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Abstract

In this paper we study capacitated network design problems, differentiating directed, bidi-
rected and undirected link capacity models. We complement existing polyhedral results for the
three variants by new classes of facet-defining valid inequalities and unified lifting results. For
this, we study the restriction of the problems to a cut of the network. First, we show that facets
of the resulting cutset polyhedra translate into facets of the original network design polyhedra
if the two subgraphs defined by the network cut are (strongly) connected. Second, we provide
an analysis of the facial structure of cutset polyhedra, elaborating the differences caused by the
three different types of capacity constraints. We present flow-cutset inequalities for all three
models and show under which conditions these are facet-defining. We also state a new class of
facets for the bidirected and undirected case and it is shown how to handle multiple capacity
modules by mixed-integer rounding (MIR).

Keywords: cutset polyhedra, flow-cutset inequalities, capacitated network design, integer pro-
gramming

MSC: 90C11, 90C35, 90C57, 90B18

1 Introduction

We address variants of the following capacitated network design problem. Given point-to-point
demands between locations and potential links of a network connecting these locations, a minimum
cost assignment of capacity to the links has to be found such that all demands can be realized by
a network flow. In most practical applications the admissible capacities follow a discrete structure.
We consider a finite set of capacity modules. Each module has a base capacity and cost. It can be
installed multiple times on every link of the network (modular capacity assignment). The routing
of a demand from its source to its destination can be done by splitting the flow among several paths
(bifurcated routing). Capacitated network design arises in the context of planning and dimensioning
telecommunication or public transport networks.

We distinguish three different types of capacity usage. A link might offer its capacity for flow in
one direction only (Directed link capacity model), the capacity of a link may be consumed by the
flow of both directions independently (Bidirected link capacity model) or it is shared between them
(Undirected link capacity model). In this paper, we focus on the polyhedral combinatorics of these
variants, whereas we report on the practical strength of the studied inequalities for the different link
models in [28]. We prove a central lifting theorem, showing that facets of cutset polyhedra defined
by the restriction of the problems to a cut of the network translate to facets of the original network
design polyhedra if the two (directed) subgraphs defining the cut are (strongly) connected. Known
classes of valid inequalities defining facets on the cutset polyhedra are cutset inequalities which are
based on capacity variables of the network cut, simple flow-cutset inequalities also containing outflow
variables with respect to one of the nodesets defining the cut, and, for the Directed case, flow-
cutset inequalities with outflow and inflow-variables. We extend the latter class to the Bidirected
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and Undirected case and provide conditions under which they define facets, unifying the results
for cut-based inequalities. Finally, we present a new class of facet-defining inequalities for the
Bidirected and Undirected case that has no counterpart in the Directed model. This shows that
flow-cutset inequalities alone do not suffice to provide a complete description for single-commodity,
single-module cutset polyhedra for the Bidirected and Undirected case, in contrast to the result
of Atamtürk [3] for the Directed model.

The network design polyhedra considered in this paper have already been studied for special cases
by several authors. Magnanti and Mirchandani [20], Magnanti et al. [21, 22] consider Undirected

link models and a modular capacity structure with up to three different modules. The base capacities
are integer multiples of each other. Magnanti et al. initiate the study of network design polyhedra
and introduce cutset inequalities, three-partition inequalities and arc residual capacity inequalities.
Bienstock and Günlük [8] study polyhedra based on Bidirected problems with two modules also
having divisible base capacities. In addition to cutset and partition inequalities they consider a
generalization of cutset inequalities to simple flow-cutset inequalities containing outflow variables.
General flow-cutset inequalities for Directed models with a single module have been introduced by
Chopra et al. [11] showing their validity. Atamtürk [3] gives a detailed analysis for Directed cutset
polyhedra. He studies the flow-cutset inequalities introduced in [11] and proves that they induce a
complete description in the single-commodity, single-module case. Further, Atamtürk [3] generalizes
Directed flow-cutset inequalities to an arbitrary number of modules via lifting and states conditions
under which these inequalities define facets in the multi-commodity, multi-module case.

Cutset polyhedra as introduced by Atamtürk [3] are based on network design problems for
networks with two nodes (allowing parallel links). Hence every cut of a larger network together with
the demands across the cut defines a cutset polyhedron. Most of the strong valid inequalities for
network design polyhedra given in the literature are based on simple substructures of the network
such as single arcs, cuts, three-partitions or, more general, k-partitions. These inequalities have
been derived as facets of simple structured relaxations such as single-arcset polyhedra or network
design polyhedra corresponding to simple k-node networks. Figure 1 shows simple networks and the
corresponding polyhedral studies. Brockmüller et al. [10], van Hoesel et al. [17], Magnanti et al. [21]
and Rajan and Atamtürk [29] consider single-arc sets. Magnanti et al. [21] and Bienstock et al. [9]

(a) single arc, [10, 17, 21, 29] (b) three nodes, undirected, [21] (c) three nodes, directed, [9]

(d) four nodes, undirected, [1] (e) cutset, directed, [3]

Figure 1: small network structures

study the capacity formulation that is obtained by projecting out all flow-variables in the classical
multi-commodity link-flow formulation, see [6, 18]. They present a complete description of a three-
node network design polyhedra. Agarwal [1] identifies facet-defining inequalities for the capacity
formulation of the four-node Undirected problem.

It is of interest to know under which conditions facets for polyhedra based on these substructures
translate to facets for the original network design polyhedra. For facets based on k-partitions of
the nodeset this question was partially answered by Agarwal [1]. He considers the Undirected

capacity formulation with a single module and shows that every facet-defining inequality for the
k-node problem based on capacity variables is a facet of the original problem if the subgraph of each
component of the considered k-partition is connected. Since Agarwal aggregates parallel edges in the
shrunken k-node network, his result applies to inequalities with capacity variables having identical
coefficients on parallel edges.

This article is closely related to the work of Agarwal [1] and Atamtürk [3]. In contrast to
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[1], we consider the link-flow formulation which gives rise to more general classes of facet-defining
inequalities. These may contain flow as well as capacity variables and they may have different
coefficients for variables on parallel links. We extend the result of [1] for k = 2 to multiple modules,
all link models, and the inclusion of flow variables. This can be used to lift the facets studied
by Atamtürk [3] which expands his work on Directed cutset polyhedra to general network design
polyhedra. Similar to [3] we provide an analysis of cutset polyhedra but we also consider the
Bidirected and Undirected models presenting a unifying and comparing study.

Cutsets (see Figure 1(e)) and cutset polyhedra are closely related to single node flow sets, which
have been studied extensively in the literature. Cutset polyhedra can be seen as single node flow
sets with unbounded integer capacity variables. The polyhedral study of single node flow sets was
initiated by Padberg et al. [26]. They introduce a special case of so-called flow-cover inequalities
with only outflow arcs. A generalization to inequalities with non-zero coefficients also for inflow arcs
is from Van Roy and Wolsey [31]. Important work on the strengthening of flow-cover inequalities
by superadditive lifting has been carried out by Gu et al. [15]. Reverse flow-cover inequalities were
introduced by Stallaert [30] and studied by Atamtürk [2]. Single node flow sets with a very general
capacity model based on additive variable upper bounds are investigated in Atamtürk et al. [5].
Louveaux and Wolsey [19] recently showed how strong valid flow-cover inequalities can be obtained
by a MIR procedure applied to single node flow sets that has been introduced by Marchand and
Wolsey [23]. We apply the same procedure to cutset polyhedra in order to obtain flow-cutset
inequalities with the difference that we do not complement capacity variables because these are
unbounded.

This paper is structured as follows. After defining network design polyhedra and cutset polyhedra
in Section 2 and Section 3, respectively, we show how facets of these polyhedra are related to each
other which is subsumed by the central Theorem 3.6. A detailed analysis of the facial structure of
cutset polyhedra for the three link capacity models is provided in Section 4 addressing the single-
module case in Section 4.1 and Section 4.2 as well as the multi-module case in Section 4.3. For
the multi-module we will lift single-module facet-defining inequalities by using subadditive MIR-
functions. We conclude with some remarks and open questions in Section 5.

2 Network design polyhedra

A network design instance is given by a directed graph G = (V, A) (Directed link model) or an
undirected graph H = (V, E) (Bidirected and Undirected link model), a set M of capacity modules
installable on the network links, and a set K of commodities. The literature often refers to M as
being the set of facilities or technologies. We will use the term modules throughout. We assume G
to be strongly connected and H to be connected. Note that we explicitly allow for parallel arcs and
edges. In order to handle flow on edges for the Bidirected and Undirected link model we define
G = (V, A) to be the digraph obtained by bidirecting all edges in E. The two arcs corresponding
to edge e ∈ E are denoted by e+ and e−, hence A := {e+ = (i, j), e− = (j, i) : e = {i, j} ∈ E}. A
module m ∈ M has a capacity cm ∈ Z+\{0}. For simplicity we consider the same set of modules
for all arcs or edges. With every k ∈ K we associate a vector dk ∈ Z

V of demand values such that
∑

v∈V dk
v = 0. We call dk

v the emanating demand of node v with respect to commodity k.
We define variables xm

a , xm
e to be the number of installed modules of type m ∈ M on arc a ∈ A

or edge e ∈ E, respectively. We assume a fractional multi-commodity flow routing. Let fk ∈ R
A
+ be

the vector of flow variables corresponding to commodity k ∈ K.
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Consider the following inequalities:

∑

a∈δ
+

G
(v)

fk
a −

∑

a∈δ
−

G
(v)

fk
a = dk

v ∀v ∈ V, k ∈ K (1)

∑

k∈K

fk
a ≤

∑

m∈M

cmxm
a ∀a ∈ A (Directed) (2a)

max
{

∑

k∈K

fk
e+ ,

∑

k∈K

fk
e−

}

≤
∑

m∈M

cmxm
e ∀e ∈ E (Bidirected) (2b)

∑

k∈K

(fk
e++fk

e−) ≤
∑

m∈M

cmxm
e ∀e ∈ E (Undirected) (2c)

The flow conservation constraints (1) ensure a feasible routing. Inequalities (2a), (2b), and (2c)
are the capacity constraints for the three model types. The network design polyhedra for the link
capacity models Directed, Bidirected, and Undirected are given by

NDdi = conv
{

(f, x) ∈ R
A×K
+ × Z

A×M
+ : (f, x) satisfies (1) and (2a)

}

,

NDbi = conv
{

(f, x) ∈ R
A×K
+ × Z

E×M
+ : (f, x) satisfies (1) and (2b)

}

,

NDun = conv
{

(f, x) ∈ R
A×K
+ × Z

E×M
+ : (f, x) satisfies (1) and (2c)

}

.

The problem of optimizing a linear cost-function over one of these polyhedra is called a capacitated
network design problem. This problem is known to be NP-hard already for special cases, see for
instance Bienstock et al. [9] and Chopra et al. [11]. A valid inequality is called trivial if it is equivalent
to one of the capacity or non-negativity constraints defining NDdi, NDbi or NDun. Notice that
the capacity constraints (2b) for NDbi can be expressed by two linear inequalities for each edge,
that NDbi is a relaxation of NDun, and that the constraint matrices and right-hand side vectors
are integral. Since the capacity variables are not bounded and the underlying graphs are (strongly)
connected we can construct a feasible flow for every demand vector (e. g., by applying a (min-cost)
flow algorithm). Hence the given polyhedra are not empty.

For special cases of these network design polyhedra the following dimension result has been proven
by Atamtürk [3], Bienstock and Günlük [8], and Magnanti et al. [22]. A generalization can be easily
obtained. We present a proof here primarily because we will make use of the same arguments in the
proof of Theorem 3.6.

