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Abstract

This article deals with an efficient sampling of the stationary distri-
bution of dynamical systems in the presence of metastabilities. For such
systems, standard sampling schemes suffer from trapping problems and
critical slowing down. Starting multiple trajectories in different regions of
the sampling space is a promising way out. The different samplings rep-
resent the stationary distribution locally very well, but are still far away
from ergodicity or from the global stationary distribution. We will show
how these samplings can be joined together in order to get one global
sampling of the stationary distribution.
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Introduction

Consider general dynamical systems in equilibrium with a unique stationary
distribution. Among them, metastable dynamical systems are characterized by
the existence of almost invariant subsets in any of which the system remains
for “a long time” before it switches to another subset. Such systems play an
important role in molecular modeling, where the almost invariant subsets are
known as metastable conformations [4]. In case of general dynamical systems,
we also speak of metastable clusters.

Since dynamical systems are mostly high-dimensional, information about
transition rates, average life times or the stationary distribution cannot be de-
rived analytically but must be obtained from sampling data. Metastable dy-
namical systems inhibit different time scales, ranging from fast oscillations on
the microscopic level to slow transitions between clusters. Consequently, sam-
pling the stationary distribution with a single trajectory is impossible because
it will get trapped within the clusters most of the time. Thus, it will take too
much time to sample all relevant parts of the sampling space.

To solve this problem, one could start several independent trajectories in
different regions of the sampling space such that these sub-samplings represent
the global stationary distribution locally well. The goal is to assemble the sub-
samplings into one global sampling of the stationary distribution by introducing
point-wise weighting factors. This task is associated with the identification
of metastable clusters and the calculation of thermodynamical weights. The
resulting algorithm is named GLUE and consists of the following four steps:

1. Generation of sampling data: Start different samplings of the dynamical
system. Use a method which converges against the stationary distribution
according to the law of large numbers. Due to early truncation, this limit
is certainly not reached. The samplings are incomplete.

2. Localization of well-sampled parts: For each sampling, describe the parts
of the state space which have a sufficiently high density of sampling points.
The result of this step is a meshless discretization of the state space.

3. Uncoupling step: Compute a stochastic “mass” matrix on this discretiza-
tion. The matrix is used to identify the metastable parts of the sampling
via Robust Perron Cluster Analysis (PCCA+).

4. Extraction of the global stationary distribution: Within each of the meta-
stable regions, the samplings are rapidly mixing and represent the station-
ary distribution locally well. Weight the sub-samplings against each other
in order to obtain the global stationary distribution.

In the following sections, the four steps of the GLUE algorithm are explained
in detail. For each step, we describe the mathematical background and propose
a possible algorithmic implementation w.r.t. statistical thermodynamics. Fur-
thermore, an artificial example is presented for illustrative calculations. Each
step of the method imposes some prerequisites on the dynamical system. These
conditions are mentioned explicitly.



0.1 Notation

We briefly list the main notations used throuout the paper.

Q State space.

q State in Q.

7(q) (Unnormalized) Boltzmann density in ¢ € .

N Number of basis functions.

{9,(¢)}Y, Set of basis functions, ®; : Q@ — [0, 1].

{w N, Statistical weights of the basis functions.

w Vector of the statistical weights of the basis functions.
{g. Y, Defining nodes of the basis functions.

ne Number of clusters.

{e:}ie Statistical weights of the clusters.

c Vector of the statistical weights of the clusters.

qgj ) i-th sampling point from trajectory j, q§J b eq.

51-(]) Weight of sampling point qgj), 51-(]) CR;.

Ngam Number of generated trajectories.

BF(5) Indices of all basis functions generated from sampling j.

1 Step 1: Generation of sampling data

In this section we describe the conditions that must be satisfied by the sub-
sampling trajectories so that the GLUE algorithm will work. The two main
aspects are convergence towards the stationary distribution and exploration of
all relevant parts of the state space. In many application, this first step of the
algorithm can be skipped because the trajectories are already given.

