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Abstract

We consider linear inverse problems where the solution is assumed to ful-
fill some general homogeneous convex constraint. We develop an algorithm
that amounts to a projected Landweber iteration and that provides and itera-
tive approach to the solution of this inverse problem. For relatively moderate
assumptions on the constraint we can always prove weak convergence of the it-
erative scheme. In certain cases, i.e. for special families of convex constraints,
weak convergence implies norm convergence. The presented approach covers
a wide range of problems, e.g. Besov— or BV-restoration for which we present
also numerical experiments in the context of image processing.

Keywords. Linear inverse problems, Landweber iteration, Besov- and BV restora-
tion, Generalized shrinkage

1 Scope of the Problem

In a wide range of practical applications one has to solve the problem that the
features of interest cannot be observed directly, but have to be interfered from other
quantities. Very often a linear model describing the relationship between the features
and the measured quantities works quite nicely, i.e. in such situations the task to
solve is

Tf=h.

Typically, the observed data are not exactly equal to the image h = T f, but rather
a distortion of h, i.e.
g=h+e=Tf+e.

To find an estimate for f from an observation g, one might minimize
lg — T 1%

This kind of problem lies in the class of ill-posed inverse problems if the generalized
inverse T" : g — fT is unbounded. In such cases, the generalized inverse must
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be replaced by bounded approximants, so that numerically stable solutions can be
defined.

A typical procedure to avoid these instabilities or to regularize the inverse problem
is to modify the functional to be minimized, so that it not only incorporates the
discrepancy, but also some a priori knowledge one may have about the solution.
More precisely, we consider then a functional of the form

lg = Tf1I% + 20 (f), (1.1)

where J(f) < oo, or even J(f) < 1 is the mathematical translation of the a priori
knowledge.

In this paper, we shall consider two different choices of J(f), both adapted to
the case where the inverse problem consists in deblurring and denoising a 2-dim.
image, as in [DT05], which was in turn, inspired by [DDD04] and [VO02]. Both
approaches are natural sequels to [DT05]. In the first approach, we consider J(f) of
the same type as in [DTO05], but we put it in a more general framework, where J(f)
can be any positive, convex, one-homogeneous functional. An extensive discussion
of such functionals, in much greater generality than what we present here, is given in
[CWO05]. In order to be self contained, and to avoid introducing the full complexity
of [CWO05], we present here a sketch of a simpler version that suffices for our case. In
the second approach, J(f) is the same as in [OSV02], but the numerical solution in
[OSV02] of a 4-th order nonlinear PDE is replaced by an iterative approach similar
to [DDD04] and [DTO05].

The paper is organized as follows: in Section 2, we present the framework for our
first approach (generalizing [DT05]), which is then discussed in section 3, in several
stages: a “warm up” for the case when T*T has a bounded inverse (in this case, the
problem is well-posed), then the ill-posed problem (where 0 is in the spectrum of
T*T), with a convergence analysis. In Section 4, we explain our second approach,
an alternative way of minimizing the functional in [OSV02]. Finally, in Section 5,
we give numerical results for both.

2 Penalization by a positive, convex, one—homo-
geneous functional

2.1 Preliminaries

In this Section and the next, we assume that the functional to minimize takes the
form (1.1), where J is a positive, convex and one-homogeneous functional. In this
case, the variational problem can be recast as follows: Consider J*, the Fenchel
transform or so—called dual functional of J, see [RW98]. Since J is positive and
one-homogeneous, there exists a convex set C' such that J* is equal to the indicator
function y¢ over C. In Hilbert space, we have total duality between convex sets
and positive and one-homogeneous functionals, i.e. J = (x¢)*, or

(xe)'(f) = ilglg(f, h)y=J(f);

see, e.g., [AA03, Cha, CWO05]. (Note: [CWO05] gives a much more general and
complete discussion; we restrict ourselves here to a simple situation, and only sketch
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the arguments. For a complete, detailed discussion, we refer the reader to [CW05].)
We thus end up with the following reformulation of our problem: given some closed
convex set C' C ‘H (on which we may still impose extra conditions, below), we wish
to minimize

Felf) = llg = Tf|* + 2sup (1. 1) (2.1)

where we assume 7" to be a bounded operator from H to itself, with || 7| < 1. We
shall consider two particular cases in more detail.

