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A Contact–Stabilized Newmark Method for

Dynamical Contact Problems

Peter Deuflhard, Rolf Krause, Susanne Ertel

Abstract

The numerical integration of dynamical contact problems often leads to instabilities at

contact boundaries caused by the non-penetration condition between bodies in contact.

Even a recent energy dissipative modification due to Kane et al. (1999), which discretizes

the non-penetration constraints implicitly, is not able to circumvent artificial oscillations.

For this reason, the present paper suggests a contact stabilization which avoids artificial

oscillations at contact interfaces and is also energy dissipative. The key idea of this contact

stabilization is an additional L
2-projection at contact interfaces, which can easily be added

to any existing time integration scheme. In case of a lumped mass matrix, this projection

can be carried out completely locally, thus creating only negligible additional numerical

cost. For the new scheme, an elementary analysis is given, which is confirmed by numerical

findings in an illustrative test example (Hertzian two body contact).
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Introduction

Dynamical contact problems play an important role in mechanics and biome-
chanics. One of the main difficulties for the development of efficient and re-
liable discretization schemes in time and space is the non–penetration condi-
tion at the contact interfaces between bodies. Their improper handling might
lead to spurious numerical oscillations at the interfaces, therefore spoiling the
accuracy of the obtained solution and slowing down the overall computing
time considerably. For the design of time integration schemes for contact
problems, various approaches can be found in the literature, see [12] for a
monographic survey. One of the most popular time discretization schemes
for dynamical contact problems is the Newmark method. In the absence of
contact, the classical Newmark scheme is well–known to be symplectic [5, 14]
and of second order consistency in the symmetric case. For contact problems,
Kane et. al [6] recently suggested a stabilized modification, where the contact
forces are treated fully implicitly. In contrast to the classical scheme, their
modified scheme is energy dissipative. Unfortunately, artificial oscillations
may show up.

The present paper deals with a further modification, which in the presence
of contact is also energy dissipative, but avoids the artificial oscillations.
Our stabilization is motivated by the requirement that at contact interfaces
the contact forces should balance. This leads us to an additional discrete
L2-projection in each time step which can easily be incorporated into the
Newmark scheme by simply changing the predictor step. The reason for this
projection to be discrete can be found in the fact that by discretization in
space the boundary gets assigned to a mass, although for the continuous
case the boundary has measure zero. Through the Newmark scheme, this
discrete boundary mass gets translated into forces at the contact boundary,
which can be found to be one of the main causes for the artificial oscillations
at the interface. Now, by means of our contact–stabilization, the non-physical
part of these boundary forces is removed. We want to mention that recently
a different approach for avoiding the oscillations at the boundary has been
presented which is based on completely removing the mass in a small strip
on the boundary, see [7]. Our approach, however, leaves the mass matrix
unchanged and can easily be applied for arbitrary spatial discretization.

The paper is organized as follows. In Section 1, we first present basic fea-
tures of the continuous dynamical contact problem. Both strong and weak
problem formulation as well as conservation properties are discussed. In Sec-

1



tion 2, we synoptically present the classical Newmark scheme, its modification
by Kane et al., and our new contact–stabilized scheme. Finally, in Section 3,
we illustrate our elementary theoretical analysis by numerical findings at a
Hertzian contact problem. Throughout the paper, unless explicitly specified
otherwise, we ignore the spatial discretization, which has been described in
detail in [9, 10, 15].

1 Dynamical contact problems

Before we dive into the details of numerical simulation, we want to study the
main properties of the continuous dynamical contact problem. In Section 1.1
below, we present the strong and the weak problem formulation in parallel.
After that, in Section 1.2, we discuss conservation properties, which will play
a major role in the numerical realization as worked out in the subsequent
Section 2.

1.1 Strong and variational problem formulation

In what follows, we give the strong and the weak problem formulations for
the dynamic contact between two elastic bodies. The weak formulation is
given in terms of a variational inequality.