1.1 Mathematical background

Sampling procedure. In general, the sampling procedure used for the first
step of GLUE is an iterative method which generates a chain of points ¢; € €Q,
i=1,...,N,

@1 —q2— ¢ ...~ qN- (1)
In the most general setting, the order of the sampling points in (1) is mean-
ingless, only their distribution is required. However, the present algorithm is
capable of incorporating dynamic information about the system if such is re-
flected in the chain’s transitions. This case occurs if the chain (1) is a reversible
Markov chain [2] with fixed time step 7. Then the GLUE algorithm has a slight
modification in Step 3, see Section 3.1.

A prerequisite for the first step of the GLUE algorithm is the following.

Prerequisite 1.1 The sampling procedure converges against a unique station-
ary distribution of sampling points in Q.

Due to early truncation, this limit will not be reached. However, we do not
require the single sub-trajectories to cover the whole sampling space. Only
the ensemble of all trajectories must represent the stationary distribution suffi-
ciently. This requirement is described next.



Figure 1: The union of three incomplete trajectories samples the complete state
space sufficiently. Solid line: A trajectory which samples different conforma-
tions locally well. Due to rare transitions the relative weights of the conforma-
tions are sampled incorrectly. Dashed line: A trajectory which samples only
one conformation correctly and does not reach the whole conformational space.
Dash-dotted line: A trajectory which samples one conformation correctly and
another conformation insufficiently.

Completeness. In the present context, Nyu, € IN samplings have been gen-
erated via a procedure which meets Prerequisite 1.1. Thus, we have a set
of sampling points qgj) € Q. The upper index (j) refers to the sampling
j=1,..., Neam, and the lower index 7 denotes the i-th step of the correspond-
ing sampling, ¢ = 1,..., N;. Clearly, in order to derive all relevant information

from these Ny samplings, they should cover the sampling space sufficiently.

Prerequisite 1.2 For every relevant part of the state space ), there is at least
one sampling j € {1,..., Nyam} which covers this part of the space sufficiently.

An example for this intuitively formulated Prerequisite 1.2 is given in Figure 1.

1.2 Algorithmic details

A valid example for a sampling procedure that meets Prerequisite 1.1 is the
Hybrid Monte Carlo (HMC) method [6]. The trajectory generated by HMC is
a reversible Markov chain which converges against the Boltzmann distribution
(or the canonical ensemble) in position space 2. Prerequisite 1.2 is not easy to
ensure. A simple heuristic, which may be sufficient for many cases, is to run
a high temperature HMC sampling first. From these sampling points, one can
then choose a predefined number of points as possible starting points for the
sub-samplings at a low temperature. For example, one can choose the centroids
of a K-means clustering [11, 12, 7].



Figure 2: Artificial example: Potential energy surface.

1.3 Artificial example

Consider a two-dimensional dynamical system given by Hamiltonian differential
equations w.r.t. positions ¢ and momenta p,

Let be given a potential energy function V : IR? — IR in the form

fla) + f(g2), if lqa] <3Age| <3
+9(g2), if | <3 Alg2| >3
+ flg2), if || =23 A ]g2| <3
+9(q), if || >3 A g >3

Vig) =

Q

—_ =
(]
—_

—_— —  —

where
f(z) = —=10cos(3z) + z2, g(x) = —10cos(3x?) + 2 + 1000(z — 3)*(z + 3)%.

This potential has nine well-separated local minima, each of which induces a
conformation, see Figure 2. By adding large penalty terms for |g1 2| > 3, the
domain of interest is restricted to [—3,3]?. Trajectories will almost never leave
this domain, because the potential energy is too high outside.

For a first exploration of the sampling space, we start a high-temperature
(T' = 1000K) HMC trajectory in ¢ = (0,0). For the proposal step, we apply 60
steps of the Verlet algorithm with time step 7 = 0.001'. 15000 sampling points
are generated. Then we apply K-means with a predefined number of groups,
k = 60, and choose the centroids as starting points for the sub-trajectories, see
Figure 3(a). The sub-trajectories are generated by HMC sampling at T' = 300K
and have length 500. Some of the trajectories cross a barrier between different
basins of attraction, but most of them stay near the starting point, see Figure
3(b). Thus, the overlap is too small to allow the application of bridge sampling
techniques.

1In our artificial example the variables of interest are dimensionless.
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(a) Starting points from high tempera- (b) Sub-trajectories started from the
ture HMC sampling. points in Figure 3(a).