Ezxample 1. As in [DDDO04], a particular orthonormal basis {¢x}rea in H is
preselected, the prior is defined as

YOEDNITENE

AEA

This can, of course, be viewed as a special case of (2.1), since in this case
C = {h € Loper ([0, 1%); [(h,0x)| <1, YA}

Similarly, the case with the prior
|f‘w = %w)\Kf; ¢A>‘ ) with /I\IEIf\’w/\ >0 )

fits also into the framework of (2.1), C' now defined by
C = {h € L27p67‘([07 1]2)3 |<h7¢/\>| S w)Tlv v)‘} .

When T # [ and the problem is ill-posed, the resulting minimization scheme
amounts to Landweber iteration with thresholding applied in each step.

Ezample 2. In the BV regularization framework, [ROF92], [RO94], one considers
functionals of the form

lg = TFI2, 0 + 20 / i (2.2)

and minimizes over all possible f € Ly(€2). Expressing this functional by means of
a convex set C' one discovers that C' is the Ly-closure of

C ={h € Lyper([0,1]*); h = div v, where v is a 2d field that satisfies
lolle. = sup  (lui(e, ) + Joa(a, ) )72 < 13
(z,y)€[0,1]?

l.e. we may again write

sup(f, h) = / VI = |flsv
heC Q

for details on the structure of C' we refer the reader to [Mey02]. It turns out that
results on iterative strategies developed for Example 1 carry over to the BV case
and that much of the analysis elaborated in [DDDO04] can be generalized to the
minimization of (2.2).



2.2 Reformulation of the problem

We shall assume that C' is a closed convex set in H, C' is symmetric, i.e. h € C' =
—h € C, and there exists finitely many vectors aq,...ay € H, and r > 0 so that
B.(0)N{ay,...ay}t c C (ie. {h: (hya;)=0;i=1,...,N and ||h]| <7} C O).
Note: we introduce the finite-dimensional subspace to which C'is orthogonal for two
reasons. First, there are cases of interest in which C' consists of functions that have
zero mean in [0,1]%, e.g. if C' contains only divergences of smooth periodic fields.
Second, it will make it easier to restrict ourselves to only fine scale functions, below.
Defining the functionals

L(f.h) = [lg = Tf|* + 2a(f, h),
we can rewrite infrep Fo(f) as

inf sup L(f, h) . 2.3
inf sup (f,h) (2.3)

Lemma 2.1 L(f,h) is continuous in both arguments, it is also convex with respect
to f, concave with respect to h.

Proof. Continuity follows immediately. By
L+ (1= XNw,h) — AL(v,h) — (1 = N L(w, k) = —=[A(1 = ]| T(v — w)|)?
the second assertion follows. |
This means that (provided some technical conditions are fulfilled) we can apply
the minimax theorem, which allows us to interchange inf and sup in (2.3). In this

case the minimax theorem moreover asserts that inf and sup are achieved, i.e. the
inf is a min, the sup is a max.

Remark In order to invoke the minimax theorem, we need the following Lemma:
Lemma 2.2 For the minimization of (2.3), it suffices to consider [ in some bounded
set BCH.

Proof. We need to show that there is some R > 0 so that necessarily

|| arg minsup L(f, h)|| < R .
! hec

First, we have L(0,h) = ||g||?, thus inf;sup,cc L(f, g) < |lg]|*>. If we define V :=
span{ay,...,an} (see conditions on C for the definition of the a;), then we have
V+N B,.(0) C C for all f € H, so that

sup(f,h) > (f, T2

=r|P Lf s
el HPVJ-fH> H \4 H



where Py1 denotes the orthogonal projection onto V*+. It follows that if sup,cq(f, h) <
2inf, Fo(y), then

1 2
[PvofIl < = sup(f,h) < =lg]* .
T hecC r
Consequently,

TPy f ITFI + TPy f]]

lg =TIl + llgll + | TPy f]
2
< {sup L(f, W)} + gl + ITII= llgl”
heC r

IN

2
1+ V2)lgll + 171 Ng]* = Cr -

Since V' is finite dimensional, T'|yy : V' — TV can be represented by an N x N—
matrix. If this matrix has a non-trivial kernel, then we can quotient it out. The
quotient operator is then bounded below. It follows that there exists an f € V' so

that Tf = TPy f and
4 ~1
17l < (Tlvperyy)  |C1=:Cy < oo .

