencies of this path resulting
from a Markov chain-Monte Carlo simulation. Let P denote the matrix of relative



transition frequencies with
N

> P(i,j) =1

1,j=1

The transition probability matrix P is obtained by scaling P to row sum one. This
corresponds to a multiplication of P with a diagonal matrix D

P=D"'P.

Let e denote the vector which has the entry 1 in each component. Then, the entries
of D are given by
D = diag(mw), = Pe.

Note that ), m(i) = 1 and 7 (i) > 0 by construction.

Throughout the paper, we assume that the transition frequency matrix P is
symmetric. Such Markov chains are called reversible. Then, the vector 7 € RY is
the stationary distribution of P,

71 P=¢P=¢ P = (Pe)T =n',
and the Markov chain meets the detailed balance condition,
DP=P'D — =(i)P(i,j) = 7(j)P(j, ). (1)

If, moreover, P is irreducible, then 7 is the unique stationary distribution.

States, which belong to a metastable set, are characterized by large transition
probabilities among each other but small transition probabilities to other states.
In the case of completely decoupled stable sets, the matrix could be rearranged
to block-diagonal structure. Hence, the identification of metastable conformations
corresponds to the locating of a hidden block structure in the matrix.

2.1 Clustering Methods

Standard clustering methods would result in N, clusters characterized by member-
ship vectors xx € {0,1}", k =1,..., N, which have the entry 1 if the corresponding
state belongs to cluster k and else the entry 0. These vectors satisfy

Pxi =~ xk

because transition probabilities between states of different clusters are nearly zero.
In this context, we speak of a crisp clustering. This approach works well if the
states can be assigned uniquely to a cluster. However, in the discretization process
it could happen that a state is located in a transition region (e. g. a saddle point
of the potential energy surface) such that its assignment to a certain cluster would
be wrong. To circumvent such difficulties, we focus on soft clustering methods.
In contrast to the crisp clustering, the states are now assigned to all clusters with



certain weights given by the entries of the soft membership vectors 3 € [0, 1]V with
values between 0 and 1. As an important property, the membership vectors form a
partition of unity

Nec
> xk(i)=1, i=1,...,N.
k=1

In this context, conformations can be considered as fuzzy sets.

The Robust Perron Cluster Analysis PCCA+ [7] generates the soft membership
vectors as a linear transformation of the dominant eigenvectors of the transition
probability matrix P,

PX = X0, ©=diag(6;),0;~1, X'DX =id,
where id denotes the identity matrix. This results in soft membership vectors ¥,
x =XA, Aregular. (2)

The number N, of clusters equals the number of eigenvalues of P near the Perron
root #; = 1. A detailed perturbation analysis for the PCCA+ approach based on
Markov chain theory provides robustness of this method [7]. Figure 2 shows such
transformation for the eigenvectors stemming from a discretization of the butane
dynamics.

The algorithm is based on the following ideas. A completely decoupled transi-
tion matrix P can be rearranged to block diagonal structure and has the N .-fold
eigenvalue § = 1. The corresponding eigenvectors are constant for states belonging
to the same block. For nearly decoupled matrices P, the Perron root degenerates to
a cluster of eigenvalues near # = 1. The corresponding eigenvectors are not piece-
wise constant any longer, but if they are considered row-wise, they nearly form a
simplex! in Re~1 [23]. The complete algorithm is based on a constrained opti-
mization method which minimizes the overlap of the resulting clusters and delivers
membership vectors x which are non-negative. The initial guess for this algorithm
is constructed without regarding the non-negativity constraint. However, the initial
guess is optimal w.r.t. the objective function. This led to a simplified version of
PCCA+, in which the smallest entry of the corresponding membership vectors, the
so called minChi-indicator [22], measures the feasibility of the initial guess. In most
cases it suffices to take this initial guess as final solution because minChi is small
enough?. In order to meet the non-negativity constraint a slight shift and rescaling
of the initial membership vectors can be performed, such that x = XA still holds
for an appropriate regular transformation matrix A.

