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Abstract

This work explores two applications of a classical result on the continuity of
Nemyckii operators to optimal control with PDEs. First, we present an alterna-
tive approach to the analysis of Newton’s method for function space problems
involving semi-smooth Nemyckii operators. A concise proof for superlinear
convergence is presented, and sharpened bounds on the rate of convergence
are derived. Second, we derive second order sufficient conditions for problems,
where the underlying PDE has poor regularity properties. We point out that
the analytical structure in both topics is essentially the same.
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1 Introduction

Many nonlinear problems in function space are formulated in terms of Nemyckii
operators. This class of operators plays a role, if the nonlinearity is defined by a
pointwise nonlinear function. Due to their practical importance Nemyckii operators
have been analysed thoroughly, and many standard results have been established
(for a thorough exposition see [1]). The purpose of this note is to emphasize two
applications of one of these results to PDE constrained optimal control: we revisit
the convergence theory of semi-smooth Newton methods and derive a variant of sec-
ond order sufficient conditions for a local minimizer subject to a nonlinear optimal
control problem.

Newton’s method is a standard method for solving nonlinear systems of equa-
tions, both in finite dimensional and infinite dimensional normed spaces. Classical
assumptions in the analysis of Newton’s method are Fréchet differentiability of F
and Lipschitz continuity of F’ in a neighbourhood of a solution z,, together with
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invertibility of F’. Then local quadratic convergence of Newton’s method can be
shown.

In infinite dimensional function spaces the requirement of Fréchet differentiabil-
ity is often too strong, and in the last few years many efforts have been undertaken
to show superlinear convergence of Newton’s method under weakened smoothness
assumptions (cf. e.g. [6, 10, 4, 9]). As a result the concept of semi-smoothness was
carried over to infinite dimensional function spaces, which still guarantees superlin-
ear convergence. In [9] the semi-smoothness of Nemyckii operators was analysed,
and convergence rates for Newton methods were derived in the presence of some
smoothing operator. The corresponding proofs (cf. also [4]) rely on sophisticated
splittings of the domain of definition into several subdomains and different estimates
there.

In this note we present an alternative approach to the semi-smoothness of Nemy-
ckii operators. The idea is to apply a standard result on the continuity of Nemyckii
operators to appropriately chosen remainder terms. This, and simple application
of the Holder inequality already yield the main theorems on semi-smooth Newton
methods. Our intention is to clarify the underlying analytical structure, and to
make the theory of semi-smooth Newton methods accesible more easily.

Especially from an algorithmic point of view on Newton’s method it is often
favourable to state invertibility and smoothness assumptions as one affine invariant
assumption (cf. [2]). An affine invariant analysis of semi-smooth Newton methods
in function space is possible and has been performed in [7]. Since we concentrate
on the analysis of nonlinear Nemyckii operators, we will not use an affine invariant
framework here.

Closely related to the convergence theory of Newton’s method as an optimization
algorithm is the analysis of second order sufficient conditions for a minimizer. In
essence, a nonlinear nonconvex problem behaves locally like a convex problem near
a point, where those conditions hold. This justifies the use of Newton’s method in a
neighbourhood of this point. In the context of optimal control problems a so called
two-norm discrepancy is observed. This adds some additional complexity to the
analysis. Our aim in this note is to point out the connection between the two-norm
discrepancy, the continuity of Nemyckii operators, and a smoothing property of the
underlying PDE. For this purpose we derive a prototype theorem on minimizers
with respect to an Lo-neighbourhood.

Our paper is structured as follows. In Section 2 we consider the continuity of
Nemyckii operators and apply these results to derive estimates on remainder terms.
In Section 3 we consider semi-smooth Newton methods for a class of nonlinear prob-
lems in function space. There we give a simple proof for superlinear convergence,
alternative to the ones in [4, 9] and derive sharpened estimates for convergence
rates. For illustration we consider in Section 3.2 the direct solution of an optimality
system in function space by a semi-smooth Newton method. In Section 4 we study
second order sufficient conditions for the case that the state equation only admits
poor regularity estimates.



2 Nemyckii-Operators and Remainder Terms in L ({2)

Consider a bounded domain Q C R, two Banach spaces X,), and a function

f:AXxQ=Y
(x,t) — f(z,1).