Figure 3: Artificial example: Step 1 - Generation of sampling data. The starting
points for 60 sub-trajectories are selected by K-means clustering of a trajectory
from high-temperature HMC sampling.

2 Step 2: Localization of well-sampled parts

Given the sub-trajectories, the task is to identify the regions which have a suf-
ficiently high density of sampling points. If the sub-samplings cover all relevant
parts of the sampling space, they especially comprise the conformations. There-
fore, we place a predefined number of nodes within the well-sampled regions,
which will induce the meshless discretization in position space.

2.1 Mathematical background

Assume we have selected some nodes §; from the sub-samplings. The selec-
tion rules will be described below. These nodes are the starting points for a
discretization.

Meshless approach. Given the nodes ¢;, we define meshless basis functions
®,:Q—[0,1],i=1,...,N, of the following form:

oi(q) — —CPCad(@.d@) )
@ Yoo exp(—ad?(q, ;) .

The parameter a > 0 is a shape parameter and d : 2 — IR denotes a distance
function explained below. By definition, the basis functions form a partition of

unity,
N

d di(g)=1, VYgeQ
i=1
This property makes them particularly accessible to reweighting techniques,
such as those first introduced in [15], which became part of the software code
Z|Bgridfree [17].
The basis functions depend on a distance function d : 2 x Q@ — R>¢, which
measures the distance between a sampling point ¢ and a node §;. If the basis



functions are to be used for umbrella sampling [14, 15], the distance function
must have some special properties. More precise, it must be a Euclidean distance
in some lower-dimensional space. Here, we only assume the following:

Prerequisite 2.1 For any two points q1, q2 € €2 there is a non-negative distance-
like function d(q1,q2) (see 2.2).

Node selection. As a result of the cluster algorithm, which will be described
in Section 3.2, the basis functions are assigned to the conformations. The algo-
rithm is based on the assumption that, for each conformation, there exists at
least one basis function which completely belongs to this conformation. That
assumption leads to the following condition for the node selection.

Prerequisite 2.2 FEvery conformation must be resolved by at least one basis
function, i.e. there must exist at least one node per conformation.

For each sub-trajectory, there exists at least one region where the sampling
point density is high. These high-density regions form a superset of the clusters
we are looking for. Consequently, if we can ensure that the selected nodes cover
all high-density regions of the sub-trajectories, they will certainly also cover the
metastable conformations.

2.2 Algorithmic details

Nodes selection. Each sub-sampling should induce at least one basis function
represented by a node ¢;. The number of basis functions should correspond
to the number of high-density regions of the sub-sampling. Such regions can
be identified by geometric cluster algorithms like K-means. Alternatively, one
can perform local density estimation [13]. Since the points selected via local
density estimation cannot be ensured to cover all high-density regions of the
sub-samplings, geometric cluster analysis should be preferred.

Distance function. The term “distance-like” in Prerequisite 2.1 needs fur-
ther explanation. In our applications, we describe the geometric configuration
of molecules by the values of certain dihedral angles, the so-called “essential
degrees of freedom” [1, 8]. Then the distance is the Euclidean metric in IR™,
where ng denotes the number of dihedral angles. Other coordinates are possible
as well, for example the 3s-dimensional cartesian coordinates of a molecular
system consisting of s atoms. Since rotation and translation of the molecule do
not change its “state” from a chemical point of view, an alignment algorithm
like Kabsch’s algorithm [9, 10] must be applied before.

2.3 Artificial example

Look at the example from section 1.3 again. We want to define two basis
functions per sub-trajectory, i.e. we have to select two nodes per trajectory. For
each trajectory, we randomly pick 20 points in that trajectory. Then we compute
the mean distance of each of the 20 points to the other 19 points. Afterwards, we
select the two points with the lowest mean distances. The locations of these 120
points are shown in Figure 4. They directly define the basis functions {®,}V_,
with NV = 120. For the construction of the ®, we set oo = 20.
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Figure 4: Artificial example: Step 2 - Node selection. The nodes define the set
of basis functions. They were selected as the points with smallest mean distance
among randomly chosen points from the sub-trajectories.