To sum up, metastable sets are convex linear combinations of all states from our
discretization where the linear factors are given by the values of the membership
vectors xx. These values can be considered as probabilities that a certain state

!One dimension can be skipped because the first eigenvector is constant.
20r one determines N, such that minChi is almost zero.
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Figure 2: Eigenvectors and membership vectors of a transition matrix result-
ing from the discretization of butane.

belongs to a certain cluster. For Theorem 3.6 it is very important to use PCCA+ for
the construction of the membership vectors, because y = XA is a basic assumption
in the corresponding proof.

2.2 Coarse Graining

After having identified metastable sets, we are interested in transition probabilities
between these sets. For this purpose, we first consider the transition frequencies
between two clusters Cy and Cy, k,I = 1,...,N.. For a crisp clustering, these
frequencies are obtained by just adding the rows and columns of the transition
frequency matrix P which belong to the same cluster. This results in a coarse
frequency matrix P, € RNexNe,

Po(k,l)= Y P(i,j).
1€Cl,j€C

In terms of membership vectors this reads

P.=x'Px=x'DPy.

If ¥ and D are positive, P, is positive as well. The coarse stochastic matrix P, is
obtained from rescaling P, to row sum one,

P,=D7'P.=D '\ DPy. (3)
The entries of the diagonal matrix D are given by
) N N N N
D(i,i) =) Xi(k)m (k) Pk, Dx; (1) = Y xi(k)m (k).
j=11=1 k=1 k=1

Lemma 2.1. The diagonal elements of[? form the vector ™ which is the stationary
distribution of P,,

Nc
Pla=# > #(k)=1
k=1



Proof. . o x .
oAk =S w ) =Y ) =1,
k=1 k=1 j=1 j=1

7P, = eTXTDPX = eTDPX = 7rTPX = 7TTX =7,
O

In the above derivation, we only used the fact that the rows of x and P sum to
one. Therefore, the same method can be applied for a soft clustering.

Definition 2.2. Let P € RYXN be a stochastic transition probability matriz with
stationary distribution vector m € RN. Let x = [x1,...,xn,] € RY*Ne denote
the matrixz of soft membership vectors and D = diag(m) the matriz with ™ on its
diagonal. With D = diag(x " diag(D)) we define the restriction and interpolation
operators:

R: RV — R, R=y"

I:RV— RN, [=DyD!

Lemma 2.3. The restriction and interpolation operator have column sum one.
Furthermore, for crisp membership vectors xi € {0,1}Ve we have RI = id. In any
case, the matrix RI is reqular.

Proof. The first statement is satisfied by construction. The second one results from
(RD(i,5) = Y xa(k)w(k)x; (k)7 (5) "
k
= & y_mkG k)R
k

= 0y Y w(k)x;(k)7(5) 7!
%
= (5”

From (2) we obtain
RI=x"DxyD '=A"X"DXAD ' =ATAD™!.
Since A is regular, the same yields for RI. 0

Densities with respect to the fine stochastic matrix P € RN are given as vectors
zf € RN with 3, 2/ (i) = 1, (i) > 0. In the following they are called fine densities.
As a coarse density, we consider a vector x¢ € RNe, > 2¢(i) = 1, 2°(i) > 0. These
densities represent the weights of the clusters. The above defined operators are
used to transform the densities to each other. The coarse density is obtained by a
projection of a fine density onto the clusters, i.e.

z° = Ra’. (4)



Indeed, multiplication with R preserves positivity and the sum of the vector ele-
ments. Furthermore, 7 is obtained from 7 by (4). The fine density can be obtained
from a coarse density by interpolation,

af = Iz°. (5)

To make this transformation feasible, note that 7 is transformed to 7,

Ne 1 Ne
(7)) = D w0 1) 2755 7() = 7(6) D x5 (6) = ().

Furthermore, the transformation (5) preserves positivity and the sum of the vector
elements.

The question we are concerned with is the following: How does the coarse
stochastic matrix P, represent the dynamic behavior described by the fine stochastic
matrix P? For time dependent dynamical systems, the transition probabilities are
actually time dependent. P(t)(i,j) denotes the probability that the system starting
in state ¢ is in state j after the time span t. The distribution of states ¢ in a finite
state space E at time ¢ is a vector x(t) = {x4(i)};crp which is obtained from the
initial distribution via

2(t) = PT (£)z(0). (6)

The corresponding coarse equation reads
y(t) = P y(0), P e R (7)

Ideally, there exists a connection between z(t) and y(t) by the previously defined
restriction and interpolation operators. However, such a relationship can only be
derived for special initial conditions.