Proposition 2.1. The dimension of NDdi is |K||A| + |M ||A| − |K|(|V | − 1). The dimension of
NDbi and NDun is 2|K||E| + |M ||E| − |K|(|V | − 1).

Proof. For NDdi, there are |K||A| + |M ||A| variables and |K|(|V | − 1) linearly independent flow
conservation constraints (1). We show that there are no additional implied equations. Let

∑

a∈A

(
∑

k∈K

γk
afk

a +
∑

m∈M

βm
a xm

a ) = π (3)

be an equation satisfied by all points in NDdi and let p̂ = (f̂ , x̂) ∈ NDdi. For all a ∈ A and every
m ∈ M we can modify p̂ by increasing the capacity variable x̂m

a , without leaving NDdi. Hence,
βm

a = 0 for all a ∈ A and m ∈ M . Now we choose a spanning arborescence T ⊆ A of G with root
r ∈ V , that is, for every node v ∈ V \{r} there exists a unique directed path in T from r to v. The
arborescence T exists since G is strongly connected.

By adding a linear combination of the flow conservation constraints (1) to (3) we can assume
that γk

a = 0 for all a ∈ T, k ∈ K. Now let (v0, v1) be an arc in A\T and (v1, v2, ..., vt = r) a directed
path in G from v1 to r with t ≥ 1, which exists because G is strongly connected. Now, the unique
path from r to vt−1 in T and the arc (vt−1, r) define a circuit in G. For every commodity k we can
modify p̂ by sending a circulation flow along that circuit, increasing capacities on arcs if necessary.
This way we get a new feasible point satisfying (3). It follows that γk

(vt−1,r) = 0 since γk
a = 0 for

all a ∈ T . Similarly, there is a closed directed path defined by the unique path from r to vt−2 in
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T and the arcs (vt−2, vt−1) and (vt−1, r). Again, sending a circulation flow on that circuit gives
γk
(vt−2,vt−1) = 0. We proceed inductively and conclude that

γk
(v0,v1)

= γk
(v1,v2) = · · · = γk

(vt−1,vt)
= 0.

Since (v0, v1) was chosen arbitrarily we obtain γk
a = 0 for all a ∈ A and k ∈ K. Hence, equation (3)

is a linear combination of flow conservation constraints.
The corresponding result for NDbi and NDun can be proved analogously by using a spanning

tree T in H and by sending circulation flows (in both directions) on undirected circuits defined by
edges of T and single edges in E\T (see for instance Bienstock and Günlük [8], proof of Theorem
2.2).

3 Cutset polyhedra

Cutset polyhedra arise from the aggregation of flow conservation constraints for all nodes in a non-
empty nodeset S ⊂ V . The network design problems are restricted to the two artificial nodes
S and V \S and the corresponding network cut. Since a significant part of the characteristics of
cutset polyhedra carries over on the related network design polyhedra, their polyhedral structure is
important. After introducing the cutset polyhedra CSdi

S , CSbi
S and CSun

S , we show that facet-defining
inequalities for these cutset polyhedra define facets of NDdi, NDbi or NDun, provided that rather
mild conditions on the structure of the underlying graphs are satisfied.

Let the network cut AS ⊆ A in G be the set of arcs with one endnode in S and one endnode in
V \S where A+

S ⊆ AS is the set of arcs with source in S and A−
S := AS\A

+
S . Similarly, ES denotes

the undirected cut in H , containing all edges with one endnode in S and one endnode in V \S. For
the Bidirected and Undirected link model, every edge e in the cut ES is represented by the two
arcs e+ and e− in AS such that e+ ∈ A+

S and e− ∈ A−
S . The total flow with respect to Q ⊆ K

on A∗ ⊆ A is denoted by fQ(A∗) :=
∑

k∈Q

∑

a∈A∗ fk
a . We abbreviate fk(A∗) for f{k}(A∗). Notice

that the sets A+
S , A−

S and ES are all non-empty since G is strongly connected and H is connected.
Let dk

S :=
∑

v∈S dk
v be the total demand over the cut given by S with respect to commodity

k ∈ K and define

K+
S :=

{

k ∈ K : dk
S > 0

}

, K−
S :=

{

k ∈ K : dk
S < 0

}

, K0
S :=

{

k ∈ K : dk
S = 0

}

Considering the Undirected link capacity model, we may reverse the direction of every demand and
exchange the corresponding flow variables without changing the problem. Hence, without loss of
generality we assume that K−

S = ∅ for Undirected models.

1, 2, 0 −1,−1, 1
a1

a2

0, 0, 0 0,−1,−1a3

(a) 4-node network with emanating demands
for three commodities (|K| = 3)

1, 2, 0 −1,−2, 0
a1

a2
a3

S V \S

(b) cutset corresponding to S with |K+

S
| = 2

and |K0
S
| = 1

Figure 2: Relation between network design polyhedra and cutset polyhedra

Definition 3.1. Given S ⊂ V , the cutset polyhedron CSdi
S (CSbi

S , CSun
S ) is the network de-

sign polyhedron NDdi (NDbi,NDun) with respect to the graph GS := ({S, V \S}, AS) (HS :=
({S, V \S}, ES)) defined by the two artificial nodes S and V \S, the cut arcs AS (cut edges ES), and
the aggregated demand vector (dk

S , dk
V \S) for every k ∈ K.

Throughout we assume that there is demand across the considered cut, i. e., K+
S 6= ∅ w. l. o. g..

Note that the cutset polyhedra of S and V \S are identical with dk
S = −dk

V \S
for all k ∈ K.
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Corollary 3.2. Let S ⊂ V . The dimension of CSdi
S is |K||AS | + |M ||AS | − |K|. The dimension of

CSbi
S and CSun

S is 2|K||ES | + |M ||ES | − |K|.

In the following we will work out some statements about cutset polyhedra and their relation
to network design polyhedra, preparing the main result of this section which is given in Theorem
3.6. For proofs we will concentrate on the Directed case, but we will mention how to vary the
argumentation for the Bidirected and Undirected models, if not obvious.

Let p̂ ∈ NDdi and for S ⊂ V consider the sub-vector p̂S of p̂ obtained by deleting all entries in p̂
that correspond to A\AS or K0

S . Since the demand constraints for CSdi
S are aggregations of demand

constraints for NDdi, the point p̂S is in CSdi
S :

p̂ ∈ NDdi =⇒ p̂S ∈ CSdi
S

This property holds similarly for points in NDbi and NDun. From here it follows directly that

Lemma 3.3. Given S ⊂ V , a valid inequality for CSdi
S (CSbi

S , CSun
S ) is also valid for NDdi (NDbi,

NDun).

The reverse of Lemma 3.3 is not true in general.

Example 3.4. Consider the strongly connected 4-node network given in Figure 2 and assume that
there is sufficient capacity on all arcs. For the first commodity there is a demand of d1

S = 1 from the
left to the right which has to be realized using arc a1. Hence f1

a1
≥ 1. This inequality is not valid

for the cutset polyhedron corresponding to S since for the problem on the cutset it is also valid to
route the demand using arc a2. The information about the structure of G[S], which is not strongly
connected, is lost in the aggregation process.

If both G[S] and G[V \S] are strongly connected (H [S] and H [V \S] are connected), then any
point of the cutset polyhedron can be extended to a point of the network design polyhedron without
changing the values on the cut. Hence, valid inequalities of network design polyhedra with non-zero
coefficients only on the cut correspond to valid inequalities of the associated cutset polyhedra.

Lemma 3.5. For some S ⊂ V , let the graphs G[S] and G[V \S] be strongly connected. There exists
a point p̂ ∈ NDdi for every point p̄ ∈ CSdi

S , such that p̂S = p̄. Any valid inequality for NDdi with
zero coefficients for A\AS is also valid for CSdi

S .
For some S ⊂ V , let the graphs H [S] and H [V \S] be connected. There exists a point p̂ ∈ NDbi

(p̂ ∈ NDun) for every point p̄ ∈ CSbi
S (p̄ ∈ CSun

S ), such that p̂S = p̄. Any valid inequality for NDbi

(NDun) with zero coefficients for E\ES is also valid for CSbi
S (CSun

S ).

Proof. Let p̄ = (f̄ , x̄) ∈ CSdi
S . We can w. l. o. g. assume that x̄ ∈ Z

|M||K|
+ . We construct a point

p̂ = (f̂ , x̂) ∈ NDdi the following way:

f̂k
a := f̄k

a for k ∈ K, a ∈ AS and x̂m
a :=

{

x̄m
a a ∈ AS , m ∈ M

M a ∈ A\AS , m ∈ M
,

where M ∈ Z+ is a large number. It remains to define f̂k
a , k ∈ K, for arcs a in A\AS = A[S]∪A[V \S].

For every k ∈ K, we define two (min-cost) flow problems on G[S] respectively G[V \S] by using the
demand-vector

d̂k
v :=

{

dk
v + f̄k(δ−G(v) ∩ A−

S ) − f̄k(δ+
G(v) ∩ A+

S ) v ∈ S

dk
v + f̄k(δ−G(v) ∩ A+

S ) − f̄k(δ+
G(v) ∩ A−

S ) v ∈ V \S.

Thus d̂k
v is the emanating demand of the node v with respect to commodity k plus the flow that

has to leave (or enter) v across the cut. Note that
∑

v∈S d̂k
v =

∑

v∈V \S d̂k
v = 0. Since G[S] and

G[V \S] are strongly connected and the capacity is large enough, a min-cost flow (with arbitrary cost

function) can be computed. The resulting flow values are completing the point p̂ = (f̂ , x̂) ∈ NDdi.
By definition p̂ meets all flow conservation constraints (1) and capacity constraints (2a) for NDdi.
Hence p̂ ∈ NDdi and p̂S = p̄.
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We are now ready to proof the central lifting result of this article, stating that valid inequali-
ties describing facets of cutset polyhedra also describe facets of the corresponding network design
polyhedra, provided the subgraphs are (strongly) connected.

Theorem 3.6 (Cutset lifting theorem). Let S ⊂ V and

∑

a∈AS

(
∑

k∈K

γk
afk

a +
∑

m∈M

βm
a xm

a ) ≥ π (4)

be a facet-defining inequality of CSdi
S . Then it also defines a facet of NDdi if both G[S] and G[V \S]

are strongly connected. Let S ⊂ V and

∑

e∈ES

(
∑

k∈K

γk
e+fk

e+ +
∑

k∈K

γk
e−fk

e− +
∑

m∈M

βm
e xm

e ) ≥ π

be a facet-defining inequality of CSbi
S (CSun

S ). Then it also defines a facet of NDbi (NDun) if both
H [S] and H [V \S] are connected.