3 Step 3: Uncoupling step

The aim of step 3 is to determine the number of metastable clusters and to
assign the basis functions to these clusters. This requires the construction of
a mass matrix or a transition matrix, which is the starting point for cluster
analysis via PCCA+.

3.1 Mathematical background

At this stage of the algorithm, we have selected N nodes qy,...,qx € 2. Each
node is associated with a sampling. To make explanations clearer, let us intro-
duce an upper index j € {1,... Ngqm} for the basis function ®;(q) as well as
for the nodes {g;}. Then <I>Z(-j )(q) means that the node of basis function 7, 61(»] )
stems from sub-trajectory j.

Since there is no one-to-one correspondence between sub-trajectories and
metastable conformations, the clustering cannot be based on the sub-trajectories,
but must be based on the basis functions. The input data for solving this cluster
problem is a stochastic n x n matrix that describes the static or dynamic over-
lap between the basis functions. A stochastic matrix is a non-negative matrix
with row sums 1. As mentioned in Section 1.1, the algorithm works slightly
differently depending on the sampling procedure (1). The general case leads to
a stochastic “mass” matrix S that characterizes the static overlap between the
basis functions measured w.r.t. the stationary distribution. The entries of S are

given by
D;(q) P, d
S ) = Jo ®i(a) ®5(g) 7(q) dg
Jo ®i(a) m(q) dg
The integral is evaluated via Monte Carlo integration,
N k), (k k
) 2,

.. ](ql )
S(i,7) = . 3
0 = S ) @




Note that we only take into account the contribution of sampling points from
the trajectory k that gave rise to basis function 7.

If the trajectories represent a reversible Markov chain, one can construct a
stochastic “transition” matrix P containing the transition probabilities between
the basis functions w.r.t. the Markov chain (1). The entry P(i,7)(7) is the
probability that a trajectory passes from the high-density region covered by
basis function 7 to the high-density region covered by basis function j within
some fixed time 7. The time interval 7 is given by the time step between two
consecutive sampling points. Analytically,

Jo ®i(q) ®;(¥7q) 7(q) dg
Jo®i(g)m(q)dg

where U™ denotes a dynamic propagator, for example an all-atom MD simula-
tion method. Monte Carlo integration yields

P(i,j)(1) =

3

P(i,j)(1) = : (4)

Np—1 k k
Dot e® (g)

N, — k k k
e e (e, (e)

The stochastic matrix can be used for the identification of metastabilities.
In the following, the matrix will be denoted by P, although the theory is valid
for the mass matrix S as well. In the presence of metastable conformations,
one can find an appropriate permutation of indices such that the stochastic
matrix P becomes nearly block-diagonal [3]. Each block of P corresponds to one
metastable conformation. Any cluster algorithm can be used which assigns the
basis functions, represented by the rows and columns of the transition matrix,
to the blocks.

3.2 Algorithmic details

Robust Perron Cluster Analysis (PCCA+) can be used to identify those ba-
sis functions which belong to the same block in P and therefore to the same
metastable conformation [5, 15]. The result of PCCA+ applied to a stochastic
matrix P € R™ " is a non-negative matrix x € IR"*", where n, is the num-
ber of hidden blocks corresponding to the number of metastable conformations.
The entry x(7,7) € [0,1] denotes the degree of membership of basis function ®;
w.r.t. the j-th metastable conformation. This can be seen as a fuzzy clustering
result, as opposed to “crisp” clustering methods, which find a permutation of
indices according to the blocks.

The left eigenvector w = (w1, ..., wy) ' of the transition matrix P corre-
sponding to the Perron root A = 1 contains the statistical weights of the basis
functions ®;,

w P=w', (5)

where w; = [, ®;(¢q) 7(q) dq. The statistical weights {¢;};-¢; of the clusters are
then computed by

c=x'w. (6)

3.3 Artificial example

Given the basis functions and the sub-trajectories, we compute the mass matrix
S according to (3). An image of the matrix is shown in Figure 5. We apply

10
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Figure 6: Artificial example: Step 3 - Membership vectors {x;}?_;.