Let L,(€2,X) be the space of p-integrable functions z : @ — X, and Ls(Q,))
be defined analogously. For Y = R we will write L(€2), and if it is clear from the
context, which domain, and image spaces are meant, we will simply use the notation
L.

Assume D C L,(Q, X). If it is well defined, then the operator

F:D— Ls(Q,Y)
x— F(z): F(x)(t) = f(z(t),t) ae.

is called a Nemyckii operator from D to L4(2,)) corresponding to f. To be well
defined, F' must necessarily map measurable functions to measurable functions.
Usually, one assumes that f is a Carathéodory function, i.e., f is continuous in
x and measurable in ¢. However, since pointwise limits of measurable functions
are measurable, one can extend this class substantially by requiring that f is a
pointwise limit of a sequence of Carathéodory functions. This is the class of Baire-
Carathéodory-functions (cf. [1]).

In addition one has to require F'(z) € L4(Q,)) for x € D. This is usually
achieved by imposing a growth condition on f, which reads (cf. [12, Section 26.3)):

Fla,t) <a(t)+blzf®  aeLy(Q,Y),be. (1)

Hence, the behaviour of f for large x restricts the choice of spaces, where a corre-
sponding Nemyckii operator F' can be defined.

The following well-known lemma on the continuity of Nemyckii operators is in
the center of our considerations. Usually, this lemma is formulated in terms of
Carathéodory functions. Its extension to Baire-Carathéodory functions is straight-
forward and very useful in the analysis that follows.

Lemma 2.1 (Continuity of Nemyckii Operators). Let X, Y be Banach spaces,
Q a Borel subset of R?, and f : Qx X — Y a Baire-Carathéodory function. For each
measurable function x : Q — X let F(x) be the measurable function t — f(x(t),t) €
Y. Let x, € Ly(Q, X) be given. Then the following assertion holds:

If f is continuous at (x.(t),t) for almost allt € Q, and F maps Ly(Q2, X) into
Ls(Q,Y) for 1 <p,s < oo, then F is continuous at x, in the norm topology.

Proof. This is a slight generalization of a well known lemma of Krasnoselski, that
can be found for example in [12, Proposition 26.7(a)]. The proof of this generaliza-
tion is literaly the same. For convenience we give a simplified proof for the special
case of f being uniformly bounded, and Q being a bounded region in R%.



By construction of Baire-Carathéodory functions, F' maps measurable functions
to measurable functions. To show continuity at z, for s < oo we consider an arbi-
trary sequence |[z5 — 2« || (o x) — 0, which converges pointwise almost everywhere.
Define the function

w(z,t) = |f(x(t), ) — fz(t), )3 -
Since F' : Lp(Q,X) — Ls(2,Y) we have W(x) : t — w(z(t),t) € L1(Q) for all
x € L,y(Q,X). Inserting the sequence z,, we conclude that W(z,) — 0 pointwise
a.e. due to the continuity of f(z,t) at (z«(¢),t). Moreover, since |f| < C and Q
is bounded, the sequence W (x,,) is majorized by an integrable (constant) function.
Thus we can apply the convergence theorem of Lebesgue to obtain

lim [ w(z,(t),t)dt =0,
n—oo (o)

and thus continuity of the operator F': L,(2, X) — Ls(Q,Y) at z,. O

Remark 2.2. It is easy to see that Lemma 2.1 cannot hold for p < s = oo, except
for the case of constant f. The case p = s = 0o is very different in character. Then
one needs uniform continuity of f in a neighbourhood of z, to show continuity of
F at x,. Moreover, no growth condition on f is required.

We turn now to Nemyckii operators with a special structure. For given 8 > 0
we consider functions r(dx,t) of the form

r:Xx0Q—"R
r(8z,t) = ¥ (dx, t; B) |6z,

with ¥ (dz,t; 3) being a Baire-Carathéodory function. Usually, such functions and
their corresponding Nemyckii operators R appear in approximation results as re-
mainder terms. The following simple lemma is central for our considerations. We
denote by ¥ the Nemyckii operator corresponding to .

Lemma 2.3. Assume that V(dz;3) € Ls(Q2). Then for 3 > 0 the following estimate
holds for q=' = s=1 + Bp~1:
1R(2)| 1, ) < 12525 )| 1,0 19217 (0.2 (2)

Proof. This is a simple application of the Holder inequality. O

If 4 is continuous at dx = 0, then we can improve our estimates, using Lemma 2.1.
Here we denote by w(7) a function with lim,_,gw(7) = 0.