Notation. All domains treated here are understood to be subsets in R
d

with d = 2, 3 and corresponding running indices 1 ≤ i, j, l, m ≤ d throughout
the paper. Let the two bodies be identified with the domains ΩK , K ∈
{S, M} where S and M stand for slave and master body, respectively. Let the
solution be decomposed according to u = (uS,uM). Each of the boundaries
∂ΩK with associated outward directed normal ν

K is decomposed into three
disjoint parts: ΓK

D , the Dirichlet boundary, ΓK
N , the Neumann boundary,

and ΓK
C , the possible contact boundary, see Figure 1. The actual contact

boundary is not known in advance, but is assumed to be contained in a
compact strict subset of ΓK

C . Set Ω = ΩS ∪ ΩM and Γ∗ = ΓS
∗ ∪ ΓM

∗ for
∗ ∈ {D, N, C}.

Tensor and vector quantities are written in bold characters, e.g., σ and v

with components σij and vi. The partial derivative with respect to the spatial
variable xj is indicated by a subindex j, e.g., v,j . The summation conven-
tion is enforced on all repeated indices ranging in 1, ..., d. Let L2(ΩK) =
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Figure 1: Two body contact problem and decomposition into ΓD, ΓN and
ΓC

(L2(ΩK))d and L2 = L2(ΩS)×L2(ΩM ). The Sobolev spaces of displacements
with weak derivative in L2(ΩK) are denoted as H1(ΩK) = (H1(ΩK))d. For
Dirichlet boundary conditions we define the subspaces H1

D(ΩK) = {v |v ∈
H1(ΩK), v|ΓK

D
= 0}, and H1

D = H1
D(ΩS) × H1

D(ΩM). Let H1
D be equipped

with the norm

‖u‖2
H

1

D
= ‖uS‖2

H1(ΩS) + ‖uM‖2
H1(ΩM ) .

Scalar products are written in the form (·, ·)L2(ΩK) and (·, ·)H1(ΩK) with in-
duced norms ‖v‖2

L2(ΩK) = (v,v)L2(ΩK), ‖v‖
2
H1(ΩK) = (v,v)H1(ΩK).

Elasticity model. The materials under consideration are assumed to be
linearly elastic, i.e. the stresses σ satisfy Hooke’s law

σij(u
K) = EK

ijml u
K
l,m ,

where Hooke’s tensor EK = (EK
ijml) is sufficiently smooth (with EK

ijml ∈
L∞(ΩK)), symmetric, and uniformly positive definite. The linearized strain
tensor is

ε(uK) =
1

2
(∇uK + (∇uK)T ) .

Unfortunately, this means that our scheme is not invariant under rigid body
motions.
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Non-penetration condition. At the contact interface ΓC , the two bodies
may come into contact but must not penetrate each other. In order to derive
a non-penetration condition, we assume a bijective mapping φ : ΓS

C −→ ΓM
C

between the two possible contact surfaces to be given. Following [3], we
define linearized non-penetration with reference to φ by

[u ·ν]φ(x, t) = uS(x, t) ·νφ(x)−uM (φ(x), t) ·νφ(x) ≤ g(x) , x ∈ ΓS
C . (1.1)

This condition is given with respect to the initial gap

ΓS
C ∋ x 7→ g(x) = |x − φ(x)| ∈ R

between the two bodies in the reference configuration and we have set

νφ =





φ(x) − x

|φ(x) − x|
, if x 6= φ(x) ,

ν
S(x) = −ν

M(x) , if x = φ(x) ,

where | · | stands for the Euclidean vector norm in R
d.

Under certain assumptions on φ and on the geometry of the deformed
configuration (see [3]), the above defined non-penetration condition (1.1) is
a close approximation of the geometrical non-penetration condition. In this
case we call [v · ν]φ the jump of v in normal direction at the interface. We
define the contact traction σ̂(uK) = σ(u)νK . The equilibrium of the contact
forces at the contact boundary is defined by

∫

ΓS
C

σ̂(uS(xS, t)) · vM(φ(xS)) daS = −

∫

ΓM
C

σ̂(uM(xM , t)) · vM(xM) daM (1.2)

for every function vM ∈ H1/2(ΓM
C ). Introducing the transfer operator Φ :

L2(ΓM
C ) −→ L2(ΓS

C) and its adjoint Φ∗, we can rewrite (1.2) as

σ̂(uM ) = −Φ∗
σ̂(uS) (1.3)

on ΓM
C , see again [3]. We therefore can define the normal and tangential

contact stresses by σνφ
and σt = σ̂ − σνφ

· νφ.