It follows that if sup,co(F,h) < 2inf;sup,co(f, h), then there exists an F' = F+
Py F so that for all h € C' we have

_ _ 2
L(F,h) = L(F,h) , and | F|| < Cy + ;||g||2 = R<o00.

Consequently, we have

inf supL(f,h) = inf supL(f,h) .
fGHheg (1) fGH:||f||§Rheg (/1)

Under a variety of different possible conditions on C' (e.g. if the set C' is bounded;
see literature on convex optimization such as [BV05] or [HUL93] for this and other
cases) it then follows that

inf  sup L(f,h) = max min L(f,h) .
feH,IIfIISRheIc) (f: ) heC | fI<R (£, 1)

In what follows we shall assume that we can indeed apply the minimax theorem and
that we can first minimize L(f, h) over f, and then maximize over h in C.

3 Solving the inverse problem for convex penal-
ization

3.1 The well-posed case

Although the case where T*T does not have a bounded inverse, i.e. where the inverse
problem is ill-posed, is of most interest to us, we start by sketching the approach in
the easier well-posed case.



Theorem 3.1 Suppose that all assumptions made above hold true, and T*T has
bounded inverse in its range. If we define A := (T*T)~Y/% and, for an arbitrary
closed convexr set K C H, Sk := Id — Pk, where Pk is the (nonlinear) projection
on K, i.e. Py = argmingec |h — ||, then the minimizing f is given by

f = ASaAc{AT*g} .
Proof. According to the last section we compute first

min —TF|I? + 2a(f, ).
win g = TSP + 2a(f, )

Since T is well-posed, the minimizer is easily found
f = T) (1%~ ah) .
In this case it remains to determine

s« =1/ _ 2 *\—1/2 % 2
max L((T"T) ("9 — ah), h) - = max{]|g||" — [(T"T)"/A(T"g — ah) |}

— *r\—1/2 2
min [|(T°1)"/A(T"g — ah)||” .

This minimum is achieved when o(T*T)~'/2h is the convex projection onto the
convex set oT*T)~Y2C of (T*T)~/?T*g,

1
T a
Finally, the corresponding function f is given by

f=(TT)" "2 [(T"T)*T*g - PQ(T*T)_I/QC{(T*T)—1/2T*g}} .

h= —(T°T) 2 Pypegy e {(T°T) T},

An obvious example is the case where we just need to denoise an image, without
deblurring:

Example 3. Consider the denoising problem with an ¢;—constraint in the basis
{ér}ren. In this case T' = Id, so that A = Id as well, and

C={f; sup|{f,on) <1} .

Moreover, in the real case we have

mﬁﬁ”‘{ﬁwvwmiﬂﬁwm>1.

This implies that Soac 0 AT™ is exactly the soft thresholding operator
<SaAC(AT*g)7 (b)\> = Sa(<g7 (b/\>) .

In the complex case, we have

(fion) i [(fion)] <1

(FPof,o = { |§§Zii§| SNl > 1

and the Sy,ac o AT™ reduces to the ”complex soft thresholding operator”, i.e.

0 1f|<g,¢)\>‘§06’

<SO‘AC<AT*9)7¢/\> = S;((Qa ¢>\>) - {



3.2 The ill-posed case

In the most interesting problems, the operator 7*T" does not have a bounded inverse.
We can then use the surrogate functionals introduced in [DDD04]. We replace (1.1)
by a family of surrogate functionals

Guo(f) = Folf) +1fa—FIP=1IT(fn = DI

AP+ gl + 1l = 1Tl

and we have

Proposition 3.1 Let C' be as assumed in Section 2.2. Then the minimizer of G, ¢
15 given by

for1:={Ud— Pyc)(fn+T"g—T"Tf,) . (3.1)