Lemma 2.4. Assume that almost everywhere in Q ¢ (0x,t; 3) is continuous at x = 0
with ¥(0,t; 8) = 0. Further, assume that V(-;3) : L3(Q, X) — Ls(Q) with s < 0.
Then for ¢~ ' = s~ + pp~L:
_ B
I1RO) |, ) = w6zl L, .0 16217, (0 x) (3)

Proof. By continuity of ¢ at 0, and ¥(-; ) : L5(2, X) — Ls(2) we deduce that ¥
is continuous at 0 as a Nemyckii operator. Application of (2) yields the result. O



3 Semi-Smooth Newton Methods

Let X be a reflexive Banach space that is continously embedded in L2(£2). Consider
the equation
G(z) =0, where G(z) := Dz + F(x) (4)

with D : X — X* being a linear differential operator, and F a nonlinear Nemyckii
operator, corresponding to a nonlinear function f(x,t) that satisfies suitable growth
conditions. This formulation also includes systems of partial differential equations
and algebraic equations, which often arise in optimal control.

We assume that we can construct a family of operators F'(z), depending on x
only, such that the “linearized” equation G’(x)dx := (D +F'(x))dx =l is uniquely
solvable for [ € X*, and has a smoothing property:

16" @) M|y @)y < € (5)
uniformly in a neighbourhood of the solution x,. This is often the case, if there
is a continuous embedding X < L,(Q) for p > 2 and p~! + ¢~ = 1, such as a
Sobolev-type embedding.

If f is differentiable pointwise, then the canonical choice for F’(z)dx is the
Nemyckii operator corresponding to f'(z(t),t) dz. However, in the context of semi-
smoothness, f does not necessarily have to be differentiable pointwise in order
to construct a useful Newton method. Then F’ is set to a Nemyckii operator
corresponding to some function f/ . Following the discussion in [4] ambiguities are
resolved by setting f’ to some fixed value in regions, where the pointwise derivative
/' is not well defined. An illustration for this is given in Section 3.2.

For the analysis of Newton’s method we observe that due to the linearity of D

G'(z + é6x)0x — (G(x + 0z) — G(z)) = F'(x + 6x)dx — (F(z + dz) — F(z)) (6)

is a Nemyckii operator. Thus we may consider the following pointwise remainder
term at some point ¢ € X:

ro(62,t) i= | f'(x + 0x, )0z — (f(x + da,t) — f(x,1))],
_ (\f’(m + 6z, )0z — (f(z + 0z, t) — f(qr,t))y> .
0], *
(02, 1; )

for 1 < 8 < oo, and define for some given x € L,(Q2, X) the Nemyckii operator
U (58) : Lp(Q, X) — Ls(Q2) by

Vo (823 B)(t) = tar) (62(1), ; 5),

and analogously the Nemyckii operator R;(dx) : L,(Q,X) — Ly(2). Again, we
assume throughout this section that 1, (-, +;3) is a Baire-Carathéodory function
and thus also r,.

(7)




Remark 3.1. The remainder term (6) is used in [4] to define slant or Newton
differentiability of G at x. In contrast to remainder terms in the definition of
Fréchet differentiability, a derivative G’ is considered at x + dx, rather than at x
and may be non-unique. As already pointed out in [6, 4], (6) is well suited for the
analysis of Newton’s method.

Application of Lemma 2.4 and Lemma 2.3 yields the following convergence theo-
rem for Newton’s method. We stress that the existence of a solution z, is assumed.
Showing existence of a solution z, via Newton’s method would require stronger
smoothness assumptions.

Theorem 3.2 (Superlinear convergence of Newton’s method). Assume that
xx € X solves the equation G(x) =0, and suppose that (5) holds for some 1 < g <
p < oo uniformly in a neighbourhood of x.. Let in the following ¢, ) defined as in
(7) be a Baire-Carathéodory function. Then the following two assertions are valid:

(i) Assume that almost everywhere in Q v, )(6x,t;1) is continuous at dx = 0
with ¥y, 4 (0,¢;1) = 0. Further, assume that W, (1) : Lp(, X) — Lg()
with s < oo. Then for ¢~' = s~! 4+ p~1 Newton’s method converges locally
superlinearly to x, in the normed space (X, L,(Q, X)).