PCCA+ and obtain the following spectrum of S,

{3, = {1.000, 1.000, 1.000, 1.000, 0.9998, 0.9992, 0.9992, 0.9969, 0.9967},
followed by a gap to the 10th eigenvalue A\1g = 0.9001. Thus we set nc = 9.
The corresponding sorted membership vectors x are plotted in Figure 6. If the

matrix S is reordered according to the membership vectors, the block diagonal
structure becomes visible, see Figure 7.

4 Step 4: Extraction of the global stationary
distribution

The goal of step 4 is to assign weights {fi(j)} to all sampling points {qij)} such
that they represent the global stationary distribution.

11
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Figure 7: Artificial example: Step 3 - Reordered mass matrix.

4.1 Mathematical background

Equipped with the correct weights {{ZU )}, the sampling points can be used to
compute observables,

The statistical weights of the points are given by

é-l(ﬂ) — Z (bs<qgj)) . (7)

Ws —x;
s€BF(5) Zk:ﬂ’s(%&j))

Thus, the sum of the weights of all points from a trajectory j equals the sum
of the weights of the basis functions which are induced by this trajectory. For
reasons of computational efficiency, we do not consider the sum over all possible
trajectories. The amount of statistical information we loose is small because
the term @S(qu)) is expected to be small for s ¢ BF(j).

Equation (7) strongly depends on the statistical weights {ws}X ; of the basis
functions. Since the computation of w as eigenvector of the transition matrix is
ill-conditioned [16], some of the weights w; are incorrect. Therefore, we propose
a reweighting strategy below, for which we need the following requirement.

Prerequisite 4.1 The probability density function 7 : Q — R is known point-
wise except for a normalization constant.

Prerequisite 4.1 is valid for the HMC method [6], which converges against
the Boltzmann density. This density is known pointwise except for a normal-
ization constant. For ¢ € 2, the Boltzmann density function is proportional
to exp(—3V(q)), where 3 = (kpT)~" with Boltzmann constant kg and fixed
temperature T, and V : 2 — IR is a known potential energy function.

12
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Figure 8: Artificial example: Step 4 - Rescaling of partial densities via pointwise
density estimation. The value of the partial density in a single point determines
the scaling factor as long as the density has locally been sampled correctly.

4.2 Algorithmic details

The relative statistical weight of an arbitrary point ¢ € € is given by the po-
tential energy function, #(q) = exp(—5V (¢)). It can also be approximated via
local density estimation based on the sampling data. The value 7(¢q) obtained
from local density estimation will be wrong as long as the weights w of the basis
functions and thus the weights 51-(] ) of the sampling points are incorrect. How-
ever, the difference between 7(q) and 7(¢) can be used to correct the weights
w of the basis functions. The idea is the following. We assume that the partial
densities were computed correctly from the eigenvalue problem [16]. By partial
densities, we refer to the vector w restricted to basis functions belonging to the
same cluster. Only the the scaling factors are wrong, which is equivalent to
the fact that the cluster weights are incorrect. However, if we know the ratio
#(q)/7(q) in a single point ¢, we can use this ratio for reweighting, see Figure
8. The actual value of the density, 7(q), can be estimated especially well in a
point near a minimum of the potential energy surface because these regions are
likely to be sampled sufficiently. The algorithmic realization is the following.

1. The basis functions must be assigned to the conformations. Therefore, a
so-called crisp clustering is needed, i.e. a matrix y € IR"*"¢ with x(i,5) =
1, if ®; belongs to conformation j, and X (i, 7) = 0 otherwise. If one applies
PCCA-+ to solve the clustering problem, one can determine  from  in the
following way. X(¢,7) := 1 if and only if x(, j) is the largest entry among
the elements of the i-th row x(4,:) of x. In all other cases X(4,j) := 0.
Identical entries inside the rows of x are unlikely to occur due to rounding
errors in numerical computations.

2. For each conformation j, we select one representative basis function ®;«,
namely the one that contains the most information,

Ny,
. k
j* — argmaxix(i,j):l (wi E (I)gk)(ql( ))) . (8)

=1

In other words, we select the basis function with large statistical weight

and high density of sampling points, i.e. @Ek)(ql(k)) is close to 1 for many

points.