Proof. Under the assumptions made on C, we can apply the minimax theorem to
the problem of finding the minimizer of G, ¢, so that we have to determine

max min 2_f fo+Tg—TTf, —ah)} .
nas feH7||f||§R{||f|! (f. f g f )}

For fixed h, the argument is minimized for
Jf=fat+Tg=T"Tf, —ah,
and we need to determine
_ * o _ 2
max {~||fo + T7°g = T*Tfn — oh|*}

which is achieved for )
h = aPaC’(fn +T g —T"Tf,) .
[ |

Next, we discuss convergence properties of the iteration (3.1). We mentioned
above that [CWO05] contains an extensive discussion, including (not easily verifiable)
conditions that ensure strong convergence. The full generality of [CWO05] makes it
less easy to read if one is mainly interested in the special case presented in this pa-
per. For this reason, we sketch here a more direct (but more specialized) statement.
Since the iteration is very similar to the one in [DDDO04], a very similar strategy
for the proof of convergence holds as well. Up to strong convergence the techniques
apply in almost the same way (thus we just sketch the steps). In order to achieve
norm convergence, we have to pay more attention to the structure of C'; however.

We start by sketching how to achieve weak convergence for our scheme. To this
end, we define the nonlinear operator T by

Tf:={Ud—P.o)(f+T g—-TTf) .

In order to establish weak convergence of the f, = T" f; we apply Opial’s Theorem
(see [Opi67]) which reads as follows:



Theorem 3.2 Let the mapping A from H to 'H satisfy the following conditions:
(1) A is non-expansive: Yv,v' € H, ||[Av— AV < |jv -/,

n—oo

(ii) A is asymptotically reqular: Yv € H, ||A" v — A™| — 0,
(11i) the set G of the fized points of A in H is not empty.
Then, Yv € H, the sequence (A"™v), .y converges weakly to a fived point in G.
To apply this to T, we thus need to verify that this operator satisfies the three
conditions (7), (i) and (i) above.

First of all, condition (77i) is verified, by the following argument. We know that
(1.1) has a minimizer f. Then f minimizes not only F¢, but also

Folf) +If = FIP =T = DI? .
Consequently, the analysis above implies that Tf = f, so T does indeed have at
least one fixed point.

Next, we ensure that T is asymptotically regular (condition i4): we observe that
fC(fn—}—l) S gn,C(fn—l—l) S gn,C(fn) - fC’(fn) S gn—l,C(fn) .
This implies

(1 - HTH2) an - fn+1H2 S <fn - fn+1a (Id - T*T)(fn - fn+1)>
gn,C(fn—i—l) - FC(fn-‘rl) S fc(fn) - fc(fn-‘rl) :

Consequently,

[e's) N
E :an_fn-‘rlHQ = ]\}lm E ||fn_fn+1||2
—00

< A}l_t)noo (1- ||T||2)_1 [Fe(fo) = Felfni)]
< (1713 Felfo) < o0,

n—oo

and hence we deduce || f, — fui1]] — 0.

Finally, we need to check that T is non—expansive (condition 7): in order to show
this property we need the following standard properties of convex sets.

Lemma 3.1 Let K be a closed and convex set, then for all w € H and all k € K
the inequality (u — Pxu, k — Pxu) < 0 holds.

Proof. For all A € [0, 1] one has
lu = [(1 = \) P+ AR] [|* = [lu — Preul|* .
Thus, for all A € [0,1]
—2Mu — Pcu, k — Pxu) 4+ \2||k — Prul®> > 0,
so that we have (u — Pxu, k — Pru) < 0. |



Lemma 3.2 Let K be a closed and convex set, then for all u,v € H the inequality
lu —v — (Pgu — Pgo)|| < |lu— vl holds.

Proof. We need to prove
—2{u — v, Pxu — Pgv) + ||Pxu — Pxol|* <0 .
By Lemma 3.1 we have (u — Pgu, Pxv — Pxu) < 0, or equivalently
—(u, Pxu) + (u, Pgv) + || Pxul|* — (Pxu, Pgv) <0 .
By symmetry we have
—(v, Pgv) + (v, Pxu) + || Pgv||* — (Pgv, Pgu) <0 .
Summing the two inequalities leads to
—(u — v, Pxu — Pgv) + || Pxu — Pgo||* <0,
and thus

—2{u — v, Pgu — Pgv) + ||Pxu — Pxol|* < —||Pxu — Prol|* <0 .

Now with the help of Lemma 3.2 and since 0 < T*T < Id we obtain

ITu—To|| = |[(Id— Pac)(u+T"g—T"Tu) — (Id — Pac)(v + T*g — T*T)|
< u+T"g = T"Tu) - (v + T'g — T*T0)|
= [({d=T"T)(u—v)[| <[lu—2| .