1 (3 0): ,X) — Ly or 8 > 1 is uniformly bounded as an operator,
1) If W, (5 6) « Lp(2, X Ls(Q 8>14 ' ly bounded
then Newton’s method converges locally superlinearly to x, in the normed space
(X, Ly(Q, X)) with the rate 3, as long as ¢~ = s~ + Bp~1L.

Proof. Consider a starting value = := x, + dz, then one Newton step x — x4 yields
Ty — . = —G'(2)71G(x) + (z — z4)
= G'(2)" (G (z)dz — (G(z) — G(x)))
= G'(z) Y F (x4 + 6x)0x — (F(z4 + 6x) — F(x4))).

We denote by R,, the Nemyckii-operator corresponding to
and we obtain by (5)
lzy — x*HLP < HG,(QU)_lqu—»Lp HRx*(fsx)HLq .

Consider now part (i) of our assertions. Recalling the definition of ., (dx,¢;1) in
(7) and using its pointwise continuity, Lemma 2.4 yields

[24 = il < CllRe, (62)| 1, = wlllz = 2ullp,) 12 = 2l -

This is just the definition of local superlinear convergence.
Assertion (ii) follows by Lemma 2.3 applied to v, (6, t; 3), which shows

s = 2all, < Clle—.lf .



Remark 3.3. Obviously, pointwise continuity of ¢,, at x, is the essential require-
ment for Newton’s method to converge superlinearly. This requirement can be
checked easily for a given nonlinear function f. As an example the max(0,x)-
function is considered in Section 3.2.

To conclude the continuity of ¥, from the continuity of 1, the well-known
L, — L, norm-gap appears. This happens, even if f is pointwise differentiable and
is a consequence of the failure of Lemma 2.1 for p < co and s = co. To overcome
this difficulty we have to assume the smoothing property (5).

3.1 Small Sets of High Nonlinearity

In many cases the boundedness condition ¥, (dz; ) € Ls(9) is formulated in terms
of subsets of  where ¥,_(dx;«) is large. Similarly to [9] we can define the set

0. = 0.(60) 1= {1 € Q1 Uy (6250)(1) > £}

for a > 1, together with the assumption that there is p > 0 and C < oo, such that
for the Lebesque measure || of Q. the following bounds hold:

sup |Q:(0x)| < Ce7. (8)
6]l ., <p

The qualitative meaning of this assumption is that the sets of high nonlinearity are
small near x,. We will give an illustration of this assumption in Section 3.2. For
the sake of mathematical exactness we remark that since 0z € L,(Q2, X), Q.(dz) is
only well defined up to a set of zero measure, but this does clearly not affect the
assumption (8).

Relations like (8) can be described conveniently in terms of the distribution
function Sy of a positive function f, defined by

Sile) = [|{t € Q: f(t) > e}].

The distribution function measures the size of the sets, where f is large (cf. Fig-
ure 1). Obviously, S is positive, monotonically decreasing, bounded on bounded
domains, and has bounded support if f is bounded.

Lemma 3.4 (The Distribution Function). Let Q be a o-finite measure space
and f: Q@ — [0, 00] measurable. Then

/Q F(t)dt = /O " S5(e) de. )

Let ¢ : [0,00] — [0, 00] be locally absolutely continuous, strictly monotone (increas-
ing or decreasing), and bijective. Then

| swa= [ speenioeae (10)
Q 0



1 1
o9t B 0.9
o8t B o8t
07} B 07t
06 — — — — —fF — — — — — — — — % — — — — —+ 0.6
£ osf < o5}
«
0.4r A 0.4 !
|
03 B 0.3 !
|
02t B 0.2 |
|
0.1t q 0.1 |
|
0 0
0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

Figure 1: A function f(t) (left) and its distribution function S¢(e) (right). The
value of the distribution function at e is given by the area on which f is above e.

Proof. Equation (9) is a special case of [11, Theorem 8.8]. Equation (10) follows
from the substitution rule (cf. [11, Theorem 8.1]), which shows that with é = p(e):

| si@de= [ sitetenis el ae

In terms of the distribution function (8) reads
S\I/z*(ézc;a) (5170{) < C'min {’Q|a 57} > (11)

with a constant C' that does not depend on dz, as long as [|0z||, < p for some
p>0.

Lemma 3.5. If (8) holds, then U, (dx;a) € Lg(Q) for all1 < a <1+ ys~L.