4



Strong formulation. This formulation consists of the equilibrium condi-
tions (1.4a) in ΩS and ΩM , the boundary conditions (1.4b), and (1.4c) on ΓD

and ΓN and the contact conditions (1.4d)–(1.4h). Thus we arrive at

ρüi − σij(u),j = fi in Ω × [0, T ] (1.4a)

u = 0 on ΓD × [0, T ] (1.4b)

σij(u) · νj = πi on ΓN × [0, T ] (1.4c)

σ̂(uM) = −Φ∗
σ̂(uS) on ΓC × [0, T ] (1.4d)

σνφ
≤ 0 on ΓC × [0, T ] (1.4e)

[u · ν]φ ≤ g on ΓC × [0, T ] (1.4f)

([u · ν]φ − g) σνφ
= 0 on ΓC × [0, T ] (1.4g)

σt(u) = 0 on ΓC × [0, T ] (1.4h)

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) in Ω (1.4i)

Due to the boundary condition (1.4e), only compressive normal stresses
at the contact interface are allowed; by the complementarity condition (1.4g)
the normal stresses must vanish in the absence of contact.

Variational formulation. For the weak formulation, let the convex set of
all admissible displacements be denoted by

K = {v ∈ H1
D | [v · ν]φ ≤ g} (1.5)

and the bilinear form a(·, ·) by

a(v,w) =
∑

K∈{S,M}

∫

ΩK

σ(vK) : ε(wK) dx = fint(v)w, v,w ∈ H1
D .

For the data assume that f(·, t) ∈ L2, π(·, t) ∈ H−1/2(ΓN) for all t ∈ [0, T ].
On H1

D, the linear functional fext, which accounts for the volume forces and
the tractions on the Neumann boundary, is given by

fext(v) = (f ,v)L2 + (π,v)L2(ΓN ).

In what follows, the L2 scalar-product is understood to be weighted by the
density ρ(x). Hence we may set ρ = 1 for ease of presentation.
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We are now ready to write our problem in weak formulation as the hy-
perbolic variational inequality: For every t ∈ [0, T ] find u(·, t) ∈ K with
ü(·, t) ∈ L2 such that

(ü,v − u)L2 + a(u,v − u) ≥ fext(v − u), v ∈ K. (1.6)

This formulation is derived via integrating by parts and exploiting the bound-
ary conditions, see [2] and [8].

A formulation equivalent to (1.6) is derived incorporating the constraints
v(t) ∈ K for almost all t ∈ [0, T ] by the characteristic functional IK(v),

IK(v) =

{
0 , if v ∈ K

∞ , else
, v ∈ H1

D .

Upon representing the internal and external forces according to

(F(w),v)L2 = a(w,v) − fext(v) , w,v ∈ H1
D , (1.7)

the variational inequality (1.6) can be reformulated as the variational inclu-
sion

0 ∈ ü + F(u) + ∂IK(u) (1.8)

utilizing the subdifferential ∂IK of IK (see, e.g., [4]). Once this variational
inequality has been solved, we define the contact forces Fcon as

(Fcon(u),v)L2 = (ü + F(u),v)L2

= (ü,v)L2 + a(u,v) − fext(v) ,
(1.9)

where we have used (1.7) in the second line. Upon exploiting (1.6), for v ∈ K,
we arrive at

(Fcon(u),v − u)L2 = (ü,v − u)L2 + a(u,v − u) − fext(v − u)
≥ 0 .

(1.10)

Summarizing, we may write Newton’s equation for the constrained case as

ü = −F(u) + Fcon . (1.11)

1.2 Conservation properties

Since we cannot expect the energy to be constant in time in case of non-
vanishing external forces acting on the volume or stemming from Dirichlet
boundaries, we examine conservation under the necessary assumptions ΓD =
∅ and fext = 0. Under this assumption we discuss the following conservation
properties (see, e.g., [13]):
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Linear momentum L. Inserting the constant trial function w ∈ R
d into

the variational formulation (1.6), one can easily check

d

dt
L =

d

dt

(∫

Ω

u̇ dx

)
= 0.