Thus, we have

Proposition 3.2 Opial’s Theorem 3.2 applies, i.e. f, = T"fo converges weakly to
a fized point f of T.

One can argue that this weak convergence theorem suffices for practical purposes,
because every numerical computation is always finite-dimensional so that weak and
strong (i.e. norm) convergence of the f,, are equivalent. However, it is often useful to
establish norm convergence for the infinite dimensional Hilbert space as well, since
this then implies that the rate of convergence, and the other constants involved, do
not “blow up” as the dimensionality of the discretization increases.

To obtain norm convergence, we need to do some more work. In summary, we
have established the following facts:

° anLakf, for n — oo,
o f=f+Tg—TTf— Pyuco(f +T*g—TTf),
o fn—i—l = fn+T*g_T*Tfn - PaC(fn +T*g_T*Tfn)7
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o ||fur1— full = 0, forn — occ.

Defining B B B
Up = fn—f and v:i=f+T"g—T"Tf, (3.2)

we can recast the results as follows:

weak
u, — 0, forn — oo

| Pac(v) = Pac(v + up — T*Tuy,) — T*Tuy|| — 0, forn — oo .
We can then apply, without any change, Lemmas 3.15, 3.17 of [DDDO04], leading to
| T*Tu,| — 0, for n — oo,

so that we obtain the equivalent formulation

weak
u, — 0, forn — oo

(3.3)
| Pac(v) — Pac(v + )| — 0, for n — oo.

To obtain norm convergence of the f,, we must establish |lu,| — 0. For general
convex sets C' the conditions (3.3), where @ > 0 and v € H are arbitrary (but
fixed) actually do not imply norm convergence of the u, to 0. Abstract sufficient
and necessary conditions for norm convergence are given in [CWO05]; the following
theorem gives a more concrete restriction on C' under which we can establish norm
convergence.

Theorem 3.3 Suppose u, 5 0 and | Pac(v) — Pac(v + uy)|| — 0. Moreover,
assume that u, is orthogonal to v, Po(v). If for some sequence v, (with v, — o)
the convex set C' satisfies y,u, € C then |u,| — 0.

Proof.

Since yu, € C,

T Po(o) + o (ata) € C
v ' ln
T+7, 1,

Thus,

Tn
||1+7 (Fo(v) +un) = (v+un)ll = [[Po(v+un) = (v + un)|

> |[Po(v) = (v 4 un) || = [[Pe(v 4 un) = Po(v)]].
This yields

1Pe(v) = (v+un)ll < [[Pe(v+un) — Pc(lv)ll
1

+|| P, —v— n— P .
IPe(w) == ot = 15— Pelo))]
Since the u,, are uniformly bounded there is some C such that
1 1
[1Po(v+un) = Po(v)l| + 2] Pe(v) — v — Po))l < Gy

Uy —
1+ v, 1+,
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and because u,, 1 Pc(v),v, we obtain from the latter inequalities
1P (v) = vl + [lun®

Tn

< CHHPc(erun)—Pc(v)HJrHlJW

Pe(v) —v|* +

2““””27

_
(1+m)

which, in turn, gives

1 2
<1‘m) lun* < CillPe(v + un) = Pe(v)]

Tn 2 2
+ Po(v) —v||” = ||Pe(v) —v||” .
2 Pel) = vl = | Peto) = o]
With .
Po(v)|| +2||Pe(v) —v|| < C
1+%II o (V)] +2[[Po(v) —vf| < Cq
we have 1
771 2 2
P, — <C P P —
I Fe(v) = vl < G —IPe) + 1Pe(o) =]
and consequently,
1
1 — ——— ) ua||? < C1||Pe(v + ) — Pe(v)|| + C Po(v
(1= e ) Tnl? < LR+ ) = Pl + Cop— 1P
Which shows that if n — oo then ||u,| — 0. |

Unfortunately, this theorem is not sufficiently strong to apply to the BV —functional
of Example 2, above. Without going in full detail, we sketch here how it (just) falls
short.