Proof. Setting ¥ := ¥,_(dz;a) we deduce

91, = 19115, = 1o @)1, = [|50 (€0-)

L1

Inserting (11) and using (10) we obtain

v 6

]L gc/ min {|Q], &7} e1=5~1ge (12)
1 0

< C'min {|Q], &7} 0= ;’O

which is bounded, if v+ (1 — a)s > 0 and o > 1. O

We observe that the limiting case o = 1 + s~ cannot be achieved, since

1/z & L1([0,¢]). Combining Lemma 3.5 and Theorem 3.2 we obtain:



Theorem 3.6. Let the general assumptions of Theorem 3.2 hold. Assume that (8)

holds for some
-1

1
l<a< —~. (13)

1+p
Then Newton’s method converges locally superlinearly in (X, |||, (o x)) with the
rate B = a.

Proof. To be able to apply Theorem 3.2(ii) we have to assert that U, (dz;f5) €
Ly(Q) for ¢7' = 57! + pp~!. By Lemma 3.5 this is true for 8 = a < 1 + s~ L
Elimination of s~! yields the restriction (13). O

Under the given restrictions on o Theorem 3.6 gives us a result as good as we

can expect. If we additionally assume that r,, is globally Lipschitz continuous,
Lyg~!
1+vp~—1°
two parts, a technique that is simliar to the one used in [9], or [4]. However, as

it will turn out, inspite of a considerably increased technical effort, there seems no
substantial improvement on (§ possible: we merely obtain the closure of the open
interval in (13) as a restriction on the rate of convergence.

then we may also consider the case a > For this we have to split € into

Theorem 3.7. Let the general assumptions of Theorem 3.2 hold. Assume that (8)
holds for some )
1+70 < ? (14)
L+9p q
If additionally ¥, (dx;1) is uniformly bounded in Lo (i.e. T4, (0x,t) is uniformly
Lipschitz continuous), then we obtain superlinear convergence with the rate

1+yq!
1+Ap~t
Proof. Depending on a parameter £ we divide (2 into two parts. In view of (8) we

call Q, the set, where U, (dz;a) > k!~ and obtain |Q,| < Ck?. On €, we use
the uniform boundedness of W, (dz;1) in L to estimate

B= (15)

—-1_,—-1 —-1_,—-1
1R (61 0y = W (03 )L 1261770 2], < 0077 oz,
Setting k := H(SxH?p (with © to be chosen later) this yields:

S -1_,-1
| B (02) 1 1, 0y < C Il 7@ 7774 (16)
On the remaining set 2\ Q,; we apply, as before, the Holder inequality
HRr*(ém)HLq(Q\QK) < ||‘I’:r*(5$§a)||LS(Q\QK) ||5$||%p

with s71 := ¢~! — ap~!. Since ¥, (dx;a) is bounded on Q \ Q, by construction,
we show just as in the proof of Lemma 3.5 (use  instead of 0 as the lower bound
in the integral (12)) that for 0 < s ! <1,and ys ' +1—-a <0

s’l —Q
Vo, (625 0)| 1, (\q,) < CK” e
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Here hypothesis (14) ensures that the above inequalities for s~" are valid. Hence,

inserting the proper values for x and s~ we obtain
O(ys 1 +1—a)+a Ov(g 1 —ap~H)—O(a—1)+a
1B, (52) |1, o0y < C N0 ][ 05 H7H < oo 20— 7Ot )
Adding both parts we have
HRM(M”)HL(Q) = ”Rﬂf*((sx)H%q(Qn) + HRx*((S@’)H%q(Q\QN) )

and a choice of © that balances (16) and (17) will provide the sharpest results.
Thus, comparing the exponents in (16) and (17), we choose © such that

V(g —p H+1=0y¢c ' —ap™H —O(a—1)+a (18)
which yields © = (yp~! + 1)7!. Note that a cancels out in solving (18) for ©.
Inserting © into (16) we finally obtain (15). O

19 =

18 =

17 : : =

16 -

14 =

13- : : 4

12 =

11 =

1 1 1 1 1 1 L1l
2 4 6 8 16 32 64 ®

p

Figure 2: Convergence rates [ according to Theorem 3.7 plotted for p € [2, 0],
g l4+pt=1andy=1.