Lemma 2.4. Let be given a reversible stochastic matriz P(t) and an initial distribu-
tion x(0) = Iy(0), y(0) € RNe. Then the distribution x(t) = P (t)x(0) restricted to
the space of conformations is equivalent to y(t) computed from the coarse equation
(7).
Proof.
Rz(t) = RP"z(0) = RP " Iy(0) = P y(0) = y(¢).
O

In fact, the previous lemma is just a special case of the more general invariance
of the space spanned by the weighted essential eigenvectors,

V =span{DX} =span{DX(:,1),...,DX(:, N.)} = span{Dx}.

Indeed, 2(0) = Iy(0) = DXD 'y(0) € V. Consider equation (6) and a density
z € RM. Due to the eigen-equation PT DXz = DXO(t)z, the elements of V' are
invariant under the action of P' and the following statement is satisfied.



Lemma 2.5. Consider equation (6) with initial condition x(0) = DXy € V. Then
the solution of (6) is given by x(t) = DXy(t) with y(t) = O(t)yo € RNe,

Unfortunately, in general y(t) = Rx(t) ¢ V. Therefore, it is not possible to
extend the result from the previous lemma to time steps nt, n € N, according to
z(nt) = P*"(t)x(0). On the other hand, note that RPT = ATOA~T R. This leads
to the idea of redefining the coarse transition probability matrix as

P.=(RI)""I"PR'". (8)

Lemma 2.6. The matriz P. defined in (8) is diagonalizable. Moreover, it has row
sum 1 and the invariant density .

Proof. The first statements results from the fact that A is regular and
Pl =ATX"PTI(RI)'=ATOXTI(RI) ' = ATOA™T.
Furthermore,
Pli=ATOA TRr=ATOX 7 =ATX"PTr=x"n="7.

Since R and I have column sum 1, the matrices RI and (RI)~! have also column
sum 1. Consequently, (RI)~" has row sum 1. Multiplication with the row stochastic
matrix P, = IT PRT preserves this property. O

However, besides the case of a crisp clustering, P,.(t) is not a stochastic matrix.
Some entries might be negative. This is due to the definition of metastable sets
because they are not disjoint sets but overlapping functions. Negative entries in the
transition matrix are necessary to correct the global behavior. Nevertheless, the
matrix can be used to calculate the propagation of densities by a coarse equation.

Theorem 2.7. Let be given a reversible stochastic matriz P(t) and an initial dis-
tribution z(0) € RN. Then the distribution z(t) = P (t)z(0) restricted to the space
of conformations is equivalent to y(t) = P (t)y(0) € RN with y(0) = Rx(0).

Proof.
Rx(t) = RPT2(0) = ATOA™ TRz (0) = P y(0) = y(t).

This carries over to time steps nt because
RP™(t) = ATO"A"TR = P"()R.

Thus, Pc(t) reflects the correct dynamic behavior w. r. t. the propagation of densi-
ties.

In the continuous-time case, the behavior of the dynamic system for arbitrary
times t is governed by its infinitesimal generator. In the following section we ex-
plain this concept and examine how the coarse graining process carries over to the
generator.
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3 Conformation Kinetics

3.1 From Transition Probabilities to Transition Rates

Under certain conditions, the Markov chain is completely determined by a time-
independent generator (). It is defined for continuous-time Markov chains.

Definition 3.1. [16, 3] Suppose that { P(t) }+>0 is a continuous transition semigroup
on a countable state space E. Then, the limit

. P —id
Q= t»l—lgl+ t

exists and defines the infinitesimal generator QQ = {Q(¢,j)}ijer with —oo <
Q(i,7) <0< Q(3,4) < co.

Especially if E is finite, the semigroup is conservative,
—QUi,i) = > QUi,])
JHIEE
and therefore also stable
—Q(i,1) < 0.

In the finite case, the transition semigroup P(t) and its generator are related by the
forward and backward Kolmogorov equation

dP(t
"0 _ qprmy=PuQ
Together with the initial condition P(0) = id, this gives the formal solution
(tQ

n!