The set C' in Ezample 2 is (loosely speaking) the set of all divergences of 2-dim.
fields that are uniformly bounded by 1. It contains, in particular, the functions

1 , 1 :
= —idiv<—sign(n1)62m("w+"2y),—sign(ng)eQ”Z(””*"Q?”)) ,

V2 V2

where |n1| 4 |na| # 0. Because C' is closed and convex, it also contains all the

> anhn

nez?

with ) /2 an = 1. Suppose now (just for the sake of simplifying the argument,
which can also be made, a bit more lengthily, without this assumption) that

|| Pc(un)|| — 0 asn — oo,
i.e. that the condition

| Pac(v) — Pac(v+u,)|| — 0 asn — oo

11



holds true for v = 0. That would mean that, for all w € C

lim (u, — Po(uy),w — Po(uy))

n—oo

= 1im (up, w) + || Po(un)||> = (tn, Po(un)) — (Po(uy,), w)

n—oo

= lim (u,,w) ,
n—oo

which implies that lim,, .. (u,, w) is nonpositive. Since the same is true for —w € C,
if follows that lim,, . (u,,w) = 0 for all w € C. Consequently, (u,,hx) — 0 as
n — o0, or even, for all sequences (o )keze With >, o anc = 1, oy € [0, 1] VK,

> (k| + |ka]) (tn, 1) — 0 as n — oo,
k

where ey (x,7) = e?F12+k2v) - This just misses ensuring that

Z|<un,ek)|2—>0 as n — 0o .
K

This concludes our theoretical analysis of our first case described in the introduction,
i.e. the case where J(f) in (1.1) is convex. We now turn to the second approach.

4 Iterative algorithm for PDE—-based deblurring
and denoising.

We start by recalling briefly the framework of [RO94], in which the inverse problem
g =T f + e, which edge-preserving regularization, is cast as the minimization of an
energy functional of the form (assuming Gaussian noise for simplicity)

it Folf) = I1Tf = gl +20 [ S(V)d: (@.1)

here the potential ¢ : R? — R is typically a positive continuous increasing function,
with at most linear growth at infinity, therefore satisfying |¢(€)| < ¢(1 + [¢]), for
some positive constant ¢ (note that we have replaced the subscript C' by ¢ describing
now the penalty and not the convex set of the previous approach). Convex examples
include (note that, only for illustration reasons, we give also examples beyond the
one-homogeneous case)

o ¢(&) =[] (the total variation minimization of Rudin-Osher-Fatemi [ROF92],
[RO94)),

o 9(&) = |&] + &,
e 9(§) = +/1+[£]? (the function of minimal surfaces),
o 6(¢) = logcosh(1 + [¢[?), or

12



_ [ slEPiflE <1 ‘
o P(&) = { |2§| CLifg > 1 (used in [DT84], [CLI7]).

In the non-convex case, examples of the potential ¢ are
p
° 9(§) = 1E||£‘p or

o 9(&) =log(1+[£JP), with p = 1 or p = 2 for instance, see Perona-Malik [PM90],
Geman-Geman, [GG84], Geman-Reynolds [GR92], and more recently [CL9I7],
[AV97], [VesO01].

Let us now restrict again to the one-homogeneous case and assume in addition
that ¢ is differentiable. Then the Euler-Lagrange equation associated with the
minimization problem (4.1), that must be satisfied by a minimizer f, if such a
minimizer exists, is given by

T*Tf — T*g = adiv (v§¢(v f)), in Q, (4.2)

where Ve = (¢¢,, ¢¢, ), and with the boundary conditions Veo(V f) -7 = 0 on 09,
where 77 is the unit exterior normal to the boundary. In case o > 0, the partial
differential equation (4.2) is non-linear for the examples of potential ¢ given above.
Moreover, the presence of the term T*T f makes it computationally expensive and
numerically nontrivial.

In order to overcome these problems, we propose here to not directly solve (4.2)
numerically, but to apply the surrogate functional algorithm (see [DDDO04], or the
previous sections), i.e. we construct a sequence of iterates f, that approximate f,
without having to invert T*T at every iteration. On the other hand, the direct
implementation of the projection P, associated to our minimization is rather com-
plicated; in this case we prefer to avoid it by switching to an expression based on
the Fuler-Lagrange equation. The total iteration goes thus as follows: start with an
initial fo; find f,,, » > 0 as a minimizer of the surrogate functionals

Gn-1(fn) = T f0 — g”%%ﬂ) =T fn— Tfn—1||%2(Q) + {1 fn — fn—1||%2(ﬂ) +2a /Q P(V fn),

(4.3)
where we have assumed that ||[7*T|| < 1. The associated Euler-Lagrange equation
in f,, now easily solved in practice, is:

fo=fact + T"g =TT fo1 + adiv (Ve (V) ). (4.4)

together with the same boundary conditions. One then simply carries out this iter-
ative algorithm to find (an approximation to) desired minimizer.