In [9, Example 3.53] an example was constructed that shows that the rate in

Theorem 3.7 can be considered sharp. For completeness we note that in the re-
I4yg~?
I+p~T

maining case o = the same techniques as in the proof of Theorem 3.7 lead

to the estimate

[ BRa, (02) 1, < C ([0, )] |67, -

Thus, we obtain convergence that lags behind the rate o by a logarithmic factor.

3.2 Application to an Optimal Control Problem

As an illustration we consider the simple optimal control problem:

1 2 L2
min 5 1y = YallT, @) + B ullZ, @)

st. —Ay—u=0, u > 0.

y‘aQ:O’
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To compute (u,y) one usually introduces an adjoint state A and considers the solu-
tion of the first order necessary conditions:

y_yd_A)‘zoa

—Ay — max(\,0) =0,

y‘aa:o

with v = max(A,0). This is a nonlinear system of equations G(x) = 0 of the form
(4) with = (y, A). Its direct solution in function space by Newton’s method has
been considered in [4, 9]. We revisit this example using the results gained in the
previous sections.

Choosing a Linearization. The nonlinearity in this system is given by the func-
tion m(A) := max(\, 0), for which we define a pointwise linearization

1 : A>0
mI(A)::{o A<,

At the nondifferentiable point A\ = 0 the definition m’(0) := 0 resolves the non-
uniqueness of the linearization there. Any other fixed value would also have been
possible. With this definition we can construct a Jacobian matrix G'(z) to (19),

given by
0= (s ity )

Analysis of the Remainder Terms. Let z. = (y., A«) be the solution of (19).
Computation of the remainder term yields

G'(zs + 07)ox — (G(24 + 07) — G(24)) = ( RA*(()(SA). >

Here Ry, (6)\) is a Nemyckii operator corresponding to
ra, (ON) 1= m/ (M + NN — (m( s + 6A) — m(\y)).

We observe that for each A, € R there is an e(\,) > 0, such that r,, is identically
0 in [Ax — &, A\« + €. Indeed, in the case A, # 0 there is €, such that A - A, > 0 for
all A — A\, < e. This leads to a choice of m’ such that r,, vanishes. If A, = 0, then
ry, vanishes, too, as can be verified easily. Clearly, the same holds for

N (W 2V

which is a Baire-Carathéodory function and pointwise continuous at A = 0. Note
that this result is independent of the definition of m’(0). Moreover, ¥y, (+;1) is
uniformly bounded, since 7y, is Lipschitz continuous. Hence, setting § = 1 in
Theorem 3.2, the well known result of local superlinear convergence of Newton’s
method follows, if a smoothing property (5) holds for some ¢ < p.
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Smoothing Property. Since the nonlinear terms in our system depend on the
adjoint state A only, it is sufficient to consider a smoothing property for this com-
ponent. It can be shown (cf. e.g. [7, Chapter 4]) that such a property holds for
¢ ' +p ! =1, as long as for —Ay = u we have lyll., < cllully,- We then obtain

0Y+ \ _ gt 0 B
( Iy > =G(2) < Ry (A—\) ) = [|6A4 [, < ClIRA. (A )\*)HLq.

Especially, on regular domains p = oo and ¢ = 1 is usually obtained by H ?-regularity
results for solutions of the state equation.

Rates of Convergence. To obtain rates of convergence we follow [9] and assume
that
Hte Q:0< | \(t)] <e}| <Ce7, (20)

a condition that resembles a strengthened strict complementarity condition. If
IA = Ai] < |A&l, or Ax =0, then 7y, = 0. Otherwise, we have ry, < |\i|. Hence, for
any 1 <a < oo
|>\*| 1—
A= ga) < ————— < |\ 7¢

and thus finally (20) becomes (8):
Q] = [{t e Q: W)\, (0N a)(t) < 6176“}‘ < Cen.

By Theorem 3.7 we obtain the rate of convergence 3 as in (15). Especially, for the
very common case v = 1, ¢ = 1, p = oo we obtain § = 2. Thus, Newton’s method
converges locally quadratically in function space. This observation coincides nicely
with numerical results, as for example in [9, 5].

4 Second Order Sufficient Conditions for a Class of Op-
timal Control Problems

Our second application deals with second order sufficient conditions in optimal
control. Again, we denote by y the state, and by u the control, and we set x := (y, u).
For simplicity we will only consider the case without inequality constraints and a
quadratic functional for u. The extension to control constraints is straightforward.
Moreover, we will assume that the control enters the state equation linearly. Thus,
our model problem reads:

min J(z) := /Qj(y) + %uQ dt s.t. (21)

Dy+c(y) —u=0.