P(t) =exp(tQ) = > )n, t>0. (9)
n=0

Differentiating equation (6) w. r. t. time and using Kolmogorow’s equation, we
obtain the master equation

()= Q' xz(t). (10)

For a finite state space, 7 is the stationary distribution of P(t) iff Q"7 = 0 [3].
Since ), Q(j,7) = 0 (conservation), this is also equivalent to the balance equation

Zw(z‘)@(z‘,j) = Zw(j)Q(j,z’), VjeE.

However, in the following we even assume more. () is supposed to be reversible,
i. e. it meets the detailed balance equation

m()Qi,j) = m(j)QU;1),  Vi,j€E. (11)



11

Lemma 3.2. If Q satisfies the detailed balance condition, the transition probability
matriz P(t) is reversible.

Proof. For a finite state space, pre- and post-multiplication with D~1/2 preserves
symmetry. Consequently, a finite Markov chain is reversible, if DYV2PD~1/2 is
symmetric.

From (9) it follows that

oo
t" n
1/2 -1/2 _ U N1/2 9 —1/2
D'PPWD =Y (D QD ) :
n=0
Since the right hand side is symmetric (@ meets detailed balance), the left hand
side is symmetric, too. Hence, reversibility of ) implies reversibility of P. O

The reversibility requirement arises from the modeling point of view. Since we
consider molecular dynamics in the equilibrium state, the system of Hamiltonian
differential equations describing the molecular motions is reversible. This carries
over to the discretization. For detailed explanations see [23].

Lemma 3.3. The eigenvalues of a reversible rate matriz ¢ are located on the
negative real axis in the interval [—2max;(|Q(7,7)|),0]. Moreover, if Q is irreducible,
the eigenvalue 0 is algebraically simple.

Proof. see [17] O
Remark 3.4. The proof shows that Q is diagonalizable and can be written as
Q=YXY'D, Y'DY =id,

where Y denotes the right eigenvectors, Y ' D the left eigenvectors, and ¥ the diag-
onal eigenvalue matriz.

In the following, denote by A the diagonal matrix comprising the first N, eigen-
values of @) closest to zero, and by X the corresponding first N, eigenvectors, i. e.

QX =XA, X'DX =id. (12)

Since @ is diagonalizable, the transition probability matrix P(t) = exp(tQ)
possesses the same eigenvectors as @ [17]. The eigenvalue cluster of P(t) at 1
transfers to an eigenvalue cluster of @ at 0,

O(t) = exp(tA).

Motivated by our work on PCCA+ for such matrices [7], we follow the same idea
and try to find x as a linear combination of eigenvectors of () corresponding to
eigenvalues A = 0, i.e.

x=XA, QX =XA, A=diag\)Y, \i~0.

i=17
The eigen-equation can be interpreted as follows. The rate matrix () represents
a closed system with mass conservation, indicated by the row sum zero property. For
strictly characteristic vectors x with values in {0, 1}, x characterizes the subsystems
of Q) for which this property holds, too.
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3.2 Coarse Grained Kinetics

We are not interested in the evolution of the density x(¢) € RY but in the evolution
of the density y(t) € RV w. r. t. metastable sets. Since densities in the space of
conformations are obtained by (4), our goal is to define a coarse master equation

g(t) = Q. y(t), Q. RNxNe, (13)

such that ||Rz(t) — y(¢)|| is small for all ¢ > 0. Similar to (8), we define a coarse
matrix

Q! = RQTI(RI™. (14)

Lemma 3.5. The matriz Q. defined in (8) is diagonalizable. Moreover, it has row
sum 0 and the stationary distribution 7.

Proof. The proof is analog to the proof of Lemma 2.6. From the definition (14) we
obtain )
Ql =ATXTQI(RN)™ ' =ATAXTI(RI)' = ATAA™T.

The row sum 0 of () is preserved due to the properties of R and I. Moreover,
Qla=ATAA T Rr=ATAXTn =ATXTQ"rn =0.
O

Note that Q. can have some negative off-diagonal elements. The interpretation
is the same as for P. in section 2.2. However, in the following we still speak of a
coarse rate matrix.

Theorem 3.6. Let be given a reversible rate matriz QQ with master equation &(t) =
QTx(t), 2(0) = 2o € RN, and the corresponding restriction and interpolation op-
erators. The result of the coarse master equation §(t) = Q. y(t), y(0) = Rxo, with

Q[ defined by (14) satisfies
[Rx(t) — y(t)|| = 0, Vi € [0, 00).

