;’A’A.

LA
A XA

A

”.
S

A’A‘;

TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

P. DEUFLHARD B. ERDMANN R. RoOITZSCH G.T. LINES

Adaptive Finite Element Simulation of
Ventricular Fibrillation Dynamics

Z1B-Report 06—49 (November 2006)






Adaptive Finite Element Simulation of Ventricular

Fibrillation Dynamics?

Peter Deuflhard®* Bodo Erdmann? Rainer Roitzsch? Glenn Terje Lines?

Abstract

The dynamics of ventricular fibrillation caused by irregular excitation
is simulated in the frame of the monodomain model with an action
potential model due to Aliev-Panfilov for a human 3D geometry. The
numerical solution of this multiscale reaction-diffusion problem is at-
tacked by algorithms which are fully adaptive in both space and time
(code library KARDOS). The obtained results clearly demonstrate an
accurate resolution of the cardiac potential during the excitation and
the plateau phases (in the regular cycle) as well as after a reentrant
excitation (in the irregular cycle).
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Introduction

Recent advances in cardiac electrophysiology are progressively revealing the
extremely complex multiscale structure of the bioelectrical activity of the
heart, from the microscopic activity of ion channels of the cellular membrane
to the macroscopic properties of the anisotropic propagation of excitation
and recovery fronts in the whole heart. Mathematical models of these phe-
nomena have reached a degree of sophistication that makes them a real
challenge for numerical simulation. A detailed introduction can be found
in the recent monograph of SUNDNES ET AL. [11]. In 1996, ALIEV AND
PANFILOV [3] suggested a still quite simple model for an adequate descrip-
tion of the dynamics of pulse propagation in cardiac tissue as it occurs in
cardiac arrhythmia like atrial or ventricular fibrillation. The present paper
will focus on this model.

The recent paper [4] by COLLI FRANZONE ET AL. had already presented
a simulation of the evolution of a full regular heartbeat, from the excitation
(depolarization) phase to the plateau and recovery (repolarization) phases.
However, even though that paper had successfully tested the fully adap-
tive 3D code KARDOS due to LANG [6, 5, 2], which took correct care of
the multiscale nature of the models, it had only been applied to a simple
3D quadrilateral instead of a realistic heart geometry. As a follow-up, the
present paper will perform the necessary step towards a realistic 3D human
heart geometry (visible human) and, at the same time, include the study of
effects caused by an irregular out of phase stimulus leading to fibrillation.

The paper is organized as follows. First, in Section 1, we briefly sketch
different cardiac models including the Aliev-Panfilov model. Then, in Sec-
tion 2, we present the results of several simulations on the full heart geometry
for the Aliev-Panfilov model. Special attention is paid to the gain caused
by adaptivity of the algorithm. Throughout the paper, visualizations have
been made using the software environment Amira [1, 10].

1 Cardiac models

There exists a large variety of cardiac models with different depth of de-
tails to be captured. In this section, we briefly sketch the main ones. For
more details we refer to the book SUNDNES ET AL. [11] or to our recent
article COLLI FRANZONE ET AL. [4]. All of these models describe the elec-
trophysiology of the cardiac tissue by a reaction-diffusion system of partial
differential equations (PDEs) coupled with a system of ordinary differential



equations (ODEs) for the ionic currents associated with the reaction terms.

Bidomain model (B). In this model, intra- and extra-cellular electric
potentials u;(x,t), ue(X, t) enter into the semilinear parabolic system of two
PDEs, while ionic gating variables w(x,t) and ion concentrations c(x, t) arise
in the ODE system. Let ) denote the spatial domain and let the time vary
between 0 and 7. With the additional notation v(x,t) = u;(x,t) — ue(x,t)
for the transmembrane potential, the so-called anisotropic bidomain model
reads

emOrv — div(D;Vu,) + Lion (v, w,¢) =0 in Qx (0,7)
—cmOw — div(DeVue) — Lion(v,w,¢) = —1g,, in Qx (0,T) (1)
Ow — R(v,w) =0, Oc—S(v,w,c) =0 in Qx (0,7)

Of course, suitable boundary and initial conditions have to be added. Par-
ticular models specify the reaction term I;,, and the functions R(v,w) and
S(v,w,c).