Angular momentum J . In order to show conservation of angular mo-
mentum, we would have to verify that

d

dt
J =

d

dt

(∫

Ω

u × u̇ dx

)
= 0 . (1.12)

In [13], Laursen and Chawla inserted a trial function w×u with w constant
and introduced a solution dependent surface–to–surface mapping Φ̃(u, ·).
Upon integrating by parts, they arrived at the boundary integral

∫

ΓS
C

w · [σ̂ ×
(
uS − uM ◦ Φ̃

)
] daS .

This integral vanishes due to the collinearity of the gap
(
uS − uM ◦ Φ̃

)
and

the contact traction σ̂. Unfortunately, in our case, the above collinearity
cannot be expected to hold, since our transfer operator Φ originates from
the linearized non-penetration condition (1.1) and, hence, Φ 6= Φ̃. From
the point of view of the spatial problems, the linearized non-penetration
condition (1.1) is consistent with the overall modeling assumption of small
deformations, where angular momenta are of less importance. Moreover, in
combination with the linear material law, this approach gives rise to a convex
constrained minimization problem for fixed time t, thereby preserving the
convex structure of the unconstrained spatial problem.

Energy E . In our context, the energy has the form

E(u) = Ekin(u) +
1

2
a(u,u) , (1.13)

where

Ekin(u) =
1

2

∫

Ω

|u̇|2 dx .
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The proof of energy conservation typically exploits an additional requirement
at the contact boundary, known as persistency condition,

σνφ

d

dt
([u · ν]φ − g) = 0 on ΓC . (1.14)

Assuming u̇ to be sufficiently smooth we may use it as a trial function
and reformulate (1.14) as which leads to

d

dt
E =

d

dt

(
1

2

∫

Ω

|u̇|2 dx +
1

2

∫

Ω

σ(u) : ε(u) dx

)

=

∫

ΓS
C

σ̂(uS) ·
(
u̇S(xS) − u̇M (φ(xS)

)
daS

= 0.

The above condition (1.14), sufficient for energy conservation, is widely dis-
puted, since its physical meaning is unclear (see, e.g., [12]). For this reason
it will not enter in the construction of the investigated algorithms.

As a consequence of the above considerations we will investigate the var-
ious schemes with respect to conservation of linear momentum and energy,
see below.

2 Newmark schemes

This section deals with the Rothe discretization of dynamical contact prob-
lems, i.e., a discretization first in time and then in space. Details of the
spatial discretization (adaptive finite elements) are omitted here and can be
found in [9, 10]. Unless explicitly specified otherwise, we do not distinguish
between the continuous and the corresponding spatially discretized quanti-
ties in our notation. However, whenever particular properties of the spatial
discretization are exploited, this will be indicated.

Discretization in time. Let τ > 0 denote a discrete timestep subdividing
the considered time interval [0, T ] into equidistant parts [tn, tn+1] with the
discrete times tn = nτ for all n ∈ {0, . . . , T/τ}.
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2.1 Classical scheme

We start by considering the time discretization of the differential equa-
tion (1.11) in the dual of H1

D. The classical Newmark scheme [12] is based
on Taylor expansions of the displacements u and the velocities u̇. Neglecting
terms of higher order and introducing the traditional parameters γ, 2β ∈ [0, 1]
leads to

un+1 = un + τ u̇n + τ2

2

(
(1 − 2β)ün + 2βün+1

)
,

u̇n+1 = u̇n + τ
(
(1 − γ)ün + γün+1

) (2.15)

with un approximating u(·, tn). For ease of writing we introduce the short-
hand notation

Fλ(un,un+1) = (1 − λ)F(un) + λF(un+1) , λ ∈ [0, 1] . (2.16)

Upon inserting (1.8), we obtain the time discretization of our contact problem
(1.6) as

un+1
pred = un + τ u̇n

0 ∈ un+1 − un+1
pred + 1

2
τ 2

(
F2β(un,un+1) − F̃2β

con(u
n,un+1)

)

u̇n+1 = u̇n − τ (Fγ(un,un+1) − Fγ
con(u

n,un+1)) ,

(2.17)

where
F̃2β

con(u
n,un+1) = (1 − 2β)Fcon(u

n) − 2β∂IK(un+1) .