Here j : R — R and ¢ : R — R are assumed to be twice differentiable nonlinear
functions, and D is a linear differential operator.
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Often, due to the so called two-norm discrepancy, one restricts the analysis of
second order sufficient conditions to an L.,-neighbourhood of the optimal solution
(cf. e.g. [8] and references given there). As a consequence, the analysis of second
order sufficient conditions is restricted to problems, where the state equation maps
Ly(€) into Lo (Q2) for some 1 < g < oo. Many partial differential equations exhibit
such a property, but often the needed regularity results require further analysis and
additional regularity assumptions on the domain of definition and the data. We
will point out in the following that the two-norm discrepancy is a consequence of
the failure of Lemma 2.1 for s = 0o, and that in some cases a smoothing property
of the underlying PDE (cf. (22) below) can be employed to overcome its effects.

Control-to-State Mapping. For our considerations we assume that the control-
to-state mapping S : u — y is well defined and Lipschitz continuous as a mapping
Ly(Q2) =Y — L,(Q) with p > 2:

15(ur) = S(ug)ll, < [1S(ur) = S(ug)lly < Cllur —usl, (22)

for some reflexive Banach space Y — L,(Q2). Such a setting is usually satisfied, if
the differential operator D is an isomorphism between a Sobolev space Y and its
dual Y*, and ¢ satisfies suitable monotonicity and growth conditions.

Let . = (y«,us) be a point that satisfies the first order necessary conditions.
Assume further that S is Fréchet differentiable at u, with respect to u in the sense
that there is a continuous linear operator S’(u.) : Ly(Q) — Y with

15" ()0t — (S(us 4 6u) — S(us)) ||y = o ([0ull,) Vou € La(92). (23)

Such a result can usually be shown via an implicit function theorem.

Lagrangian Functions. To derive second order sufficient conditions we introduce
the Lagrangian function

L(z; ) := J(x) + (A, Dy +c(y) — u)yy . (24)

The first order necessary conditions state the existence of a Lagrange multiplier
A € Y™ =Y, such that L(zs,Ax) = 0. Since j and ¢ are twice pointwise
differentiable at y, we can formulate the following second order condition at x:

Lua(r; M)02% > a||oull7, Yoy = §'(u.)du (25)
with L., given by
Lo (243 M\ )02? = <5y,j”(y*)5y>yvy* + (X, c/'(y*)5y2>yvy* + (0u, 6u) -

It remains to study in which sense (25) is an essential part of second order sufficient
conditions for z, being a minimizer of (21). The results that we will obtain are
related in character to the second order sufficient conditions from [3] considered
also in [10], which rely on a similar structure in a quite different framework.

We start by showing that (25) carries over locally from the linearized problem
to the nonlinear problem.
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Lemma 4.1. Assume that Lyy(x.;A)(-,-) 1 Y xY — R is a continuous bilinear
form, and suppose that (22), (23), and (25) hold. Then

Lo (za3 M)02% > @ ||0ull7, Yoy = S(us + du) — S(uy) (26)
for some 0 < & < a and sufficiently small du.
Proof. Let 03 := S (us)du, and 0y := S(u, +du) — S(us). By (22) and (23) we have
16ylly = OClloullz,), 110glly = OlldullL,), 110y = dglly = ol[dullL,)-
Thus for Lyy(x«; A)(:, ) being a continous bilinear form:
Ly (6y,0y) — Lyy(69,09) = Lyy(dy — 67,6y + 69) < || Lyy|l O(H&iHig)-
This implies Ly (74; M )02? > Lo (T4 A )07 — o(||5u|\L2)2. O

Analysis of the Remainder Terms. Let now p(dy) be defined by
1
p(0z) := L(zy + 05 \y) — <L(x*; M) + Ly (i A )ox + §Lm(x*; )\*)53:2> . (27)

which is the second order remainder term of a formal Taylor expansion of L at
z4. We observe that p does not depend on u due to the particular choice of (21).
Moreover, due to the linearity of D we can write p(dz) as follows:

p(ox) = / R(dy) dt.
Q
Here R is a Nemyckii operator, corresponding to
r(8y, 1) = 17 (8y) + Au(t)r(8y),
with 77 and ¢ defined as the pointwise second order remainder terms for j and c:

7 (6y) = j(yu + 0y) — (F(ys) + 3" ()0y + 3" ()09 |
r¢(6y) = c(yx + 6y) — (c(ys) + ¢ ()Y + " (y:)5y7) -

Since the first order necessary conditions hold, i.e., L,(z4; ) = 0, the first
order term in (27) drops out, and inserting (26) we derive

1
L(zy 4 0x; \) = L(my; M) + §Lm(m*; A)ox? + / R(oy) dt
“ (28)
1.
> L(xs, M) + 56 |0ullL, — | R@Y)I,

Thus, we have to assert || R(dy)||,, = 0(”5u||%2) in order to show that z, is a local
minimizer of (21). For this purpose we use the framework developed in Section 2
and define U (dy;2) as the Nemyckii operator corresponding to

_ |r(dy, 1)l

= (29)

Y(0y,t;2) :
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Since j and c are pointwise twice differentiable almost everywhere, ¥ (dy,t;2) is
pointwise continuous almost everywhere with (0,¢;2) = 0. If W(-;2) : L,(Q)
Ls(§2) for suitable s < oo, then we obtain by Lemma 2.4 with § = 2 and 1
~1 ~1

s+ 2p

—

1RO, = wlsyllr,) I6yl7, -

Now we have arrived at the crucial point of our derivation. The failure of Lemma 2.1
for p < oo and s = oo implies that we have to choose p > 2, which is the cause for a
norm-gap. Obviously we face the same situation as in the case of Newton methods
(cf. Remark 3.3). To overcome this difficulty we need the smoothing property (22)
to estimate

1RG5, = oloul2,) = o (Jl6ul?, ). (30)

Inserting our estimate (30) into (28) we obtain
L. 2 2 L. 2
L+ 82 0) > LX) + 2 [0ul, — of[8ul,) > L. A) + Sa [6ul,

for all sufficiently small ||dul|;,, dy := S(ux + du) — S(ux), and some 0 < & < a.
Since both x, and x, + dz satisfy the equality constraints it follows that

1
(s +02) > J(2:) + 56 [6ul7, - (31)

Consequently, x, is a local minimizer of (21) among all feasible pairs (u,y) with
sufficiently small [lu — w.||p,.
We thus have derived the following prototype result:

Theorem 4.2 (Second Order Sufficient Conditions). Consider the optimal
control problem (21) and a feasible solution x, = (Y., us). Let L(xy; Ai) be the La-
grangian function (24) and W (dy;2) the Nemyckii operator corresponding to 1 (dy,t;2),
defined by (29). LetY be a reflexive Banach space Y — L,(Q) with p > 2. Suppose
that the following conditions hold:

(i) j: R —= R and c: R — R are twice differentiable functions.

(i1) The equation Dy + c(y) — u = 0 admits a solution operator S : La(Q2) — Y,
y = S(u), that satisfies (22) and (23). S’(us) : L2(Q) — Y is continuous as
a linear operator.

(ii) Lyy(xs; M) (-,-) Y XY — R is a continuous bilinear form.
(iv) W(dy;2) maps L,(Q) into Ls(Q) for st +2p~1 =1.

(v) T« = (Y«,us) satisfies the first order necessary conditions Ly(z«;A) = 0 and
the second order condition (25).

Then x, = (Ys, ux) s a local minimizer of (21) among all feasible pairs (y,u), for
which ||u — u.| 1, is sufficiently small, and (31) holds.
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Condition (4i¢) implies the requirement that j”(ys«), A« (y«) € Lq(€2), such that
¢ ' +2p~! = 1. In view of (1) condition (iv) implies that the remainder term 7 has
to satisfy the following growth condition

r(8y, 1) < alt) |6yl* +b1oy[",  a(t) € Ly(Q).

Remark 4.3. If no smoothing property is available, for example, if we have to deal
with a remainder term R(du) depending on the control, then we can still resort to a
uniform continuity result for ¢(du, ¢;2) with p = s = 0o, as indicated in Remark 2.2.
Application of the Holder-inequality then gives us the following estimate in place
of (30)

1Rl , = w(llull, ) 16ullZ, -

This leads to the classical two-norm discrepancy: (y., u.) is a minimizer of J among
all feasible (y,u) with sufficiently small |lu — u.[|; (), and (31) holds.
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