Monodomain model (M). If an equal anisotropy ratio of the inner-
and extracellular media is assumed, then the bidomain system reduces to
the monodomain model. This model consists of a single parabolic reaction-
diffusion equation for v with the conductivity tensor D,, = DD~ D;, app =
—15,,01/(0] +07), coupled with the same gating system as above so that we
arrive at

cmOv — div(D Vo) + Lion(v,w,¢) = I, in Q x (0,T)

2
ow — R(v,w) =0, Owc— S(v,w,c) =0 1in Qx (0,7 @)

Both the bidomain and the monodomain models have to be completed by
membrane models for ionic currents. Since we focus on the Aliev-Panfilov
model, we will leave out the more complex Luo-Rudy phase I models (LR1),
which can be found in detail in [4].

A FitzHugh-Nagumo model (FHN). The simplest and most popular
membrane model is the classical one due to FitzHugh-Nagumo which, how-
ever, yields only a rather coarse approximation of a typical cardiac action
potential, particularly in the plateau and repolarization phases. A better



approximation is given by the following variant due to ROGERS AND McC-
CuLLOCH [9]:

Lion(v,w) = Gu <1 — v) (1 — v) + mow,
Vth Up

v
ow = 1 ( - 773w> ,
Up

where G, n1,1n2,n3 are positive real coefficients, vy, is a threshold potential
and v, the peak potential.

Aliev and Panfilov model (AP). In the present paper, we focus on the
suggestion due to ALIEV AND PANFILOV [3], especially designed to model
arrhythmia like atrial or ventricular fibrillation. This model is similar to the
one of FitzHugh-Nagumo. It describes the relationship between membrane
potential v and a recovery variable w. In the frame of the monodomain
model, it has the following structure:

1
O — QAU = —Iign(v,w) — Iy, (3)

ow = R(v,w). (4)

In our computations, we have used xy = 1000.0. The stimulus Iy is an
ionic current, applied only for a short time of approximately 1 ms. It starts
from a small patch of the heart (e.g., the sinu-atrial node or the atrio-
ventricular node). In our simulations, we set Iy = —100. The original
model is dimensionless, but here we have scaled it to obtain physiologically
interpretable values. For the ionic current in the membrane I;,, we have

Lion(v,w) = —(vp — vR)(Gav(v —a)(v — 1) + vw)
The recovery variable is governed by

R(v,w) = 0.25 (e1 + 1

” +H2)(—w —Gsv(v—a—1))

with v, = 35.0, vg = —85.0, a = 0.10, 1 = 0.01, py = 0.07, po = 0.3,
G4 =8.0and Gg = 8.0.



Model complexity. In principle, one would like to use the most com-
plex model, which is the bidomain model coupled with the Aliev-Panfilov
model (B-AP), to study fibrillation phenomena. However, the correspond-
ing simulations appear to be extremely expensive. A rough comparison of
computational complexity of the various cardiac models is given in Table 1.
We present scaled complexity factors estimated from extensive test compu-
tations with KARDOQOS. The factors compare the amount of computational
resources (computing time, storage) necessary to solve these problems. They
were measured via computations during the regular depolarization phase
(first 2 ms after activation) on a small slab of heart tissue, i.e. on the simple
geometry as in the recent paper [4].

domain membrane model PDEs ODEs Complexity
B-LR1  bi Luo-Rudy 2 7 200
B-FHN bi FitzHugh-Nagumo 2 1 3
M-LR1  mono Luo-Rudy 1 7 60
M-FHN mono FitzHugh-Nagumo 1 1 1
M-AP mono Aliev-Panfilov 1 1 1

Table 1: Comparative computational complexity of cardiac models.

2 Simulation Results

In this section, we present the results of our numerical simulations as ob-
tained by the code KARDOS [5, 2]. This code realizes an adaptive Rothe
method, i.e. a discretization first in time, then in space. In time, it uses a
linearly implicit Rosenbrock discretization with stepsize control; in space, it
applies an adaptive multilevel finite element method. The estimated errors
in time and space are kept below tolerances TOL; and T'OL,, respectively,
to be prescribed by the user. For time integration, we apply the Rosenbrock
code ROS3PL as lately developed by LANG [7] (4-stage, third-order, L-stable,
no order reduction in the PDE case). Our simulations were performed on the
Auckland heart 3D geometry [8]. The associated tetrahedral mesh consists
of about 11,306 vertices and 56,581 tetrahedra. In the course of our adap-
tive refinement, we obtain meshes up to five times locally refined caused by
the spatial accuracy requirements (parameter T'OL,). Our finest interme-
diate meshes have up to 2,100,000 vertices. The arising large sparse linear
finite element systems are solved by the iterative solver BI-CGSTAB [12] with



ILU-preconditioning.

