Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation

epub ahead of print
  • We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems. EPR-Net leverages a nice mathematical fact that the desired negative potential gradient is simply the orthogonal projection of the driving force of the underlying dynamics in a weighted inner-product space. Remarkably, our loss function has an intimate connection with the steady entropy production rate (EPR), enabling simultaneous landscape construction and EPR estimation. We introduce an enhanced learning strategy for systems with small noise, and extend our framework to include dimensionality reduction and state-dependent diffusion coefficient case in a unified fashion. Comparative evaluations on benchmark problems demonstrate the superior accuracy, effectiveness, and robustness of EPR-Net compared to existing methods. We apply our approach to challenging biophysical problems, such as an 8D limit cycle and a 52D multi-stability problem, which provide accurate solutions and interesting insights on constructed landscapes. With its versatility and power, EPR-Net offers a promising solution for diverse landscape construction problems in biophysics.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Yue Zhao, Wei Zhang, Tiejun Li
Document Type:Article
Parent Title (English):National Science Review
Year of first publication:2024
DOI:https://doi.org/10.1093/nsr/nwae052
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.