Proof. We will first show that the related face

F :=
{

(f, x) ∈ NDdi : (f, x) satisfies (4) at equality
}

is non-trivial, i. e., it is not empty and it does not equal NDdi. Then we will show that it is
inclusion-wise maximal. Let

FS :=
{

(f, x) ∈ CSdi
S : (f, x) satisfies (4) at equality

}

be the facet of CSdi
S defined by (4). Choose a point p̄ ∈ FS . From Lemma 3.5 follows that there is a

point p̂ ∈ NDdi with p̂S = p̄. It follows that p̂ fulfills (4) at equality and hence p̂ ∈ F . Since FS is
a facet of CSdi

S , there is a point q̄ ∈ CSdi
S with q̄ /∈ FS . Again by Lemma 3.5 there is q̂ ∈ NDdi with

q̂S = q̄. Thus, this point is not on the face F . We conclude that F is a non-trivial face of NDdi. It
remains to show that F is inclusion-wise maximal. Choose a facet F̃ of NDdi with F ⊆ F̃ and let
F̃ be defined by

∑

a∈A

(
∑

k∈K

γ̃k
afk

a +
∑

m∈M

β̃m
a xm

a ) ≥ π̃. (5)

Every point in F satisfies (5) at equality. We will show that (5) equals (4) up to a linear combination
of flow conservation constraints. To see that

γ̃k
a = β̃m

a = 0 ∀a /∈ AS , m ∈ M, k ∈ K, (6)

we apply the arguments of the proof of Proposition 2.1 to G[S] and G[V \S] respectively. We can
thus concentrate on coefficients of variables in the cut. Now, by Lemma 3.5, inequality (5) is valid
for CSdi

S . Let F̃S be the corresponding face of CSdi
S . For a fixed arc ā ∈ AS it can be assumed that

γ̃k
ā = γk

ā = 0 ∀k ∈ K

by adding a linear combination of the flow conservation constraints to (4) and (5), respectively. By
construction every point in FS also fulfills (5) at equality. Since FS is a facet, it follows F̃S = FS .
Hence, (5) is (4) up to a scalar multiple and a linear combination of flow conservation constraints.
We conclude that also F = F̃ , and hence F defines a facet of NDdi. This completes the proof.

The proof for the Bidirected and Undirected case is analogous.
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4 Facets of cutset polyhedra

By Theorem 3.6, every facet of a cutset polyhedron translates into a facet of the corresponding
network design polyhedron if both components of the cut are (strongly) connected. This result
motivates the analysis of the facial structure of cutset polyhedra. In this section we unify the
existing results for the three link models by deriving the class of so-called flow-cutset inequalities for
the Bidirected and Undirected case. We further expand results on the strength of these inequalities
for all three cases.

In Section 4.1 and Section 4.2 single-module problems, i. e., |M | = 1, are investigated. Results
for the class of flow-cutset inequalities for CSdi

S will be reviewed and supplemented in Section 4.1. In
Section 4.2 we study CSbi

S and CSun
S . We will define a new general class of flow-cutset inequalities,

similar to the one for CSdi
S , and existing facet results will be extended accordingly. Additionally, a

new class of facet-defining inequalities will be presented that has no counterpart in the Directed

case. This new class reflects the special structure of the polyhedra CSbi
S and CSun

S . Finally, in Section
4.3 we will investigate how facet-defining inequalities for cutset polyhedra with a single module can
be generalized to strong valid inequalities in the multi-module case.

The total demand over the cut defined by S ⊂ V with respect to a non-empty commodity subset
Q ⊆ K is denoted by dQ

S :=
∑

k∈Q dk
S . Given a module m ∈ M , we define xm(A∗) =

∑

a∈A∗ xm
a or

xm(E∗) =
∑

e∈E∗ xm
e to be the total number of modules on arcs of A∗ ⊆ A or edges of E∗ ⊆ E. Let

r(a, c) := a − c(
⌈

a
c

⌉

− 1) > 0 (7)

be the remainder of the division of a ∈ R by c ∈ R+\{0} if a
c

/∈ Z, and c otherwise. The same
operator has already been used by Bienstock and Günlük [8], Magnanti and Mirchandani [20] in the
context of strong valid inequalities of network design polyhedra.

4.1 The single-module case for CSdi

S

Let |M | = 1 and c denote the unique module capacity. We also omit the superscript m for the
capacity variables. For fixed S ⊂ V , we define for every commodity subset Q

rQ := r(dQ
S , c), ηQ :=

⌈

d
Q

S

c

⌉

, rQ
− := r(−dQ

S , c) and ηQ
− :=

⌈

−d
Q

S

c

⌉

.

If
d

Q

S

c
/∈ Z then the relations ηQ

− = 1 − ηQ and rQ
− = c − rQ hold.

A−
S

A+
1

S V \S

d
Q
S

A+
S

A−
2

Figure 3: A directed cutset with selected cut arcs

Flow-cutset inequalities for Directed problems have been introduced by Chopra et al. [11] and
were studied in detail by Atamtürk [3]. We consider two subsets A+

1 ⊆ A+
S and A−

2 ⊆ A−
S of the cut

arcs AS (see Figure 3). Define Ā+
1 := A+

S \A
+
1 .

Lemma 4.1 (Atamtürk [3], Chopra et al. [11]). The following flow-cutset inequality is valid for
CSdi

S :
fQ(Ā+

1 ) − fQ(A−
2 ) + rQx(A+

1 ) + (c − rQ)x(A−
2 ) ≥ rQηQ. (8)

The flow-cutset inequality (8) is the 1
c
-MIR inequality (see [24, §II.1.7], [4], and [28]) for the base

inequality
fQ(Ā+

1 ) + f̄Q(A−
2 ) + c

(

x(A+
1 ) − x(A−

2 )
)

≥ dQ
S (9)

8



with f̄Q(A−
2 ) = cx(A−

2 )− fQ(A−
2 ). We call inequality (8) a simple flow-cutset inequality if A−

2 = ∅.
A simple flow-cutset inequality will be called a cutset inequality if additionally A+

1 = A+
S (i. e., they

contain no flow-variables). Cutset inequalities are given by x(AS) ≥ ηQ. Notice that if dQ
S is an

integer multiple of c, then rQ = c and (8) reduces to a trivial aggregation of flow conservation,
capacity and non-negativity constraints (see [3, 28]). If not explicitly stated otherwise, we assume

rQ < c, i. e., c does not divide dQ
S .

Flow-cutset inequalities have the nice property to be symmetric in S and V \S in the sense
that for every flow-cutset inequality of CSdi

S there exists a unique flow-cutset inequality for CSdi
V \S .

Adding the flow conservation constraint fQ(A−
S ) − fQ(A+

S ) = −dQ
S to (8) gives

fQ(Ā−
2 ) − fQ(A+

1 ) + (c − rQ
−)x(A+

1 ) + rQ
−x(A−

2 ) ≥ rQηQ − dQ
S = rQηQ − cηQ + c − rQ

= rQ(ηQ − 1) − c(ηQ − 1)

= rQ
−ηQ

− .

It turns out that if dQ
S < 0, then (8) is equivalent to a flow-cutset inequalities for CSdi

V \S with

positive right-hand side. Interchanging S and V \S we can assume w. l. o. g. that dQ
S > 0. Moreover,

we concentrate on commodity subsets with Q ⊆ K+
S in the sequel.

Before reviewing the results of Atamtürk [3], we will give some necessary conditions for flow-
cutset inequalities to be facet-defining for CSdi

S .

Lemma 4.2. If (8) defines a facet of CSdi
S , then

i) rQ < c and A+
1 6= ∅.

ii) If (8) is a simple flow-cutset inequality and A+
1 6= A+

S , then either ηQ ≥ 2 or |Q| = 1.

iii) If (8) is a cutset inequality, then ηQ = ηK
+

S .

Proof. i) If rQ = c, then inequality (8) reduces to fQ(Ā+
1 ) + cx(A+

1 ) − fQ(A−
2 ) ≥ dQ

S , which

is the sum of fQ(A+
S ) − fQ(A−

S ) ≥ dQ
S , non-negativity constraints for A−

S \A−
2 and capacity

constraints for A+
1 .

If A+
1 = ∅ and rQ < c, then inequality (8) can be written as

fQ(A+
S ) − fQ(A−

2 ) + (c − rQ)x(A−
2 ) ≥ rQηQ = dQ

S − (ηQ − 1)(c − rQ),

and is dominated by fQ(A+
S ) − fQ(A−

2 ) ≥ dQ
S since ηQ ≥ 1 and c > rQ.

ii) Suppose A−
2 = ∅, A+

1 ⊂ AS , ηQ = 1 and Q = {q1, ..., ql} with l ≥ 2. It follows dqi

S ≤ c ∀i ∈

{1, . . . , l}, dQ
S = rQ =

∑l
i=1 dqi

S =
∑l

i=1 rqi and ηQ = ηqi = 1. Hence (8) is the sum of the
following l valid simple flow-cutset inequalities:

f qi(Ā+
1 ) + rqix(A+

1 ) ≥ rqi .

iii) By definition dQ
S ≤ d

K
+

S

S and thus ηQ ≤ ηK
+

S . If ηQ < ηK
+

S , then x(A+
S ) ≥ ηK

+

S dominates
x(A+

S ) ≥ ηQ.

We will now give sufficient conditions for flow-cutset inequalities of type (8) to be facet-defining for
CSdi

S . We start with the proof of an important result for cutset inequalities, since it introduces most
of the methodology needed for facet-proofs for cutset polyhedra without being too technical, and
because Atamtürk [3] does not explicitly consider this well-known subclass of flow-cutset inequalities.
These inequalities are crucial for the performance of cutting-plane-based algorithms for network
design problems, see Barahona [7], Bienstock et al. [9], Bienstock and Günlük [8] or Raack et al.
[28].

Theorem 4.3. The cutset inequality x(A+
S ) ≥ ηK

+

S defines a facet of CSdi
S if and only if rK

+

S < c.

9



Proof. Necessity was shown in Lemma 4.2. Notice that by definition cηK
+

S = d
K

+

S

S + c − rK
+

S and

that rK
+

S < c is equivalent to
d

K
+

S
S

c
/∈ Z. We will show that the related face

F :=
{

(f, x) ∈ CSdi
S : x(A+

S ) = ηK
+

S

}

is non-trivial i. e., it is not empty and it does not equal CSdi
S . Then we will show that it is maximal

(inclusion-wise). Choose a1 ∈ A+
S and a2 ∈ A−

S (G is strongly connected). Now we construct a

feasible point p on the face F the following way. We install exactly ηK
+

S capacity units on a1.
The capacity on a2 is chosen sufficiently large. Every demand dk

S for k ∈ K+
S is routed on a1 and

commodities in K−
S are satisfied on a2 such that the arcs a1, a2 are not saturated and carry a total

flow of d
K

+

S

S and d
K

−

S

S , respectively. By construction it holds p ∈ F . Modifying p by increasing

capacity on A+
S gives a point that is in CSdi

S but not on the face F . It follows that F is non-trivial.

We will now prove that F is inclusion-wise maximal. Choose a facet F̃ of CSdi
S with F ⊆ F̃ . Let

F̃ be defined by
∑

a∈AS

(βaxa +
∑

k∈K

γk
afk

a ) = π, (10)

where βa, γk
a , π ∈ R. We will show that (10) is a multiple of x(A+

S ) = ηK
+

S up to a linear combination
of flow conservation constraints. Since multiples of the |K| flow conservation constraints may be
added to (10) without changing the induced face, we may assume that γk

a1
= 0 for all k ∈ K.

We can also modify the point p by increasing capacity on A−
S resulting in βa = 0 for all a ∈ A−

S .
Modifying p by simultaneously increasing flow on a1 and on some arc of A−

S by a small amount for
every commodity k ∈ K gives new points on F . Hence γk

a = 0 for all k ∈ K, a ∈ A−
S . The proof is

complete for |A+
S | = 1. Otherwise, we choose a ∈ A+

S different from a1 and construct another point
on the face F the following way. We modify p by deleting one unit of capacity on a1 and installing
one unit of capacity on a. The total capacity on A+

S remains unchanged. We shift a total flow of

rK
+

S from the arc a1 to the arc a since c(ηK
+

S − 1) = d
K

+

S

S − rK
+

S . The new point is on the face F .

Note that the capacity on a is not saturated since rK
+

S < c. We can increase the flow on a and on
some arc in A−

S , resulting in γk
a = 0 for all a ∈ A+

S , k ∈ K since a was chosen arbitrarily. Finally,
this implies βa = βa1

for all a ∈ A+
S .