Proof. Note that

z(t) = exp(tQ")z(0),  y(t) = exp(tQe)y(0).
Consequently
Rz (t) — y(t)]| = [[(Rexp(tQ") — exp(tQ. ) R)xol|.
Moreover, the following equation is satisfied,

Rexp(tQ') = ATXTexp(tQ")
= ATexp(tM)XT  (eq. (12))
= Aexp(tA)A™"R.
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P(t) a—m Q P(t) a—p Q

P(t) ~— Q_

Figure 3: Two possible coarse graining schemes. The left one preserves the matrix
properties but results in a wrong dynamic behavior. Moreover, the derivation of Q.
is not unique. The right scheme yields the desired dynamic behavior but the ma-
trices have no physical meaning. The arrows indicate the direction of computation
from input to output.

From Lemma 3.5 we obtain
exp(tQ]) = exp(tATAA™T) = AT exp(tA)A™".
This yields the proposition. O

If the coarse matrices are defined analogous to the crisp clustering, in general
it holds

Q.=1"QRT # %log(Pc(t)).

Thus, it is not clear how to derive a coarse rate matrix in this case. Furthermore,
the solution of the coarse equation cannot be related directly to the solution of the
corresponding fine equation.

On the other hand, the modified coarse graining method is consistent. Com-
paring (8) and (14) it can be seen that

P, = exp(tQ.).

Moreover, by Theorems 2.7 and 3.6, the essential dynamic behavior is preserved.
Note, that even if the matrix P(¢) has no unique logarithm due to negative or
complex eigenvalues in the lower part of the spectrum, the logarithm of the coarse
matrix P, is unique, if the dominant eigenvalues are real and non-defective. Thus
it may be possible to derive a generator for the coarse grained dynamic process
although the generator for the fine process might not exist.

Figure 3 illustrates the two concepts. The coarse graining according to the
crisp clustering (left picture) does not maintain the dynamic properties and leads
to inconsistencies in the definition of ().. However, the desired dynamic is obtained,
if the usual matrix properties are abandoned (right picture).
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Since N, < N, we can save a considerably amount of work by using the coarse
model. A similar approach was previously investigated by the group of I.L. Hofacker
at the University of Vienna [24]. However, they set up the coarse rate matrix in
advance. They identify macro states as basins of attraction of local minima of
the energy function by extensive search strategies. In contrast, in our method
the macro states are identified automatically by clustering the fine matrix, and its
number will be much smaller than the number of local minima. The reason is that
metastable sets generally include several local minima because we also take into
account entropic effects.

3.3 Extraction of Kinetic Information

We are not necessarily interested in solving (13), but in the information we gain from
Q.. In the following, assume that the sample paths of {X(t)} are right-continuous
step functions. Such processes are also called Markov jump processes. Then the
entries of the generator () can be related to the mean holding times within the
states and transition rates between different states.

Definition 3.7. For a stochastic process {X (t)} the random variable
Ti(t) =inf(s > 0: X(t +s) # i, X(t) =1)
1s called holding time in state 1.

If X(0) =i, X(T;) represents the state the Markov chain visits just after leaving
state ¢. It can be shown [16] that T; decays exponentially in ¢, i.e.

P[T; > s] = exp(—h(i)s), Vs> 0.

h(i) is called the jump rate associated with state i € E. The average life time of

state 7 is given by
1
ET; = —.
Lemma 3.8. For a homogeneous finite Markov chain X (t) in continuous time with
infinitesimal generator Q, Z#i Q(i,7) > 0, the following equations are satisfied:

1.

— P[X(T)) = jIX(0) =],

Proof. See [16, 17]. O
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Thus, the generator (Q my be represented by the inverse average life times H =
diag{h(i)} and some transition matrix K,

Q = H(K — id),

where K (i,7) = Q(i,7)/h(i) is the conditional probability of a transition from state
1 to state j given that the process starts in i. K describes the embedded Markov
chain. This characterization forms a basis for a numerical simulation of the Markov
jump process.