Note that F̃2β
con(u

n,un+1) 6= F2β
con(u

n,un+1) is needed in the second line, since
Fcon(u

n+1) is not available before the variational inclusion has been solved.
For the unconstrained problem, setting γ = 1

2
ensures second order consis-

tency. For 2β > 0, the variational inclusion in the second line of(2.17) has to
be solved in each time step. For 2β = 0, the scheme is explicit and unstable.
It can only be applied in a method of lines approach, i.e., after discretization
in space first – observing a CFL–condition. For 2β ≥ 1

2
(γ+ 1

2
)2 the algorithm

is unconditionally stable. The usual choice of 2β = 1
2

optimizes the damping
of high frequencies that may originate from the spatial discretization. For
this symmetric case, the Newmark scheme (2.17) reduces to the trapezoidal
rule, which is energy conserving [5].

For our constrained problem (with 2β = γ = 1
2
), the total energy of

the system at the end of a new timestep is conserved only, if the actual
contact boundary has not changed during this timestep, see [12]. However,
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for the space–time–discrete scheme, the detection of a new contact point will
decrease the energy of the system, the release of an existing contact point
will increase it. Unfortunately, loss and regain of energy do not balance,
so that the energy cannot be guaranteed to remain bounded during time
integration. In particular, an undesirable energy blow–up may occur. That
is why a dissipative modification has been proposed, which will be described
next.

2.2 A recent dissipative modification

In [6], C. Kane et al. proposed a fully implicit treatment of the contact forces
leading to the following variant of Newmark’s scheme

un+1
pred = un + τ u̇n ,

0 ∈ un+1 − un+1
pred + 1

2
τ 2

(
F2β(un,un+1) + ∂IK(un+1)

)

u̇n+1 = u̇n − τ
(
Fγ(un,un+1) − Fcon(u

n+1)
)

.

(2.18)

Clearly, compared to the classical scheme, the term ∂IK(un+1) replaces the

term F̃2β
con(u

n,un+1), thus introducing an additional implicitness to the scheme.

Theorem 2.1 Consider Algorithm (2.18) for γ = 2β = 1
2
. If no contact

occurs, this algorithm is energy conserving. If contact occurs, it can be energy

dissipative.

Proof 2.1 Upon combining the second and the third line of Algorithm (2.18),
we obtain

u̇n+1 − u̇n =
2

τ
(un+1 − un+1

pred),

u̇n+1 + u̇n =
2

τ
(un+1 − un).

Therefore the difference in kinetic energy evaluated at the end points of the
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time interval [tn, tn+1] can be calculated as

Ekin(u
n+1) − Ekin(u

n) =
1

2

∫

Ω

(u̇n+1 − u̇n) · (u̇n+1 + u̇n) dx

=
2

τ 2

∫

Ω

(un+1 − un+1
pred) · (u

n+1 − un) dx

= −

∫

Ω

(
F1/2(un,un+1) − Fcon(u

n+1)
)
(un+1 − un) dx

= −
1

2
a(un+1 + un,un+1 − un)

+fext(u
n+1 − un) +

∫

Ω

Fcon(u
n+1)(un+1 − un) dx .

The change in total energy is

E(un+1) − E(un) = Ekin(u
n+1) − Ekin(u

n)

+
1

2
a(un+1,un+1) − fext(u

n+1) −
1

2
a(un,un) + fext(u

n)

=

∫

Ω

Fcon(u
n+1)(un+1 − un) dx

Upon exploiting (1.10) with v = un and u = un+1, we arrive at energy

dissipativity of the form

E(un+1) − E(un) ≤ 0 .

Momentum conservation. Algorithm (2.18) preserves the linear momen-
tum for γ = 2β. This is shown by testing the variational inclusion with
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constant w ∈ R
d, hence ε(w) = 0, so that

w · (Ln+1 − Ln) =

∫

Ω

(u̇n+1 − u̇n) · w dx

=

∫

Ω

2

τ
(un+1 − un+1

pred) · w dx

= −
1

τ

{
(1 − 2β)

∫

Ω

σ(un) : ε(w) dx

+2β

∫

Ω

σ(un+1) : ε(w) dx

−

∫

ΓS
C

ν
S · σ(un+1,S) · w da −

∫

ΓM
C

ν
M · σ(un+1,M) · w da

}

= −

∫

ΓS
C

ν
S · σ(un+1) · (w − w) da = 0

From the discussion in Section 1.2 for the continuous case, the angular mo-
mentum cannot be expected to be preserved in general.