Plugging in all coefficients in (10) shows that F̃ is given by a multiple of x(A+
S ) = ηK

+

S (up to a

linear combination of flow conservation constraints). Thus F = F̃ , concluding the proof.

The following two results by Atamtürk [3] give more classes of facet-defining flow-cutset inequal-
ities. It turns out that flow-cutset inequalities capture a significant part of the facial structure of
cutset polyhedra. Theorem 4.5 is crucial for the theory of strong valid inequalities for Directed

network design polyhedra stating that in the single-commodity, single-module case, the trivial in-
equalities and all flow-cutset inequalities completely describe CSdi

S . In the following section we will
show that this does not hold for CSbi

S and CSun
S .

Theorem 4.4 (Atamtürk [3]). Let ∅ 6= Q ⊆ K+
S and rQ < c. The flow-cutset inequality (8) defines

a facet of CSdi
S if ∅ 6= A+

1 ⊂ A+
S and ∅ 6= A−

2 ⊂ A−
S .

Theorem 4.5 (Atamtürk [3]). Let |Q| = |K+
S | = 1. The flow-cutset inequality (8) defines a facet

of CSdi
S if and only if rK

+

S < c and A+
1 6= ∅. The inequalities (1), (2a), (8), and the non-negativity

constraints completely describe CSdi
S .

In this paper we solely consider strongly connected digraphs, which implies A−
S 6= ∅. If however

A−
S = ∅, then Theorem 4.3 and Theorem 4.5 do not hold. It can be shown that if x(A+

S ) ≥ ηK
+

S

defines a facet of CSdi
S and |A+

S | ≥ 2, then either ηK
+

S ≥ 2 or A−
S 6= ∅. In particular if A−

S = ∅,

K−
S = K0

S = ∅, |A+
S | ≥ 2, and ηK

+

S = 1 then the inequality x(A+
S ) ≥ 1 is not a facet of CSdi

S . Taking
A+

1 ⊂ A+
S , it is the sum of the flow-cutset inequalities

fK
+

S (A+
1 ) + rK

+

S x(Ā+
1 ) ≥ rK

+

S ηK
+

S and fK
+

S (Ā+
1 ) + rK

+

S x(A+
1 ) ≥ rK

+

S ηK
+

S

10



because rK
+

S = d
K

+

S

S and fK
+

S (A+
S ) = d

K
+

S

S . In this respect, Atamtürk [3], Theorem 1 is not correct.

In the corresponding proof flow is routed using an arc s ∈ A+
S having capacity ηK

+

S − 1, which is

possible only if ηK
+

S ≥ 2. For A−
S 6= ∅ this can be fixed by using the arguments presented in the

proof of Theorem 4.3 (routing epsilon-flows using arcs of A−
S ).

4.2 The single-module case for CSbi

S and CSun

S

For the Bidirected and Undirected case, cutset inequalities and simple flow-cutset inequalities
have been studied in the literature as well. In this section, we will generalize these to the class of
flow-cutset inequalities analog to the Directed case and extend the facet results of Magnanti and
Mirchandani [20] and Bienstock and Günlük [8]. For a compact presentations it was decided to put
the (rather technical) proofs of the main results to the Appendix.

We consider two subsets E1, E2 of the undirected cut edges ES (see Figure 4). Remember that
to handle flow across the cut we bidirect all edges in ES . Edge e ∈ ES of the cut corresponds to
e+ ∈ A+

S and e− ∈ A−
S . Let A+

1 and A−
1 denote all forward and backward arcs with respect to E1

(similar A+
2 and A−

2 with respect to E2), while Ā+
1 := A+

S \A
+
1 and Ā−

1 := A−
S \A−

1 .

E2

d
Q
S

E1 ES

S V \S

Figure 4: An undirected cutset with selected cut edges

Lemma 4.6. The following flow-cutset inequality is valid for CSbi
S and CSun

S :

fQ(Ā+
1 ) − fQ(A−

2 ) + rQx(E1) + (c − rQ)x(E2) ≥ rQηQ. (11)

The flow-cutset inequality (11) is the 1
c
-MIR inequality (see [24, §II.1.7], [4], and [28]) for the

base inequality
fQ(Ā+

1 ) + f̄Q(A−
2 ) + c

(

x(E1) − x(E2)
)

≥ dQ
S . (12)

with f̄Q(A−
2 ) = cx(E2)−fQ(A−

2 ). It can be seen as the undirected analogon of (8) and is considered
in this general form here for the first time (also see the parallel computational study [28]). Special
cases have been studied in [7, 8, 20, 21, 22]. An important difference to the directed case is that the
two edge-sets E1 and E2 are not necessarily disjoint. A simple flow-cutset inequality is a flow-cutset
inequality with E2 = ∅ and a cutset inequality is a simple flow-cutset inequality with E1 = ES , i. e.,
it reduces to x(ES) ≥ ηQ.

For Bidirected and Undirected models we consider a second class of strong valid inequalities
that turns out to have no analogon in the Directed case. Example 4.7 shows that in contrast
to Theorem 4.5 flow-cutset inequalities of type (11) do not completely describe CSbi

S and CSun
S if

|K| = |M | = 1.

Example 4.7. Define a cutset polyhedron with |K| = 1, |ES | = 2 for the Bidirected link model:

P = conv
{

x ∈ Z
2
+, f ∈ R

4
+ : f1+ f2 − f3 − f4 = 7,

0 ≤ fi ≤ 3x1 ∀i ∈ {1, 3},

0 ≤ fi ≤ 3x2 ∀i ∈ {2, 4}
}

When adding all flow-cutset inequalities (11) to the LP-relaxation of P , the resulting polyhedron
still has the two fractional vertices (1

2 , 15
2 , 1, 0, 1

2 , 5
2 ) and (15

2 , 1
2 , 0, 1, 5

2 , 1
2 ), (PORTA [12]). But we

can formulate two valid inequalities cutting off these points, namely:

3x1 + 2x2 + f3 − f1 ≥ 2 and 3x2 + 2x1 + f4 − f2 ≥ 2.
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The inequalities of the last example can be generalized to a large new class of valid inequalities
for CSbi

S and CSun
S .

Lemma 4.8. The following new flow-cutset inequality is valid for CSbi
S and CSun

S :

cx(E1) +
(

c − rQ
)

x(Ē1) + fQ(A−
1 ) − fQ(A+

1 ) ≥ c − rQ. (13)

Proof. If rQ = c then inequality (13) reduces to cx(E1) − fQ(A+
1 ) + fQ(A−

1 ) ≥ 0, which is valid
because of cx(E1) ≥ fQ(A+

1 ) and fQ(A−
1 ) ≥ 0. Now consider rQ < c. First assume that x(Ē1) = 0.

All flow has to be routed through E1. It follows that

fQ(A+
1 ) − fQ(A−

1 ) = dQ
S and x(E1) ≥

⌈

|dQ

S
|

c

⌉

≥ ηQ.

Hence
cx(E1) − (fQ(A+

1 ) − fQ(A−
1 )) ≥ cηQ − dQ

S = c − rQ.

If, on the other hand, x(Ē1) ≥ 1 then from cx(E1) − fQ(A+
1 ) + fQ(A−

1 ) ≥ 0 we conclude that

cx(E1) + (c − rQ)x(Ē1) + fQ(A−
1 ) − fQ(A+

1 ) ≥ c − rQ.

The class of flow-cutset inequalities (11) is (in this general form) symmetric in S and V \S, i. e.,

if dQ
S < 0 we can exchange the two nodesets such that dQ

S becomes positive and we find an equivalent
flow-cutset inequality. The new class of inequalities (13) is not symmetric in the sense above, but

for dQ
S < 0 it is weak because in this case inequality (13) is dominated by the sum of the capacity

constraint cx(E1) − fQ(A+
1 ) ≥ 0 and the simple flow-cutset inequality rQ

−x(Ē1) + fQ(A−
1 ) ≥ rQ

−ηQ
− .

We assume
∅ 6= Q ⊆ K+

S

for both classes throughout the rest of this article. In the following we will provide necessary and
sufficient conditions for these classes to define facets for CSbi

S and CSun
S . We consider necessity first.

Lemma 4.9. If (11) is facet-defining for CSbi
S or CSun

S , then

i) rQ < c and E1\E2 6= ∅.

ii) If (11) is a simple flow-cutset inequality with E1 6= ES, then either ηQ ≥ 2 or |Q| = 1.

iii) If (11) is a cutset inequality, then ηQ = ηK
+

S ≥ η
K

−

S

− . If additionally |ES | > 1, then ηK
+

S ≥ 2.

If (11) is facet-defining for CSun
S , then E1 ∩ E2 = ∅.

Proof. For proving i) and ii) simply follow the proof of Lemma 4.2 i) and ii). For iii) consider

the cutset inequality x(ES) ≥ ηQ. The largest right-hand side is obtained if ηQ = ηK
+

S . Also

x(ES) ≥ η
K

−

S

− is a valid cutset inequality for CSbi
S and CSun

S and hence ηK
+

S ≥ η
K

−

S

− . Suppose

|ES | > 1 and ηK
+

S = 1. It follows that d
K

+

S

S = rK
+

S . Choose E∗ ⊂ ES such that E∗, Ē∗ 6= ∅. Then
with Lemma 4.8

cx(E∗) + (c − rK
+

S )x(Ē∗) + fQ(A−
1 ) − fQ(A+

1 ) ≥ c − rK
+

S and

cx(Ē∗) + (c − rK
+

S )x(E∗) + fQ(Ā−
1 ) − fQ(Ā+

1 ) ≥ c − rK
+

S

are both valid inequalities for CSbi
S (and CSun

S ) of the form (13) different from flow conservation
constraints. Adding them up gives

(2c − rK+

S )x(ES) + fQ(A−
S ) − fQ(A+

S ) ≥ 2c − 2rK+

S ⇐⇒ (2c − rK+

S )x(ES) − d
K+

S

S ≥ 2c − 2rK+

S

⇐⇒ x(ES) ≥ 1 = ηK+

S .

It turns out that the cutset inequality x(ES) ≥ 1 is the sum of non-trivial valid inequalities when
|ES | > 1. To prove the last statement, we show that (11) is the sum of valid inequalities for CSun

S

12



if E1 ∩ E2 6= ∅. Aggregating the Undirected capacity constraints for E1 ∩ E2 gives cx(E1 ∩ E2) −
fQ(A+

1 ∩ A+
2 ) − fQ(A−

1 ∩ A−
2 ) ≥ 0. Adding the flow-cutset inequality

fQ(Ā+
1 ) + fQ(A+

1 ∩ A+
2 ) − fQ(A−

2 \A
−
1 ) + rQx(E1\E2) + (c − rQ)x(E2\E1) ≥ rQηQ,

for the two edge sets E1\E2 and E2\E1 results in

fQ(Ā+
1 ) − fQ(A−

2 \A
−
1 ) − fQ(A−

1 ∩ A−
2 ) + rQx(E1\E2) + cx(E1 ∩ E2) + (c − rQ)x(E2\E1)

≥ rQηQ

which is (11).

Lemma 4.10. If (13) is facet-defining for CSbi
S or CSun

S , then it holds:

i) rQ < c

ii) If E1 = ∅, then ηK
+

S = 1 and |ES | = 1

iii) If Ē1 = ∅, then either ηQ = ηK
+

S ≥ 2 or |ES | = 1

Proof. If rQ = c then inequality (13) reduces to cx(E1)− (fQ(A+
1 )−fQ(A−

1 )) ≥ 0, which is the sum
of capacity constraints and non-negativity constraints. Assume rQ < c in the sequel.