The other way round, given QC one can reconstruct H,. and Kc which contain
the information about mean holding times and conditioned transition probabilities
for the coarse states or conformations. However, this method cannot be applied if
Qc has negative off-diagonal entries. Since these entries are mostly very small, we
correct the matrix by

Q(i,7) = max(Qc(4,5),0), i#j, Q(i,i)=—> Qi,j). (15)
j#i

3.4 Steered Kinetics

Equation (10) is not very interesting because the process simply converges to-
wards the equilibrium distribution 7. Assume we are interested in a simulation
of a transition from metastable conformation C), to a metastable conformation Cj
and the corresponding transition behavior. If all species are in one conformation
C}, the corresponding distribution in the coarse setting is given by the unity vector
20 = e € RNe. In order to assure that Rxg = zp we set zg = I(RI)_IZ(). The same
is applied to the end state z. = I(RI)™ 'z, where z, = ¢; € R™e. Then (10) has to be
solved as an initial value problem with initial distribution xy and an absorbing end
state given by the distribution z.. Chemically, one would permanently eliminate
conformation Cj out of the ensemble in order to push the reaction into the direction
of this product. This corresponds to Le Chatelier’s Principle. Mathematically this
can be done by a projection of z(t) onto the orthogonal complement of the desired
end point z. before applying ). Thus, the absorbing kinetics equation is

B(t) = Quz(t), Qu=T1Q, =x(0)= o, (16)
with .
Il =id— izr‘z (17)

Obviously, the underlying dynamic is not reversible. Even though z!Qn = 0, it
is not clear if Q1 is a rate matrix. If this was the case we could proceed as in
the previous subsection. It can be shown that Q11 has row sum zero and negative
diagonal elements. However, numerical experiments have shown that Qp can have
small negative off-diagonal elements which we correct by (15). An alternative ap-
proach was recently presented by Crommelin and Vanden-Eijnden [4]. They solve
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Figure 5: Discretization of the 2d space of torsion angles by Voronoi cells.

a minimization problem to find the generator whose eigenspectrum resembles the
required one (in our case the one of Q) as closely as possible. This assures to
maintain the important features of the dynamics. In our opinion this method could
be applied here. We especially aim to preserve the left eigenvector x. as well as
the right eigenvectors and eigenvalues which are used to construct the membership
vectors x.

4 Application to n-Pentane

We present the application to the n-pentane molecule C H3(C' Hy)3C Hs which was
modeled with Merck Molecular Force Field [13, 14] at a temperature of 300K . The
rate matrix () resulted from a conformation dynamics simulation with ZIBgridfree,
a program package based on mesh-free methods which was developed at Zuse Insti-
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Figure 6: Invariant density of the 100 x 100 rate matrix.
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Figure 7: Membership functions x; of the 100 x 100 rate matrix. Note that the
states on the right hand side are ordered according to the clusters such that the
numbering of states is different compared to Figure 6.
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Figure 8: 2d schematic plot of the Boltzmann density of pentane w. r. t. the two
dihedral angles 6; and 6, (left). The conformations are numbered from 1 to 9.
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Figure 9: Matlab [9] plot of a conformation kinetics simulation. The 9 lines cor-
respond to the weights of the 9 clusters. We selected the (g+/t)-conformation of
pentane as start conformation (solid line) and the (t/g+)-conformation as end con-
formation (dashed line). The density is plotted over an interval of 6000ps at every
100ps.

Figure 10: Volume rendering of the (g+/t)-conformations of pentane (left), the
(t/g+)-conformation (right), and the corresponding transition macro-state (middle)
in amira/amiraMol [21, 19].
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tute Berlin [23, 18]. The dynamic behavior of pentane is described by two torsion
angles 0 and 65. 6 is the torsion angle spanned by the atoms 6-7-8-9, 0 is spanned
by the atoms 8-7-6-1, see Figure 4. The 2-dimensional space was discretized by 100
Voronoi cells, see Figure 5. The center of these cells were obtained by a selection of
100 sampling points from a high temperature pre-sampling at 1000/ . Within each
cell, we generated nearly 3000 points according to the Boltzmann distribution by
hybrid Monte-Carlo sampling with umbrella strategies and Gelman-Rubin conver-
gence indicator. These points were propagated by molecular dynamics simulations
until they left their starting cells. Average life times and conditioned transition
probabilities were computed to set up the rate matrix Q.