Artificial oscillations. There is clear numerical evidence that, depending
on parameter specification, the above Algorithm (2.18) gives rise to unwanted
oscillations in displacements and stresses (see also our numerical experiments
in Section 3 below). This phenomenon, known as bouncing, can be extenu-
ated by increasing γ to values γ > 1/2 at the expense of losing “second order
consistency”, which has anyway only been shown for the unconstrained case.
In order to analyze this undesirable occurrence of oscillations assume that
we have found contact over several timesteps so that

un · νφ = un+1 · νφ .

Then, the update formula for the velocities, third line of Algorithm (2.18),
yields

u̇n+1 · νφ = u̇n · νφ − τ
(
F1/2(un,un+1) − Fcon(u

n+1)
)
· νφ

= u̇n · νφ − τ
[

2
τ2 (un+1 − (un + τ u̇n))

]
· νφ ,

which directly leads to
u̇n+1 · νφ = −u̇n · νφ . (2.19)

This is a zigzagging of the normal component of the velocities as observed in
numerical experiments, see Figure 4, left, in Section 3 below.
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2.3 Contact stabilization

In the following we assume that the spatial quantities as un are obtained
after spatial discretization by finite elements Sh, h > 0 the discretization
parameter. Let us note that also K ⊂ Sh has to be understood as a dis-
crete approximation of the set of admissible displacements (1.5). For details
concerning the spatial discretization, we refer the reader to [8, 10]

The insight obtained by the analysis at the end of Section 2.2 directly
guides us to a further modification of the Newmark scheme. This modifi-
cation is inspired by the physically reasonable requirement that the normal
components of the forces acting at the contact boundary should balance, i.e.

F1/2(un,un+1) · νφ = Fcon(u
n+1) · νφ . (2.20)

This motivates us to replace the linear predictor step in the first line of
Algorithm (2.18) by a nonlinear one, which is realized by means of an L2-
projection in Sh. This modification gives rise to our

Contact–stabilized Newmark algorithm:

0 ∈ un+1
pred − (un + τ u̇n) + ∂IK(un+1

pred)

0 ∈ un+1 − un+1
pred + 1

2
τ 2

(
F1/2(un,un+1) + ∂IK(un+1)

)

u̇n+1 = u̇n − τ
(
F1/2(un,un+1) − Fcon(u

n+1)
)

.

(2.21)

Remark. The variational inclusion defining the modified predictor in Al-
gorithm (2.21) requires the evaluation of the normal trace of u. Although
the trace of a finite element function in Sh is always well–defined, this is
not the case for an arbitrary L2-function. This corresponds to the fact that
the values of a function u ∈ Sh at the boundary also serve as values of the
finite element function within the small strip given by the elements at the
boundary. It is this double role of the degrees of freedom on the boundary
as interior and boundary values, which, on one hand, causes artificial oscil-
lations at the contact interface and, on the other hand, allows for removing
the oscillations by means of the discrete L2-projection given above.

Again, in the spirit of our definition of Fcon(u), once the variational in-
clusion in the first line of (2.21) has been solved, we may characterize its
solution in terms of some Gcon such that

(Gcon(u
n+1
pred),v)L2 = (un + τ u̇n − un+1

pred,v)L2 .
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Upon rewriting the variational inclusion in the first line of (2.21) as varia-
tional inequality we get

(un+1
pred,v − un+1

pred)L2 ≥ (un + τ u̇n,v − un+1
pred)L2 , ∀v ∈ K

which directly leads to

(Gcon(u
n+1
pred),v − un+1

pred)L2 ≤ 0 , ∀v ∈ K . (2.22)

Theorem 2.2 Consider Algorithm (2.21). If no contact occurs, this algo-

rithm is energy conserving. If contact occurs, it can be energy dissipative.

Proof 2.2 Following similar lines as in the proof of the above Theorem 2.1,

we here obtain

u̇n+1 − u̇n =
2

τ

(
un+1 − un+1

pred

)

u̇n+1 + u̇n =
2

τ

(
un+1 − un + Gcon(u

n+1
pred)

)
.