Remark The same idea can be also applied to other cases, when the L?(Q) norm
in (4.1) is replaced by another norm in a Hilbert space.

For instance, let us consider the minimization problem from Osher-Solé-Vese
[OSV02] for denoising, for simplicity,

inf  F(f) with ]-"(f):/Q\VA1(f—g)\2d:c+2a/Q]Vf\da:. (4.5)

fEBV(Q)
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This model is a refinement over the total variation minimization [ROF92], and de-
composes the data g into a BV (€2) component f and an oscillatory component g — f
that belongs to (Hg(2))’, the dual of H}(€) when endowed with the standard semi-
norm. Even in the case without blur, the minimization of the convex functional
(4.5) leads to a computationally expensive partial differential equation in f,

_ _(Vf
A Mg—f)=ad 4.6
(9= 1) =adiv(Gp). (4.6)
or to a fourth order non-linear partial differential equation
. (Vf
g—f—ozA[dlv<|Vf|>], (4.7)

with associated boundary conditions. By applying the surrogate functional approach
to the minimization of (4.5), we can avoid solving this PDE directly; instead compute
fn as minimizer of the convex functional

G 1(£) /|VA gl dac—l—Za/ IV flda
/rm e 1|dx+u/\fn Fo|Pd.

The minimization of the energy G, 1 with respect to f, leads to a simpler partial
differential equation

pfn = pfo1 — AN Tg+ AT+ adiv<|§]ftz|>. (4.8)

5 Numerical Illustrations

In this section, we present numerical results of the two approaches. We assume
the linear degradation model ¢ = T'f + e, where ¢ is the given data, as a square
integrable function in L?(2), f is the unknown true image, e is additive noise of zero
mean. The operator T': L*(Q) — L*(Q) models a linear and continuous degradation
operator, by a convolution with a Gaussian kernel.

In the first approach let now {@y}rea be a frame, i.e. there exists positive and
bounded constants 0 < A < B < oo, such that for f € L*(),

Al fllze) < Z (oo < BlIifllee ;

AEA

we define the corresponding frame operator F,

Fof = {(f,ox)ren -

By means of the adjoint F™* the variational problem (2.1) reads in the ¢; setting as
follows
F(£) =g — TFf| 7o) + 2a/fle, (5.1)

14



Figure 1: Top left: original image. Top right: blurred version.

Figure 2: Top left to bottom right: blurred image, several iterates: 1st, 100th, 500th,
1000th, 2000th, 3000th, 4000th.

with the shorthand notation f = {f\}ca. The convex set C' is now
C = {{hxr}ren; SI;P |hy| < 1}

In accordance with Proposition 3.1, the resulting iteration scheme reads as

fo1 = (Id— Pac)(£,+ FT"g — FT*TF*f,)
= Su(f, + FT*g— FT*TF*f,), (5.2)

where S, denotes the soft shrinkage operator with shrinkage parameter av. Wavelet—
based methods of this kind (in the context of image decomposition) are considered
in [DT04, DTO05]. In particular, we have chosen here a wavelet frame that is simply
given by a translation invariant wavelet system. As the example image we consider
a finger print and its blurred version, see Figure 1. The results obtained with itera-
tion (5.2) are visualized in Figure 2 and the convergence rates are given in Table 1.
The blur operator 7" used in the experiments has the discrete spatial representation
given in Table 2. The blur convolution is easily implemented as a multiplication
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ITER | CPU | RMISE [[fy — Jorsgl/ ol
1 0.28600841 0.17322202591876
100 11.0832407 0.16619377802673
200 | 21.3800888 0.16053661204032
350 | 36.9959693 0.15341521024097
500 | 52.2572860 0.14754897184399
1000 | 104.031806 0.13476786059559
2000 | 207.406313 0.12458884053496
3000 | 312.880765 0.11962522471006
4000 | 419.051499 0.11633033283685
5000 | 524.362921 0.11388107705039

Table 1: Convergence rates for the wavelet frame-based shrinkage algorithm. We
give the number of iterations, the CPU time and the corresponding relative RMSE,
applied to the blurry fingerprint image.