Suppose E1 = ∅. Inequality (13) reduces to x(ES) ≥ 1, which is dominated by the cutset

inequality x(ES) ≥ ηK
+

S if ηK
+

S ≥ 2. If on the other hand ηK
+

S = 1 and |ES | > 1, then x(ES) ≥ 1 is
the sum of two valid inequalities (see Lemma 4.9). Now suppose that Ē1 = ∅. We can write (13) as

cx(ES) + fQ(A−
S ) − fQ(A+

S ) ≥ c − rQ ⇐⇒ cx(ES) ≥ dQ
S + c − rQ = cηQ

which is either dominated by the cutset inequality x(ES) ≥ ηK
+

S or it is the sum of valid inequalities

when ηQ = ηK
+

S = 1 and |ES | > 1 (see Lemma 4.9).

After stating necessary conditions, the following results provide sufficient conditions for flow-
cutset inequalities of type (11) and (13) to be facet-defining for CSbi

S and CSun
S . We start with

the well-known cutset inequalities [7, 8, 20, 21, 22] in Theorem 4.11. Theorem 4.12 can be seen
as the analogon of Theorem 4.4. Theorem 4.13 extends Theorem 4.12 to the case E1 ∪ E2 = ES

with E1, E2 6= ∅ and E1 6= E2. Corollary 4.14 summarizes the results of this section for the single-
commodity, single-module case for inequalities (11). Eventually, Theorem 4.15 is a facet theorem
for the new flow-cutset inequalities (13). Recall that by reversing demand directions, K−

S = ∅ can

be assumed for Undirected models. Hence for CSun
S the conditions ηK

+

S ≥ η
K

−

S

− and d
K

+

S

S ≥ |d
K

−

S

S |
are trivially fulfilled.

Theorem 4.11. The cutset inequality x(ES) ≥ ηK
+

S defines a facet of CSbi
S (CSun

S ) if and only if

rK
+

S < c, ηK
+

S ≥ η
K

−

S

− and if either ηK
+

S ≥ 2 or |ES | = 1.

Proof. Necessity was shown in Lemma 4.9 iii). Related sufficiency-results were proven by Bienstock
and Günlük [8] for CSbi

S and Magnanti et al. [22] for CSun
S .

Theorem 4.12. Let ∅ 6= Q ⊆ K+
S and rQ < c. The flow-cutset inequality (11) is facet-defining for

CSbi
S if E1\E2 6= ∅, Ē1\E2 6= ∅, and one of the following conditions holds:

i) E2 = ∅ and either ηQ ≥ 2 or |Q| = 1

ii) E2 6= ∅

The same holds for CSun
S if additionally E1 ∩ E2 = ∅.

Proof. See Appendix A.1.

13



Theorem 4.13. Let ∅ 6= Q = K+
S with d

K
+

S

S ≥ |d
K

−

S

S | and rK
+

S < c.

The flow-cutset inequality (11) is facet-defining for CSbi
S if E1\E2 6= ∅, Ē1 ⊆ E2 6= ∅, and one of the

following conditions holds

i) E1 ∩ E2 = ∅

ii) E1 ∩ E2 6= ∅, K0
S = ∅ and either K−

S = ∅ or d
K

+

S

S > max(|d
K

−

S

S |, c)

The flow-cutset inequality (11) is facet-defining for CSun
S if K = K+

S , E1, E2 6= ∅ and Ē1 = E2.

Proof. See Appendix A.2.

Corollary 4.14. Let |K| = |K+
S | = 1. The flow-cutset inequality (11) is facet-defining for CSbi

S if

and only if rK
+

S < c, E1\E2 6= ∅ and one of the following conditions holds:

i) E2 = ∅, Ē1 = ∅ and either ηK
+

S ≥ 2 or |ES | = 1

ii) E2 6= ∅ or Ē1 6= ∅

The same holds for CSun
S if additionally E1 ∩ E2 = ∅.

Theorem 4.15. Let ∅ 6= Q = K+
S with d

K
+

S

S ≥ |d
K

−

S

S |.

The new flow-cutset inequality (13) defines a facet of CSbi
S if and only if rK

+

S < c and one of the
following conditions holds:

i) E1, Ē1 6= ∅

ii) E1 = ∅ and ηK
+

S = 1 and |ES | = 1

iii) Ē1 = ∅ and either ηK
+

S ≥ 2 or |ES | = 1

Given that K = K+
S the same holds for CSun

S .

Proof. See Appendix A.3.

4.3 The multi-module case

In the sequel, we will generalize flow-cutset inequalities (8) and (11) to the multi-module case
|M | ≥ 1. It turns out that for each single-module flow-cutset inequality there are |M | multi-module
flow-cutset inequalities, one for every available capacity module.

Furthermore, the lifting of the flow-cutset inequalities (8) and (11) to the multi-module case
can be done using a subadditive lifting function that is based on mixed-integer rounding [24, 25].
We start by introducing the concept of subadditivity and present lifted flow-cutset inequalities. We
propose a strengthening for the case that A−

2 = ∅ or E2 = ∅ and conclude by showing that our
approach generalizes special cases considered in the literature on network design [8, 20].

Definition 4.16. A function F : D ⊆ R → R is called subadditive on D if F (a) + F (b) ≥ F (a + b)
for all a, b such that a, b, a + b ∈ D. If the limes exists set

F̄ (a) := lim
tց0

F (at)
t

.

Proposition 4.17 (Nemhauser and Wolsey [24], Theorem 7.4). Let N1, N2 be two finite index sets
and

X =
{

(f, x) ∈ R
N1

+ × Z
N2

+ :
∑

j∈N1

γjfj +
∑

j∈N2

βjxj ≥ π
}

,

where γj , βj and π are rational numbers. If the function F : R → R is nondecreasing and subbadditive

on R with F (0) = 0 and F̄ exists for all j ∈ N1, then
∑

j∈N1

F̄ (γj)fj +
∑

j∈N2

F (βj)xj ≥ F (π)

is valid for X.
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We will now introduce the subadditive function used to generalize flow-cutset inequalities to the
multi-module case. Given a, c, d ∈ R with c > 0 and d

c
/∈ Z, define a+ := max(0, a) and consider the

function Fd,c : R → R defined by

Fd,c(a) :=
⌈

a
c

⌉

r(d, c) − (r(d, c)− r(a, c))+.

The function Fd,c is the 1
c
-MIR function for ≥-base-inequalities with right-hand side d scaled by the

factor r(d, c), see Nemhauser and Wolsey [24], §II.1.7, Atamtürk [4], and Raack et al. [28]. It has
the following nice properties.

Lemma 4.18 (Raack et al. [28]). Let c, d ∈ R with c > 0 and d
c

/∈ Z. The function Fd,c is subadditive
on R and nondecreasing with Fd,c(0) = 0 and F̄d,c(a) = a+ for all a ∈ R. It holds that |Fd,c(a)| ≤ |a|
for all a ∈ R. If a, c, and d are integral, then also Fd,c(a), F̄d,c(a) ∈ Z.

Now, we are prepared to generalize the inequalities (8) and (11) to the multi-module case. Let

S ⊂ V and Q ⊆ K be fixed and let dQ
S > 0 be the corresponding cut demand as defined in Section

4. By aggregating model inequalities and substituting f̄Q(A−
2 ) :=

∑

m∈M cmxm(A−
2 )− fQ(A−

2 ), the

following base inequality is valid for CSdi
S :

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

m∈M

cm
(

xm(A+
1 ) − xm(A−

2 )
)

≥ dQ
S . (14)

Similarly, the following base inequality is valid for CSbi
S and CSun

S :

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

m∈M

cm
(

xm(E1) − xm(E2)
)

≥ dQ
S . (15)

For every module s ∈ M with capacity cs ∈ Z+\{0} we consider the functions

Fs := F
d

Q

S
,cs and F̄s := F̄

d
Q

S
,cs .

By Proposition 4.17 and Lemma 4.18 we can apply these function to the coefficients in (14) and (15)
which results in valid inequalities for CSdi

S , CSbi
S and CSun

S , respectively. Resubstituting f̄Q(A−
2 )

gives the following result (also see Atamtürk [3] for an alternative derivation of the Directed case):

Proposition 4.19. For every s ∈ M the flow-cutset inequality

fQ(Ā+
1 ) − fQ(A−

2 ) +
∑

m∈M

Fs(c
m)xm(A+

1 ) +
∑

m∈M

(cm + Fs(−cm))xm(A−
2 ) ≥ Fs(d

Q
S ) (16)

is valid for CSdi
S , whereas the following flow-cutset inequality is valid for CSbi

S and CSun
S :

fQ(Ā+
1 ) − fQ(A−

2 ) +
∑

m∈M

Fs(c
m)xm(E1) +

∑

m∈M

(cm + Fs(−cm))xm(E2) ≥ Fs(d
Q
S ). (17)

Inequalities (16) and (17) generalize (8) and (11) since Fs(c
s) = r(dQ

S , cs) and Fs(−cs) =

−r(dQ
S , cs). If dQ

S is an integer multiple of cs, then (16) and (17) reduce to the base inequalities
(14) and (15) because in this case Fs(a) = a for all a ∈ R.

Atamtürk [3] has been the first to study the general multi-module case for Directed problems.
His approach is based on lifting. Given a module s ∈ M , let CSdi

S (s) be the restriction of CSdi
S

obtained by fixing all module variables to their lower bound zero that do not correspond to s:

CSdi
S (s) =

{

(f, x) ∈ CSdi
S : xm

a = 0, a ∈ AS , M\{s}
}

.

Now, flow-cutset inequalities of type (8) with c = cs and rQ = rQ
s := r(dQ

S , cs) are valid for CSdi
S (s)

and can be facet-defining for CSdi
S (s) by Theorems 4.3, 4.4, and 4.5. Atamtürk considers the problem
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of exact lifting (8) to a valid inequality of CSdi
S and shows that lifting can be done in a sequence-

independent way and for all coefficients simultaneously (see Atamtürk [4], Gu et al. [16], Wolsey
[32]) by using subadditive lifting functions. The resulting inequalities are given by

fQ(Ā+
1 ) − fQ(A−

2 ) +
∑

m∈M

φ+
s (cm)xm(A+

1 ) +
∑

m∈M

φ−
s (cm)xm(A−

2 ) ≥ φ+
s (dQ

S ) (18)

where for a ∈ R

φ+
s (a) :=

{

a − k(cs − rQ
s ) if kcs ≤ a < kcs + rQ

s

(k + 1)rQ
s if kcs + rQ

s ≤ a < (k + 1)cs
k integer

and φ−
s (a) = a +φ+

s (−a). Now by setting k =
⌈

a
cs

⌉

−1 it can be seen that φ+
s (a) = Fs(a) and hence

it turns out that the inequalities (16) and (18) are identical. Obviously flow-cutset inequalities can
be obtained by lifting using the subadditive MIR-function Fs. In this context flow-cutset inequalities
are closely related to the concept of complemented-MIR inequalities introduced by Marchand and
Wolsey [23] and to the flow-cover inequalities presented by Louveaux and Wolsey [19] (besides the
fact that we do not complement integer variables since they are not bounded). Notice that Louveaux
and Wolsey also consider a lifting function different from MIR.

Considering the lifting problem (instead of simply applying Proposition 4.17) allows to make
statements about the strength of the resulting inequalities [4, 16, 32]. This way Atamtürk proves that
certain lifted flow-cutset inequalities (16) define facets for CSdi

S in the multi-module case. Theorem
4.20 is a generalization of Theorem 4.4 and Theorem 4.21 is a generalization of Theorem 4.5. Similar
results for CSbi

S and CSun
S are not known although lifting using the function Fs is still valid.