As before

Ekin(u
n+1) − Ekin(u

n) = −
1

2
a(un+1 + un,un+1 − un)

+fext(u
n+1 − un) +

∫

Ω

Fcon(u
n+1)(un+1 − un) dx

+
2

τ 2

∫

Ω

Gcon(u
n+1
pred)(u

n+1 − un+1
pred) dx .

Finally, we end up with

E(un+1) − E(un) =

∫

Ω

Fcon(u
n+1)(un+1 − un) dx

+
2

τ 2

∫

Ω

Gcon(u
n+1
pred)(u

n+1 − un+1
pred) dx

≤ 0 .

Here, in the last line we have exploited (2.22).

Note that even in the occurrence of contact the energy is conserved, when the
contact boundary predicted by un+1

pred coincides with the one given by un+1.

14



Avoidance of artificial oscillations. In contrast to (2.19), which gives
rise to artificial oscillations in Algorithm (2.18), the force equilibrium (2.20)
here immediately leads to the desirable property

u̇n+1 · νφ = u̇n · νφ .

Remark. If the above global condition (2.20) is realized in a time dis-
cretization with lumped mass matrix, then it may be interpreted as point-
wise local projection onto the set of admissible displacements. We want to
explicitly mention that this feature nicely agrees with suggestions made by [6]
(see Figure 3.8 therein). In this case, the cost for computing the modified
predictor in Algorithm (2.21) is negligible, since all unknowns decouple and
the nonlinear projection can be carried out pointwise on the boundary.

3 A two body Hertzian contact problem

In this section, we compare two recently suggested modifications to the clas-
sical Newmark method:

old the dissipative Algorithm (2.18) due to Kane et al. [6],

new the dissipative and contact–stabilized Algorithm (2.21), as suggested
here.

The implementation of our algorithm has been done both within the frame-
work of the finite element toolbox UG [1] and the obstacle toolbox OBSLIB,
see [11]. Let us mention that our implementation of the algorithms given in
Section 2 is not restricted to the two dimensional case. As an example, we
refer to [9], where the stabilized Algorithm (2.21) has been used for the three
dimensional simulation of a contact problem in biomechanics.

As an illustrative test problem we selected a two body Hertzian contact
problem in 2D with the following specifications: At initial time t = 0, two
circles ΩS, ΩM with radii r = 8, midpoints on the y–axis, and initial distance
1.5 are moving with vertical speed v0,S = −1, v0,M = +1, respectively. The
computational meshes are shown in Figure 2. The possible contact bound-
aries are the lower and upper quarters of the boundaries of ΩS and ΩM ,
respectively. On the remaining parts of the boundaries, homogeneous Neu-
mann boundary conditions are prescribed and we set the volume forces to
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f = 0. As material parameters we choose E = 5 · 102 and ν = 0.3 on both
domains. The computations are carried out until T = 5. For the discretiza-

Figure 2: Computational meshes of the two body Hertzian contact problem.

tion in time, we choose the constant step size τ = 5 · 10−4 and consider the
dissipative modification (2.18) as well as our stabilized scheme (2.21). The
discretization in space is done by bilinear finite elements on quadrilaterals,
which in general behave less stiff than triangles. The information transfer
at the contact interface ΓC is realized by means of nonconforming domain
decomposition or mortar methods, see [15]. Among the possible solvers for
variational inequalities, we selected monotone multigrid methods [10], which
have the nice feature that they do not require any regularization parame-
ters to be chosen. These methods allow for the solution of nonlinear contact
problems with multigrid efficiency, thus leading to an overall highly efficient
method. For the L2-scalar product, we use a lumped mass matrix, which
makes the cost for computing Algorithm (2.21) instead of Algorithm (2.18)
negligible, see the remark at the end of Section 2.