To obtain the conformations, we applied PCCA+. We found 9 eigenvalues of Q)
close to 0,

A = {26e—9,—2.2¢—3, —3.0e—3, —3.Te — 3, —4.7e — 3,
—5.7e—3, —6.8c — 3, —8.9¢ — 2, —9.8¢ — 2},

followed by a gap to the 10th eigenvalue A;g = —0.70. This corresponds to 9
metastable conformations which can be distinguished according to the orientation
of one of the two dihedral angles (g+ and t denote the + gauche and trans orienta-
tions), see Figure 8:

conformations = {g+/g+7g_/g_7g+/g_7g_/g+7g_/tat/g_at/g+7g+/t7t/t}
with
weights = {0.0036, 0.0032, 0.0640, 0.0680, 0.1248,0.1232,0.1140,0.1567,0.3426 }.

The membership functions x;, ¢ = 1,..., N, are illustrated in Figure 7. The minChi
value is 0.0808. From the coarse rate matrix, computed according to (14), we
obtained the approximated mean holding times

h' = {10.39,11.38,361.68, 334.35, 198.91, 227.31, 172.40, 235.74, 283.64} ps,

and the transition probabilities of the embedded Markov chain

0 0.0000 0.0097 0.0105 0.0002 —0.0002 0.5690 0.4045 0.0062
0.0000 0 0.0149 0.0098 0.4288 0.5403 —0.0003 0.0009 0.0055
0.0172  0.0206 0 0.0000 0.0003 0.4502 0.0020 0.5089 0.0010
A 0.0148 0.0137 —0.0001 0 0.5042 0.0020 0.4591 0.0048 0.0012
KC = 0.0003 0.1687 —0.0001 0.1634 0 —0.0062 0.0017 0.1881 0.4842
0.0000  0.3049 0.1462 0.0007  —0.0337 0 0.1161 0.0023 0.4634
0.2898  0.0001 0.0003 0.1410 0.0011 0.0951 0 —0.0164  0.4889
0.2184  0.0002 0.1355 0.0010 0.1778 0.0018 —0.0243 0 0.4899
0.0018  0.0015 0.0000 0.0002 0.2518 0.2076 0.2675 0.2695 0

Observe that conformation 3 and 4 have large mean holding times even though they
have small weights. This hints to the fact that there are large energy barriers to
the other conformations. The rate matrix was used for a kinetics simulation with
predefined start and end conformation. The results for a (g9+/t) — (¢/g+) transition
of pentane are shown in Figure 9. We performed the coarse kinetics according to
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(14) with Q. € R?*Y instead of the fine kinetics (10) with Q € R'90%100 Rjgure
9 can be interpreted as follows. During the conformational change from (g+/t) to
(t/g+)-pentane, other conformations are formed which can be seen as transition
states. The transition is visualized in Figure 10. The left picture shows the start
conformation (g+/t), the right one the end conformation (t/g+). At each step
of the 6000ps kinetics simulation, a similar density plot can be computed. The
picture in the middle shows the transition state at 1000ps simulation length. It
is very similar to the t/t-conformation and can be considered as the intermediate
distribution of states at this particular time.

5 Conclusion

The complexity of molecular kinetics can be reduced significantly by a restriction
to metastable conformations which are almost invariant sets of molecular dynam-
ical systems. The main goal is to describe the dynamics as a Markov process on
these conformations. Ideally, the coarse graining process results in a small transi-
tion probability or rate matrix which has the correct stationary distribution and
reflects the essential dynamic behavior. However, due to discretization errors or the
lack of metastabilities in the dynamical system, it is mostly not possible to meet all
requirements at the same time, as mentioned in the introduction. While previous
articles aimed to construct coarse matrices with certain structural properties, we
take a different point of view and construct the coarse matrices such that they re-
flect the correct dynamic behavior. This is possible because the clustering method
PCCA+ characterizes the conformations as linear combinations of the eigenvectors
of the unreduced transition matrix. On this basis we defined a restriction and inter-
polation operator which are used for density transformations. However, our coarse
matrices do not always admit a physical interpretation due to negative entries. But
if there really exists a hidden low-dimensional Markov process in the model, these
entries are small and can be neglected. Thus, for example it is possible to derive
mean holding times and conditioned transition probabilities between the clusters
from the coarse grained rate matrix. Furthermore, we have shown how one can
construct a rate matrix corresponding to a steered kinetics process.
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