Theorem 4.20 (Atamtürk [3]). Let Q ⊆ K+
S and s ∈ M with rQ

s < cs. The flow-cutset inequality

(16) is facet-defining for CSdi
S if A+

1 , Ā+
1 , A−

2 , Ā−
2 6= ∅.

Theorem 4.21 (Atamtürk [3]). Let |Q| = |K+
S | = 1 and s ∈ M with rQ

s < cs. The flow-cutset

inequality (16) is facet-defining for CSdi
S if A+

1 , Ā+
1 , A−

2 6= ∅.

Notice that Theorem 4.20 and Theorem 4.21 explicitly exclude simple flow-cutset inequalities.
In fact, inequalities (16) cannot be facet-defining if A−

2 = ∅. In this case the left-hand side contains
only non-negative coefficients which can be strengthened to the value of the right-hand side. This
strengthening has already been proposed by Atamtürk [3]. Since Fs is non-decreasing, applying
the strengthening and MIR can be exchanged, resulting in the same inequality. In particular, the
coefficient Fs(c

m) can be reduced to min(Fs(c
m), Fs(d

Q
S )) = Fs(min(cm, dQ

S )) for all m ∈ M . By

setting A−
2 = ∅, the strengthened simple flow-cutset inequality for CSdi

S writes as

fQ(Ā+
1 ) +

∑

m∈M

Fs(min(cm, dQ
S ))xm(A+

1 ) ≥ Fs(d
Q
S ) (19)

for every s ∈ M , whereas the strengthened simple flow-cutset inequality for CSbi
S and CSun

S is given
by

fQ(Ā+
1 ) +

∑

m∈M

Fs(min(cm, dQ
S ))xm(E1) ≥ Fs(d

Q
S ). (20)

To give a formal proof of the validity of (19) and (20) we consider the function Fd,c : R+ → R+ for
d, c ∈ R+\{0} given by

Fd,c(a) = Fd,c(min(a, d)).

Lemma 4.22. Let c, d ∈ R+\{0} with c > 0 and d
c

/∈ Z. The function Fd,c is nondecreasing and
subadditive on R+ with Fd,c(0) = 0 and F̄d,c(a) = a for all a ∈ R+.

Proof. Let a1, a2 ∈ R+ with a1 ≤ a2. It holds that Fd,c(a1) ≤ Fd,c(a2) because Fd,c is nondecreasing
and min(a1, d) ≤ min(a2, d). Using that Fd,c is subadditive and nondecreasing gives

Fd,c(a1) + Fd,c(a2) = Fd,c(min(a1, d)) + Fd,c(min(a2, d))

≥ Fd,c(min(a1, d) + min(a2, d))

≥ Fd,c(min(a1 + a2, d))

= Fd,c(a1 + a2).
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From d ∈ R+\{0} and Fd,c(0) = 0 follows that Fd,c(0) = 0, and for any a ∈ R+ it holds

F̄d,c(a) = lim
tց0

Fd,c(min(at,d))
t

= lim
tց0

Fd,c(at)
t

= a.

Assume A−
2 = ∅. Using Proposition 4.17 and applying the subadditive function Fd,c with d = dQ

S

and c = cs to the valid base inequalities (14) and (15) shows the validity of (19) and (20). Note
that we may extend F̄d,c to R by setting F̄d,c(a) := 0 for a < 0.

Corollary 4.23. The strengthened simple flow-cutset inequality (19) is valid for CSdi
S , and the

strengthened simple flow-cutset inequality (20) is valid for CSbi
S and CSun

S .

In the single-commodity case the strengthening has no effect since Fs(c
s) = r(dQ

S , cs) ≤ dQ
S .

For |M | > 1, it is not known in general under which conditions strengthened simple flow-cutset
inequalities define facets for CSdi

S , CSbi
S or CSun

S . There is also no analogon of Theorem 4.20 and
Theorem 4.21 on the strength of flow-cutset inequalities for Bidirected or Undirected models in
the multi-module case. For some special cases these inequalities define facets as shown by Bienstock
and Günlük [8] as well as Magnanti and Mirchandani [20] and Magnanti et al. [21, 22]. In particular,
these authors consider the network design polyhedra NDbi and NDun, respectively. For |M | ≤ 3
and divisible base capacities they provide conditions for simple flow-cutset inequalities and cutset
inequalities to define facets. This may serve as an indication that our approach produces strong
valid inequalities for cutset polyhedra (and by Theorem 3.6 also for network design polyhedra) in
the multi-module case.

Example 4.24. Bienstock and Günlük [8] consider network design polyhedra with Bidirected

capacity constraints and two modules, where c1 = 1 and c2 = λ ∈ Z+, λ > 1. Specializing (17) with

d = dQ
S , cs = λ, r = r(d, λ), η =

⌈

d
λ

⌉

gives

fQ(Ā+
1 ) − fQ(A−

2 ) + x1(E1) + rx2(E1) + min(1, λ − r)x1(E2) + (λ − r)x2(E2) ≥ rη, (21)

Setting E2 = ∅ results in one of the simple flow-cutset inequality introduced in [8]. A strengthening
as proposed above has no effect here. Bienstock and Günlük also consider other classes of inequalities
of this type, all corresponding to the case that d is fractional, which we do not consider here (also
see Atamtürk [3], Example 1). By [8, Theorem 3.5], inequality (21) defines a facet of NDbi if r < λ,
Q ⊆ K+

S , ∅ 6= E1 ⊂ ES , dS > 1 and if H [S] and H [V \S] are connected.
Magnanti and Mirchandani [20] investigate single-commodity network design polyhedra with

Undirected capacity constraints, three modules and one commodity, where c1 = 1, c2 = C ∈
Z+, C > 1 and c3 = λC ∈ Z+, λ > 1. We can formulate two non-trivial cutset inequalities of type
(20) corresponding to cs = C and cs = λC, which are

x1(ES) + r1x
2(ES) + λr1x

3(ES) ≥ r1

⌈

d
C

⌉

and (22)

x1(ES) + min(C, r2)x
2(ES) + r2x

3(ES) ≥ r2

⌈

d
λC

⌉

. (23)

where r1 = r(d, C) and r2 = r(d, λC). These are two of the cutset inequalities considered in [20].
Inequality (22) is known to be facet-defining for CSun

S under certain conditions [20]. Notice that if
d < λC, then (22) can be strengthened to

x1(AS) + r1x
2(AS) + min(λ,

⌈

d
C

⌉

)r1x
3(AS) ≥ r1

⌈

d
C

⌉

by using Corollary 4.23. Inequality (23) defines a facet of CSun
S if H [S] as well as H [V \S] are

connected and if r2 < λC by [20, Proposition 5.2].
Magnanti and Mirchandani present a third facet-defining cutset inequality, which can be seen as

a 2-step MIR-inequality or knapsack-partition inequality, see Pochet and Wolsey [27].
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5 Concluding remarks

We have studied polyhedral aspects of capacitated network design cutset polyhedra for three different
link models: Directed, Bidirected and Undirected. We have shown that given a network cut, any
facet of the corresponding cutset polyhedron translates to a facet of the network design polyhedron
if both network components are (strongly) connected. In the single-module case we could state
necessary and sufficient conditions for flow-cutset inequalities to be facet-defining. We worked out
the differences caused by the three variants of capacity constraints. For the models Bidirected and
Undirected we identified new classes of facet-defining inequalities. Flow-cutset inequalities were
lifted to the multi-module case using mixed-integer rounding. Providing a unifying framework this
approach generalizes all known facet-defining flow-cutset inequalities for network design polyhedra.
The computational study in an accompanying paper [28] affirms the practical importance of these
inequalities.

We want to conclude this article with some extensions and ideas on interesting future research
topics. None of the considered inequalities in this paper does exploit the structure of the subgraphs
defined by the cut components. This might be a drawback when optimizing sparse networks as they
are common in practice. Consider the Undirected model and assume that the condition of Theorem
3.6 does not hold, i. e., the subgraph H [S] is not connected but decomposes into the components
H [S1] and H [S2], where (S1, S2) is a partition of S. Assume that some point-to-point commodity k
with value d̄ > 0 has to be realized from H [S1] to H [S2]. The corresponding flow has to cross the
cut ES twice. It follows that we can add the value 2d̄ to the right-hand side of the base inequality
(15). Notice that the resulting inequality is valid for NDun but not for CSun

S as considered here, in
particular k /∈ K. For the capacity formulation and inequalities only containing capacity variables,
this approach leads to the well known metric inequalities, see [6, 18]. It might now be of interest to
study metric type flow-cutset inequalities and metric inequalities lifted by MIR.

Flow-cutset inequalities as presented in this article are rank-1-MIR inequalities. At least in the
multi-module case it is a promising idea to apply the functions Fd,c or Fd,c in a second MIR-step,
where c is one of the left-hand side coefficients and d the right-hand side of a flow-cutset inequality.
See Dash and Günlük [13, 14] for some recent results on 2-step MIR inequalities. The base cutset
inequalities

∑

m∈M

cmxm(ES) ≥ d
K

+

S

S

can be seen as an integer knapsack inequality. The corresponding integer knapsack sets have been
studied by Pochet and Wolsey [27] for the case that the base capacities cm are integer multiples of
each other. They prove that these sets are completely described by knapsack-partition inequalities
that can be obtained by consecutively applying MIR to the base knapsack inequality. In particular,
the (1-step) MIR cutset inequality

∑

m∈M

Fs(min(cm, dQ
S ))xm(ES) ≥ Fs(d

K
+

S

S ).

that is obtained by setting E1 = ES and Q = K+
S in (20), is a knapsack-partition inequality. Also

the three cutset inequalities presented by [20] and mentioned in Example 4.24 for models with three
modules are knapsack-partition inequalities. No result is known on the strength of an n-step MIR
approach for network design polyhedra applied to cutset inequalities and flow-cutset inequalities.
Also computational experience in this direction is missing. direction is missing.
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A Omitted proofs

A.1 Proof of Theorem 4.12

Proof. We will show that the related face

F =:
{

(f, x) ∈ CSbi
S (CSun

S ) : (f, x) satisfies (11) with equality
}

is non-trivial and then by contradiction, we will show that it defines a facet. This will be done for
CSbi

S and CSun
S simultaneously. In the following we will construct points on the face F . Whenever

we can ensure that E1 ∩ E2 6= ∅ these points may only be valid for CSbi
S but not for CSun

S . Given
e ∈ ES , let be denote the unit vector in R

|ES|+2|K||ES| for the integer design variable of e and let
gk

e+ , gk
e−

be the unit vectors for the two continuous flow variables of e for commodity k ∈ K. We set

d := dQ
S , η := ηQ, r := rQ < c, ǫ > 0 small enough and M a large integral number. Let Q̄ := K+

S \Q.
Choose l ∈ E1\E2 and l̄ ∈ Ē1\E2. We construct a point on the face F by sending all flow for Q on
l and the flow for all other commodities on l̄:

p := ηbl + Mbl̄ +
∑

k∈Q

dk
Sgk

l+ +
∑

k∈Q̄

dk
Sgk

l̄+
+

∑

k∈K−

S

dk
Sgk

l̄−
.