0oToToTlololoslolo] 0] 0] o0
0 1 0 025050505 05/05/025] 0 | 0
0 1025105 | 1 [T 1T 1110510250 0
0 1051 1 |11 1T 111050
005 L 11| 1T 11| 1 [05]0
025105 1 1 11 1T [ 11105025
O~ Tos5 1 (11 1 111 050
0 1051 1T |11 1T 11111050
0 1025105 1 [T 1T 11110510250 0
0 1 0 1025050505 105/05/025] 0 | 0
01 00 0l0lo2l0l0l0] 0710

Table 2: Spatial discretization of the blur operator 7.

in Fourier domain, which means that we switch between the wavelet and Fourier
representation at every step of the iteration process.

Next, we present numerical results for the second (PDE) approach. In figure 3
we show the results of the iterative algorithm (4.4) on the same blurred and noisy
image. For comparison with the purely PDE-based method (without the iterative
approach corresponding to surrogate functionals) we show in Figure 4 the end results
of methods (4.4) and (4.2); they look very similar. Table 3 lists the CPU time and
the relative RMSE for the first 5000 iterations of both methods, illustrating that
the surrogate functional method produces a better error decay for the same amount
of CPU time. (These two computations were carried out on the same machine;
note that the numerical results in Table 2 were obtained on a different computer
and should thus not be compared with this Table.) Finally, we show in Figure 5
the result of a Cartoon+Texture decomposition of the same image (without blur)
obtained by the surrogate-based iteration (4.8).
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Figure 3: Top left to bottom right: blurred image, several iterates using (4.4): 1st,
100th, 500th, 1000th, 2000th, 3000th, 4000th.

With surrogate functional Without surrogate functional

Figure 4: Deblurring results obtained using the models (4.4) left and (4.2) right,
with ¢(§) = /€ + [€]? (total variation minimization with regularization).

OSV model with surrogate functional

Figure 5: Decomposition into cartoon (left) and texture (right) of the fingerprint
image without blur, obtained using the model (4.8).
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With surrogate functionals

ITER CPU RMSE|| f, = forigll/ || forig|l
1 0 0.256365806
100 | 53.7299995 0.22643654
200 | 107.440002 0.213100523
350 | 188.470001 0.19897379
500 | 268.699982 0.188747868
1000 | 542.880005 0.168787047
2000 | 1085.82996 0.153525516
3000 | 1625.08997 0.148305818
4000 | 2151.29004 0.146324202
5000 | 2684.62988 0.145639017
Without surrogate functionals
ITER CPU RMSE|| fr = forigl|
1 0.400000036 0.257728785
100 | 55.1000023 0.236117765
200 | 109.139999 0.226667866
350 | 191.959991 0.216331303
500 | 276.119995 0.208168939
1000 | 551.720032 0.189164072
2000 | 1105.32996 0.169159457
3000 | 1666.43994 0.159271181
4000 | 2234.70996 0.15375042
5000 | 2790.92993 0.150457606

Table 3: Comparison of the convergence rates: for both algorithms, we give the
number of iterations, the CPU time and the corresponding relative RMSE, applied
to the blurry fingerprint image, using the total variation minimization. We notice
that the new method using the surrogate functionals converges faster to the restored
image: the relative RMSE || f,, — forigll/|| forig|| hits the value 0.15 at 2.500 iterations
instead of 5.000, and uses a CPU time of ~ 1300 instead of 2790; there seems thus

to be a speed—up factor 2.
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6 Conclusion

In this paper, we have extended the approach of [DDDO04], or, alternatively, illus-
trated with concrete examples the abstract analysis in [CWO05]. In particular, we
have written an iteration algorithm for solving linear inverse problems of the follow-
ing general variational form

Fo(f) =llg—TfI? + 2 igg(f, hy

and we have applied it to sparse representation w.r.t. a wavelet frame. We have
also shown that the iterative approach that naturally follows from introducing surro-
gate functionals, leads to a simplified solution algorithm for PDE-linked variational
problems, resulting in a more efficient algorithm.

We have discussed convergence and a sequence of numerical illustrations that
verify the usefulness of the iteration.
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