Energy dissipation. In Figure 3, the total energy for the dissipative New-
mark scheme (2.18) and the dissipative contact–stabilized scheme (2.21) are
shown. Compared to the older version (2.18), our new version (2.21) gener-
ates a slightly smaller loss of energy during the initial contact phase but a
higher loss when the two discs separate. Following the analysis in Section 2,
the contact–stabilized scheme (2.21) might be expected to lose more energy
than the scheme (2.18) in each time step. However, this does not mean that
the total energy arising from the stabilized scheme (2.21) always has to be
smaller than the total energy created by (2.18), since both methods yield
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Figure 3: Comparative behavior of total energy

in general different trajectories. In any case, both schemes yield reasonable
results and generate comparable energy losses of less than 0.2%.

Artificial oscillations. Figure 4 shows the number of contact points, i.e.,
the number of vertices ΓS

C where contact actually occurs, over a typical seg-
ment of time steps. As can be observed, the old Algorithm suffers from
artificial oscillations caused by the undesirable property (2.19), whereas the
new algorithm only shows very few oscillations, in agreement with desirable
property (2.20).
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Figure 4: Number of contact points. Left: old Algorithm (2.18): 400 oscilla-
tions. Right: new Algorithm (2.21): 3 oscillations.
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This effect is also confirmed by a reduction of oscillations in the tangential
displacements, see Figure 5, where, the tangential displacements of the point
at the south pole of ΩM are depicted. Once again, the spurious oscillations
generated by the Newmark scheme (2.18) are nearly completely removed by
the contact–stabilized Algorithm (2.21).
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Figure 5: Tangential displacements at the south pole of ΩS. Left: old Algo-
rithm (2.18). Right: new Algorithm (2.21).

Boundary stresses and total contact force. In Figure 6, we compare
the total contact force

∫
ΓS

C

σn da generated by the old scheme (2.18) and by

our new scheme (2.21). At the time when the two bodies come into contact,
extremely high values of the total contact force can be observed for the
old scheme. This overshooting phenomenon is clearly eliminated by the new
scheme. The remaining oscillations in the total contact forces might originate
from vibrations within the elastic material. Even more insight is gained
from the zoom in Figure 7, where the zigzagging from the old algorithm is
contrasted with the smooth behavior of the new one. Clearly, the oscillations
arising from the old algorithms are revealed to be artificial.
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leme mit Reibung. PhD thesis, Universität Stuttgart, 1996.

19



[4] I. Ekeland and R. Temam. Convex Analysis and Variational Problems.
North–Holland, Amsterdam, 1976.

[5] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integra-

tion. Structure–Preserving Algorithms for Ordinary Differential Equa-

tions. Computational Mathematics. Springer, Berlin, Heidelberg, 2nd
edition, 2006.

[6] C. Kane, E.A. Repetto, M. Ortiz, and J.E. Marsden. Finite element
analysis of nonsmooth contact. Comp. Meth. Appl. Mech. Eng., 180:1–
26, 1999.

[7] H. B. Khenous, P. Laborde, and Y. Renard. On the discretization of
contact problems in elastodynamics. Technical report, INSA, Toulouse,
2006.

[8] N. Kikuchi and J.T. Oden. Contact Problems in elasticity. SIAM,
Philadelphia, 1988.

[9] R. Kornhuber, R. Krause, P. Deuflhard, O. Sander, and S. Ertel. A
Monotone Multigrid Solver for Two Body Contact Problems in Biome-
chanics. Comp. Vis. Sci., 2006.

[10] Ralf Kornhuber and Rolf Krause. Adaptive multilevel methods for Sig-
norini’s problem in linear elasticity. Comp. Vis. Sci., 4:9–20, 2001.

[11] R. Krause. Monotone Multigrid Methods for Signorini’s Problem

with Friction. PhD thesis, FU Berlin, 2000. http://www.diss.fu-
berlin.de/2001/240/indexe.html.

[12] T. A. Laursen. Computational Contact and Impact Mechanics. Springer–
Verlag, Berlin Heidelberg New York, 2003.

[13] T. A. Laursen and V. Chawla. Design of energy conserving algorithms
for frictionless dynamic contact problems. International Journal for

Numerical Methods in Engineering, 40:863–886, 1997.

[14] J. Marsden and M. West. Discrete mechanics and variational integrators.
Acta Num., 10:357–514, 2001.

[15] B. Wohlmuth and R. Krause. Monotone methods on nonmatching grids
for nonlinear contact problems. SISC, 25(1):324–347, 2003.

20