The point p is on the face F by construction. Hence F is not empty. p + bl is a point that is in CSbi
S

(CSun
S ) but not on the face F .
It remains to show that F is inclusion-wise maximal. Choose a facet F̃ of CSbi

S (CSun
S ) with

F ⊆ F̃ and let F̃ be defined by
∑

e∈ES

(βexe +
∑

k∈K

γk
e+fk

e+ +
∑

k∈K

γk
e−fk

e−) = π (24)

where βe, γ
k
e+ , γk

e−
, π ∈ R. We will show that (24) is (11) up to a scalar multiple and a linear

combination of flow conservation constraints, proving that F = F̃ .
Adding multiples of the |K| flow conservation constraints to (24) we can assume γk

l+
= 0 for all

k ∈ Q, γk
l̄+

= 0 for all k ∈ Q̄ and γk
l̄−

= 0 for all k ∈ K−
S ∪ K0

S . Set β := βl and β̄ := β
l̄
. Since p

lies on the hyperplane, we conclude that βη + β̄M = π. Now we modify p by installing a capacity
of M + 1 on l̄. This is another point on the face and thus β̄ = 0. It follows that

βη = π (25)

The capacity on l is not saturated since d < cη. Modifying p by simultaneously increasing flow on
l+ and l− by ǫ for k ∈ Q gives new points on the face and thus

γk
l+ , γk

l− = 0 ∀k ∈ Q

The same can be done on l̄+, l̄− for k ∈ K−
S ∪ K0

S ∪ Q̄, hence

γk
l̄+

, γk
l̄−

= 0 ∀k ∈ K−
S ∪ K0

S ∪ Q̄.

Now consider the disjoint partition ES = (E1 ∩ E2) ∪ (E1\E2) ∪ (Ē1 ∩ E2) ∪ (Ē1\E2). We will
compute the coefficients βe, γ

k
e+ , γk

e−
for e in each of the four sets by constructing new points on

the face F . They will obviously fulfill the flow conservation constraint and satisfy inequality (11)
with equality. To see that they meet the (Bidirected) capacity constraints just use that r < c and
remember the relation cη = d + c − r. For edges in Ē1 ∩ E2, E1\E2 and Ē1\E2 we construct the
points such that they additionally satisfy the Undirected capacity constraints given that K−

S = ∅.
Hence with E1 ∩ E2 = ∅ and K−

S = ∅ the theorem holds for CSun
S .

i) Ē1 ∩ E2 : For e ∈ Ē1 ∩ E2 and k ∈ Q define the following three points on F :

p + be + (c − r)gk
l+ + (c − r)gk

e− =⇒ βη + βe + (c − r)γk
e− = π (26)

p + bl + cgk
l+ + be + cgk

e− =⇒ βη + β + βe + cγk
e− = π (27)

p + (c − r)gk
l+ + be + r

2gk
e+ + (c − r

2 )gk
e− =⇒ βη + βe + r

2γk
e+ + (c − r

2 )γk
e− = π (28)
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Comparison of (26) and (27) shows that −rγk
e−

= β for all e ∈ Ē1 ∩ E2, for all k ∈ Q. From

(26) it follows then that βe = β
r
(c − r) ∀e ∈ Ē1 ∩ E2. From (28) we find that β

r
(c − r) − (c −

r
2 )β

r
+ r

2γk
e+ = 0, which implies that rγk

e+ = β for all e ∈ Ē1 ∩ E2, for all k ∈ Q.

To conclude that γk
e−

= 0 for all k ∈ K−
S ∪K0

S ∪ Q̄ just modify the point in (26) by increasing
flow on l̄+ by some ǫ and routing this ǫ-flow back on e−. Simultaneously increasing flow on
e+, e− gives γk

e+ = 0 for all k ∈ K−
S ∪ K0

S ∪ Q̄.

ii) E1 ∩ E2 : For e ∈ E1 ∩ E2 and k ∈ Q define:

vk
e := p + be + cgk

e+ + cgk
e− =⇒ βη + βe + cγk

e+ + cγk
e− = π (29)

We can still increase flow on l+ by a small amount for commodity k. Decreasing flow on e+ at
the same time gives another point on the face and thus γk

e+ = 0 for all k ∈ Q. When having
changed vk

e this way, some flow for a commodity in K−
S ∪ K0

S ∪ Q̄ can be routed on e+ while
the same amount of flow increases on l̄−. Hence γk

e+ = 0 for all k ∈ K−
S ∪ K0

S ∪ Q̄.

For k1, k2 ∈ Q, e ∈ E1 ∩ E2 consider the point

vk1

e − ǫgk1

l+
+ ǫgk2

l+
− ǫgk1

e−
+ ǫgk2

e−

It is well defined and feasible because flow on l+ is positive for every k ∈ Q and flow on e+ is
positive for k1. It follows that γe− := γk1

e−
= γk2

e−
for all k1, k2 ∈ Q.

To construct another point pe on the face F we modify p by deleting one unit of capacity on
l and installing one unit of capacity on e ∈ E1 ∩E2. A total flow of r has to be rerouted since
c(η − 1) = d − r. We do so by decreasing flow of Q on l+ by a total of r and increasing it on
e+, e− by a total of c and (c − r) respectively. This can be done in such a way that flow is
positive on e+, e− for all k ∈ Q. If ϕk

l+
, ϕk

e+ , ϕk
e−

> 0 denote the rerouted flows on l+, e+, e−,
then pe can be written as

pe := p − bl + be −
∑

k∈Q

ϕk
l+gk

l+ +
∑

k∈Q

ϕk
e+gk

e+ +
∑

k∈Q

ϕk
e−gk

e−

with
∑

k∈Q ϕk
l+

= r,
∑

k∈Q ϕk
e+ = c and

∑

k∈Q ϕk
e−

= c − r. From pe ∈ F and the fact that

γk
l+

= γk
e+ = 0 and γk

e−
= γe− for all k ∈ Q we conclude that

βη − β + βe + (c − r)γe− = π (30)

Now comparing (29) and (30) gives

−rγe− = −rγk
e− = β ∀k ∈ Q.

From (29) and (25) follows then

βe = cβ
r

∀e ∈ E1 ∩ E2.

Again considering the point pe, the total flow on e− is c − r, thus the capacity on e− is not
saturated. Increasing flow on l̄+ and e− gives γk

e−
= 0 for all k ∈ K−

S ∪ K0
S ∪ Q̄.

iii) Ē1\E2 : For e ∈ Ē1\E2 consider the following point on F :

p + be =⇒ βη + βe = π (31)

The point can be modified by simultaneously increasing flow on l+ and e−. This can be done
for every commodity in Q, thus γk

e−
= 0 for all k ∈ Q. Comparing (31) with (25) gives βe = 0

for all e ∈ Ē1\E2.

To construct a new point qe on the face F we modify p by deleting one unit of capacity on
l and installing one unit of capacity on e ∈ Ē1\E2. We decrease flow of Q on l+ by a total
of r and increase it by the same amount on e+. This can be done in such a way that flow is
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positive on e+ for all k ∈ Q. If ϕk > 0 denotes the rerouted flow with respect to k ∈ Q, then
qe can be written as

qe := p − bl + be −
∑

k∈Q

ϕkgk
l+ +

∑

k∈Q

ϕkgk
e+ =⇒ βη − β +

∑

k∈Q

ϕkγk
e+ = π (32)

with
∑

k∈Q ϕk = r. Modifying qe by simultaneously increasing flow on e+, l̄− and e+, e− gives

γk
e+ = γk

e−
= 0 for all k ∈ K−

S ∪ K0
S ∪ Q̄. It remains to show that γk

e+ = β
r

for k in Q. We
make use of the conditions i) and ii) of Theorem 4.12.

Assume first that E2 = ∅. If |Q| = 1, it follows that βη − β + rγk
e+ = π and rγk

e+ = β. If
|Q| > 1 and η ≥ 2, then d > c > r and qe can be constructed such that flows are positive both
on l+ and e+ for every commodity in Q. We choose k1, k2 ∈ Q and modify qe by adding the
flow ǫgk2

l+
− ǫgk1

l+
+ ǫgk1

e+ − ǫgk2

e+ . This way we conclude that γk1

e+ = γk2

e+ . From (32) follows then
rγk

e+ = β for all k ∈ Q. Now let us assume that there is an edge ē in E1 ∩ E2. Modify qe

by installing one unit of capacity on ē and sending a flow of c on ē+ and ē− for a commodity
k1 ∈ Q. Now adding ǫgk2

ē+ − ǫgk1

ē+ + ǫgk1

e+ − ǫgk2

e+ gives γk1

e+ = γk2

e+ and rγk
e+ = β for all k ∈ Q

again since γk1

ē+ = γk2

ē+ = 0, as shown above. Finally assume that there is ē in Ē1 ∩ E2. For a
commodity k ∈ Q consider the following vector:

p + (c − r)gk
l+ + bē + be + cgk

ē− + rgk
e+ =⇒ βη + βē + βe + cγk

ē− + rγk
e+ = π

=⇒ βη + (c − r)β
r
− cβ

r
+ rγk

e+ = π

=⇒ β = rγk
e+ ∀k ∈ Q

iv) E1\E2 : We construct the vector qe again but for e ∈ E1\E2.

qe := p − bl + be −
∑

k∈Q

ϕkgk
l+ +

∑

k∈Q

ϕkgk
e+ =⇒ βη − β + βe +

∑

k∈Q

ϕkγk
e+ = π (33)

with
∑

k∈Q ϕk = r. For k ∈ K add an ǫ-flow to e+ and e− to conclude that γk
e+ = −γk

e−
for

all k ∈ K. Now we modify the point qe by simultaneously increasing flow on e+ and l̄− for
a k in K. Hence γk

e+ = −γk
l̄−

= 0. It follows that γk
e−

= 0 for all k ∈ K and βe = β for all
e ∈ E1\E2.

Plugging in all coefficients in (24) we arrive at:

βx(E1\E2) + β
r
fQ(Ā+

1 \A
+
2 )

+ β
r
(c − r)x(Ē1 ∩ E2) + β

r
fQ(Ā+

1 ∩ A+
2 ) − β

r
fQ(Ā−

1 ∩ A−
2 )

+ cβ
r
x(E1 ∩ E2) −

β
r
fQ(A−

1 ∩ A−
2 ) = βη

which is equivalent to

fQ(Ā+
1 ) − fQ(A−

2 ) + rx(E1) + (c − r)x(E2) = rη

We have shown that the hyperplane (24) is a multiple of (11) plus a linear combination of flow
conservation constraints. It follows that F = F̃ . This concludes the proof.

A.2 Proof of Theorem 4.13

Proof. We proceed as in the proof of Theorem 4.12 and apply the definitions of the faces F , F̃ with

F ⊆ F̃ and the vectors be, gk
e+ , gk

e−
. We set d := d

K
+

S

S , d− := |d
K

−

S

S |, η := ηK
+

S , r := rK
+

S < c, ǫ > 0
small enough and M a large integral number.

In contrast to the proof of Theorem 4.12 the point p to start from is defined as follows. Choose
l ∈ E1\E2. All demand is routed on l with capacity exactly cη, more precisely all flow for positive
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commodities is routed on l+ and all flow for negative commodities is routed on l−. Notice that we
assume d ≥ d− and r < c. The point p can be written as:

p := ηbl +
∑

k∈K
+

S

dk
Sgk

l+ +
∑

k∈K
−

S

dk
Sgk

l− .

By considering p and p + bl we conclude that ∅ 6= F 6= CSbi
S . It is missing to prove that F = F̃ .

We will show that (24) is (11) up to a scalar multiple and a linear combination of flow conservation
constraints. We can assume that γk

l+
= 0 ∀k ∈ K+

S and γk
l−

= 0 ∀k ∈ K−
S ∪ K0

S w. l. o. g. by adding
multiples of the flow conservation constraints to (24).

Set β := βl. Since p lies on the hyperplane, we conclude that

βη = π (34)

Modifying p by simultaneously increasing flow on l+ and l− by ǫ for every commodity gives new
points on the face and thus γk

l+
, γk

l−
= 0 ∀k ∈ K.