13



3. For the representative basis functions d® e search for the sampling

Jjro
point ql(f ) from trajectory k with minimum potential energy. This point

is briefly denoted by g;». The target histogram height is computed as
#rj o= #(g;+) = exp(=pV(q;+))- (9)

4. The histogram height from (9) can be rewritten as an integral containing
the d-distribution. That intergral can be approximated replacing the J-
distribution by an exponential kernel with shape parameter oy and using
Monte Carlo quadrature:

iy = (g) = /Q 5(q — g5-) exp(—BV (g)) dg

~ /Qexp(—agdi(q,qj*)) GXP(—ﬁv(Qqu
Nsam N

= 3 > ew(—adi(g”,g;)) & (10)

k=1 i=1

This is an expression for the actual histogram hight depending on the
sampling data. The distance function d, will in general be different to
the distance function d from Section 2.2. More precise, d, must satisfy
d(q1,q2) = 0 < g1 = g2. A possible distance measure can be the root mean
square distance, i.e. the Euclidean distance between aligned molecules.

5. Given the actual and the target histogram heights, we correct the statis-
tical weights {w,}Y_; of the basis functions {®,}. For this purpose, we
first identify the cluster index j for which X(s,j) = 1. Then we set

new wsﬁj/ﬁj

= — 11
ws Z ) ( )

where Z is a normalization constant such that »_ wg = 1.

6. Equivalently, we compute the cluster weights {c;}7<;,
new _ G/ (12)
/ SorC ity /T

Given the new weights from (11), one can calculate the correct point weights in

(7).

Remark 4.1 Many sampling routines use umbrella strategies [14]. In this case
(4)

. are not equally weighted. In the more general case, there

()

%

the sampling points q
are weights 77(])

; , which sum up to 1 for each
sampling,

> 0 for every sampling point q
ST =1, Yi=1,... Num.
i

The algorithm presented here needs only slight modifications to cover this situ-
ation. The additional factor 7753 ) must be introduced in every formula which is

derived from an integral w.r.t. q.

14



4.3 Artificial example

First, the statistical weights of the clusters are computed from the matrix S by
w'S=w' and (6),

{e}0_, = {0.4564e-9, 0.8379¢-7,0.4462¢-5, 0.3365¢-6, 0.4007,
0.6668¢-7, 0.4703¢-7, 0.1956, 0.4037}.

These weights are incorrect because w is wrong. This is supported by the fact
that the weights do not reflect the symmetry of the potential energy surface.
After having selected the point with the lowest potential energy within each
cluster, we calculate the Boltzmann density in these points according to (9),

{#:}0_, = {0.0963, 0.0970, 0.5429, 0.5416, 0.5425, 0.5430, 3.0333,
0.0965, 0.0972} - 10°.

The actual histogram height, approximated by local density estimation accord-
ing to (10) with ae = 20, amounts to

(F}_, = {0.1958¢-9, 0.3458¢-7, 0.1874e-5, 0.1274¢-6, 0.1613,
0.2746¢-7, 0.1683¢-7, 0.8280¢-1, 0.1980}.

Now we can compute the corrected cluster weights by (12),

{crew}9_ = {0.0152, 0.0159, 0.0877, 0.0970, 0.0914, 0.0894, 0.5745,
0.0155, 0.0134}.

Indeed, these weights reflect the symmetry of the potential energy surface cor-
rectly.

Conclusion

Outlook. The reweighting strategy for sampling points proposed in this pa-
per is very similar to the method introduced in [16]. There, a stable algo-
rithm has been presented for the computation of thermodynamical weights
w = (w1,...,wy) ", which avoids solving the ill-conditioned eigenvector prob-
lem w'S = w' numerically. Instead, a resampling technique is used. Since
resampling is often impractical or even impossible, a data-based reweighting
strategy is useful. In contrast to [16], we did not only describe this reweighting
method, but also showed how a meshless discretization can be derived directly
from the sampling data. We believe that our method is general and applicable
to arbitrary metastable dynamical systems in equilibrium. Concerning the ap-
plication to biomolecules, the algorithmic implementation is still ongoing work,
but results will be presented soon.

Acknowledgement. We want to thank Peter Deuflhard for his contributions
to the stability analysis of thermodynamical weight computation.
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