First, we present simulation results for accuracy parameters TOL; =
0.001 and TOL, = 0.01. Figures 1, 2, and 3 illustrate the propagation
of the front through the heart: After an initial activation (identical to the
beginning of the regular heart beat) there is a second activation between 225
and 226 ms, which spoils the build-up of a recovery phase for the whole heart
and initiates a chaotic pattern corresponding to ventricular fibrillation. In
Figure 4, the effect of spatial adaptivity is illustrated by adaptive meshes in
the regular phase (time 70 ms) and the irregular phase (time 580 ms). In
Figure 5, temporal adaptivity is exemplified by showing the behavior of the
potential v at spatial point (—3.50,0.203,0.174). The automatically selected
time steps are marked. The computation for time 800 ms was performed
on a SUN Galaxy 4600 8 Dualcore AMD and took about 30 GB of memory
and about six weeks (!) of CPU time.

- KR
099

Figure 1: Regular heart beat phase before second activation: potential v at
times 10, 40,70, 100, 160, and 210 ms (row by row).

-25
-85

Finally, we study the influence of spatial and temporal accuracy require-
ments on the velocity of the front in the first depolarization phase. In Fig-
ure 6, we select the potential v at point (0.648,0.521,1.00). The dependence
on TOL, (Figure 6, left) clearly shows that the coarser grid solutions exhibit
oscillations before the front and are therefore not acceptable for medical in-
terpretation, whereas the spatially more accurate computations circumvent
this shortcoming. The clear message from this finding is that a rather high
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Figure 2: Second activation phase: potential v at times 220, 230, and 240 ms.
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Figure 3: Fibrillation dynamics after second activation: potential v at times
280, 460, 580, 700, 760, and 820 ms (row by row).
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Figure 4: Adaptive meshes. Left: Regular heart dynamics at 70 ms. Right:

Arrhythmic heart dynamics at 580 ms.
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Figure 5: Effect of stepsize control: potential v at point (—3.50,0.203,0.174).



accuracy is necessary to approximate the wave front velocity in a reliable
manner. In contrast, the dependence on TOL; (Figure 6, right) turns out to
be negligible. The stepsizes corresponding to these accuracy requirements
came out as 0.56 ms (for TOL; = 0.005), 0.42 ms (for TOL; = 0.002), 0.33
ms (for TOL; = 0.001), 0.26 ms (for TOL; = 0.0005), and 0.19 ms (for
TOL; = 0.0002). On this basis, the choice of TOL; = 0.001 for our com-
putations up to 800 ms seems to be reasonable. For the sake of clarity, we
want to mention that these rather big step sizes are a benefit of the new
third-order L-stable Rosenbrock integrator.
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Figure 6: Potential wave front at point (—3.50,0.203,0.174). Left: Results
for different spatial accuracies TOL, and fixed TOL; = 0.001. Right: Re-
sults for different temporal accuracies TOL; and fixed TOL, = 0.002.

Conclusion

In this paper, we applied an adaptive Rothe method (code KARDOS) to
study the multiscale fibrillation dynamics within the Aliev-Panfilov cardiac
model. Even though this model is rather simple and the algorithm is fully
adaptive in both time and space, it requires an amount of computational
resources far away from any real-time simulation. The far aim, far away
from our present possibilities, is to solve the bidomain Luo-Rudy model for
patient-specific 3D heart geometries. Therefore, future work will have to
focus on further improvements of the underlying algorithm and its imple-
mentation.

Acknowledgements. The authors want to thank Jens Lang, TU Darm-
stadt, the original main developer of KARDOS, who provided us with a lot
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of valuable hints concerning his code. Moreover, we are grateful to Luca
Pavarino, University of Milano, for fruitful discussions about electrocardiol-
ogy models and their simulation.
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