Now consider the disjoint partition ES = (Ē1∩E2)∪(E1∩E2)∪(E1\E2). (Note that Ē1\E2 = ∅).
We calculate the coefficients βe, γ

k
e+ , γk

e−
for e in each of the three sets by constructing new points on

the face F . Note that all the points to be defined for edges in Ē1∩E2 and E1\E2 additionally satisfy
the Undirected capacity constraints when K = K+

S . Hence with E1 ∩ E2 = ∅ and K−
S ∪ K0

S = ∅
the theorem holds for CSun

S .

i) Ē1 ∩ E2 : For e ∈ Ē1 ∩E2 and k ∈ K+
S we define the points (26), (27) and (28) as in the proof

of Theorem 4.12 and conclude that

−rγk
e− = β, rγk

e+ = β and βe = β
r
(c − r) ∀e ∈ Ē1 ∩ E2, k ∈ K+

S .

To see that γk
e+ = γk

e−
= 0 ∀k ∈ K−

S ∪K0
S modify the point in (26) by first increasing flows on

l−, e+ and then increasing flows on e+, e−. (This is not possible in the Undirected model.)

ii) E1 ∩ E2 : We can assume that K0
S = ∅. Let e ∈ E1 ∩ E2 and k ∈ K+

S . By defining vk
e as in

(29) and with the same arguments it can be shown that

γk
e+ = 0 ∀k ∈ K+

S , K−
S and γe− := γk1

e−
= γk2

e−
∀k1, k2 ∈ K+

S .

Modifying p by deleting one unit of capacity on l and installing one unit of capacity on
e ∈ E1 ∩E2 gives a point pe on the face F as in the proof of Theorem 4.12. If K−

S = ∅ we can

conclude −rγk
e−

= β ∀k ∈ K+
S . and βe = cβ

r
∀e ∈ E1 ∩ E2 in a similar way. Else if K−

S 6= ∅

we also have to reroute flow on l− and e− for commodities in K−
S . We can assume d > d−

and d > c by assumption. It follows that a rerouting can be done in such a way that flow for
k ∈ K−

S is still positive on l− and that the capacity for e− is not saturated. If in this case
ϕk

l+
, ϕk

l−
, ϕk

e+ , ϕk
e−

> 0 denote the rerouted flows on l+, l−, e+, e− for k ∈ K, then pe can be
written as

pe := p − bl + be −
∑

k∈K
+

S

ϕk
l+gk

l+ −
∑

k∈K
−

S

ϕk
l−gk

l− +
∑

k∈K
+

S

ϕk
e+gk

e+ +
∑

k∈K
+

S

ϕk
e−gk

e− +
∑

k∈K
−

S

ϕk
e−gk

e−

with
∑

k∈K
+

S

ϕk
l+ = r,

∑

k∈K
+

S

ϕk
e+ = c,

∑

k∈K
+

S

ϕk
e− = c − r and

∑

k∈K
−

S

ϕk
e− =

∑

k∈K
−

S

ϕk
l− < r

implying

βη − β + βe + (c − r)γe− +
∑

k∈K
−

S

ϕk
e−γk

e− = π

We can decrease flow on l− and increase it on e− which gives γk
e−

= 0 ∀k ∈ K−
S and thus

−rγk
e−

= β ∀k ∈ K+
S and βe = cβ

r
∀e ∈ E1 ∩ E2 as above.
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iii) E1\E2 : For e ∈ E1\E2 we construct the point qe as in the proof Theorem 4.12 but we also
have to reroute flow for K−

S :

qe := p − bl + be −
∑

k∈K
+

S

ϕkgk
l+ −

∑

k∈K
−

S

ϕkgk
l− +

∑

k∈K
+

S

ϕkgk
e+ +

∑

k∈K
−

S

ϕkgk
e−

with
∑

k∈K
+

S
ϕk = r and

∑

k∈K
−

S
ϕk ≤ r. We conclude

βη − β + βe +
∑

k∈K
+

S

ϕkγk
e+ +

∑

k∈K
−

S

ϕkγk
e− = π (35)

For k ∈ K add an ǫ-flow to e+ and e− to conclude that γk
e+ = −γk

e−
∀k ∈ K. If for all k ∈ K

we can either show γk
e+ = 0 or γk

e−
= 0 we conclude βe = β ∀e ∈ E1\E2 by using (35).

By assumption E2 6= ∅. First suppose that there is ē in E1 ∩ E2. Modify qe by installing
one unit of capacity on ē and sending a flow of c on ē+ and ē− for a commodity k ∈ K+

S ,
which again gives a point on F . Now decrease flow on ē+ and increase it on e+ by ǫ. Hence
γk

e+ = 0 ∀k ∈ K+
S . Having done so simultaneously increasing flow on ē+ and e− gives

γk
e−

= 0 ∀k ∈ K−
S ∪ K0

S . Finally suppose that there is ē in Ē1 ∩ E2. For k ∈ K+
S consider the

vector

p + (c − r)gk
l+ + bē + be + cgk

ē− + rgk
e+

Simultaneously increasing flow on l− and on e+ for any commodity gives γk
e+ = 0 ∀k ∈ K.

Plugging in all coefficients in (24) gives a multiple of (11) as in the proof of Theorem 4.12.

A.3 Proof of Theorem 4.15

Proof. Necessity has been proven in Lemma 4.10. We show sufficiency here. If E1 = ∅ and d
K

+

S

S < c,

then (13) reduces to the cutset inequality x(ES) ≥ 1 which is facet-defining for CSbi
S (CSun

S ) if

|ES | = 1 (see Theorem 4.11). If Ē1 = ∅, then (13) reduces to x(ES) ≥ ηK
+

S , which is facet-defining

if |ES | = 1 or d
K

+

S

S > c (see Theorem 4.11). For the rest of the proof we can assume that E1, Ē1 6= ∅.
For Q = K+

S we define the face

F :=
{

(f, x) ∈ CSbi
S (CSun

S ) : (f, x) satisfies (13) with equality
}

Given e ∈ ES let be denote the incidence vector of the design variable of e and let gk
e+ , gk

e−
be the

unit vectors for the flow variables for commodity k ∈ K of e in both directions. Suppose rK
+

S < c

and set d := d
K+

S

S , η := ηK
+

S , r := rK
+

S and ǫ > 0 small enough. Choose l ∈ E1 and l̄ ∈ Ē1. We
construct a point p on the face F by installing η capacity units on the link l and by using this link
to satisfy all demands. The point p is given by

p := ηbl +
∑

k∈K
+

S

dk
Sgk

l+ +
∑

k∈K
−

S

dk
Sgk

l− .

Use cη − d = c − r to verify that p is on the face. Considering p + bl we conclude ∅ 6= F 6= CSbi
S . It

remains to show that F is inclusion-wise maximal. Choose a facet F̃ of CSbi
S with F ⊆ F̃ and let F̃

be defined by (24). We may add multiples of the |K| flow conservation constraint to (24). Therefore
we assume that γk

l̄−
= 0 for all k ∈ K w. l. o. g.. Set β := βl and β̄ := βl̄. The point p lies on F ⊆ F̃ ,

hence
βη +

∑

k∈K
+

S

dk
Sγk

l+ +
∑

k∈K
−

S

dk
Sγk

l− = π (36)
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Now we define a point pe for all e ∈ ES the following way. We modify p by deleting one unit of
capacity on l and installing one unit of capacity on e ∈ ES . We decrease flow for K+

S on l+ by a
total of r and increase it by the same amount on e+. Some flow for K−

S is also rerouted now using
e−. This can be done in such a way that flow is positive on e+ for all k ∈ K+

S , that flow is positive
on e− for all k ∈ K−

S , and that the capacity on e is not saturated. Note that pe ∈ F for e ∈ E1 and
also for e ∈ Ē1. If ϕk > 0 denotes the rerouted flow for commodity k, then pe can be written as

pe := p − bl + be −
∑

k∈K
+

S

ϕkgk
l+ −

∑

k∈K
−

S

ϕkgk
l− +

∑

k∈K
+

S

ϕkgk
e+ +

∑

k∈K
−

S

ϕkgk
e− ,

with
∑

k∈K
+

S
ϕkgk

l+
=

∑

k∈K
+

S
ϕkgk

e+ = r and
∑

k∈K
−

S
ϕkgk

l−
=

∑

k∈K
−

S
ϕkgk

e−
≤ r. From pe ∈ F ⊆ F̃

follows

βη − β + βe +
∑

k∈K
+

S

(dk
S − ϕk)γk

l+ +
∑

k∈K
−

S

(dk
S − ϕk)γk

l− +
∑

k∈K
+

S

ϕkγk
e+ +

∑

k∈K
−

S

ϕkγk
e− = π. (37)

Modifying pe by simultaneously increasing flow on e+ and e− by ǫ for every commodity gives

γk
e+ = −γk

e− ∀e ∈ ES , k ∈ K.

Now consider the disjoint partition ES := E1 ∪ Ē1. We calculate the coefficients βe, γ
k
e+ , γk

e−
for e

in each of the two sets by constructing new points from p. All these points are on the face F for
CSbi

S . If K = K+
S , then all the points additionally satisfy Undirected capacity constraints. Thus

with K−
S ∪ K0

S = ∅ the theorem holds for CSun
S .

i) E1 : For e ∈ E1 and k ∈ K+
S consider the point

vk
e := pe + bl̄ + (c − r)gk

e+ + (c − r)gk
l̄−

.

Since vk
e as well as pe satisfy (24) and because γk

l̄−
= 0 we conclude β̄ + (c − r)γk

e+ = 0, and
thus

γk
e− = −γk

e+ =
β̄

c − r
∀e ∈ E1, k ∈ K+

S . (38)

We modify vk
e by increasing flow on e− and l̄+ for commodities in K−

S ∪ K0
S . (This is not

possible in the Undirected model.)

γk
e−

= −γk
e+ = 0 ∀e ∈ E1, k ∈ K−

S ∪ K0
S . The equations (36) and (37) (with e ∈ E1) now

reduce to

βη − d
β̄

c − r
= π and βη − β − d

β̄

c − r
+ βe = π

which implies βe = β ∀e ∈ E1.

ii) Ē1 : For e ∈ Ē1 and k ∈ K+
S define the point

wk
e := p + be + (c − r)gk

l+ + (c − r)gk
e−

on the face F . Since wk
e satisfies (24) and because of (38), we get

βη + βe − (d + c − r)
β̄

c − r
− (c − r)γk

e+ = π (39)

For commodities in K−
S ∪ K0

S increasing flow on l− and e+ gives

γk
e− = −γk

e+ = γk
l− = 0 ∀e ∈ Ē1, k ∈ K−

S ∪ K0
S.

For a fixed commodity k ∈ K+
S modify wk

e by decreasing flow for k on l+, e− and simultaneously
increasing flow on l+, e− for an arbitrary commodity k∗ ∈ K+

S . Hence

γe := γk∗

e− = γk
e− = −γk∗

e+ = −γk
e+ ∀e ∈ Ē1, k ∈ K.
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The equation (37) with e ∈ Ē1 now reduces to

βη − β − (d − r)
β̄

c − r
+ βe − rγe = π (40)

Evaluating (40) for e = l̄ and comparing with (36) gives

β =
cβ̄

c − r

since β
l̄

= β̄ and −γ
l̄+

= γk
l̄+

= 0 for all k ∈ K. Then from (39) and (40) follows that
rγe = (r − c)γe But c > r > 0 and thus

γe = γk
e− = −γk

e+ = 0 ∀e ∈ Ē1, k ∈ K.

Now comparing (39) with (36) results in

βe = β̄ ∀e ∈ Ē1.

Plugging in all coefficients in (24) we arrive at:

cβ̄

c − r
x(E1) + β̄x(Ē1) +

β̄

c − r
fK

+

S (E−
1 ) −

β̄

c − r
fK

+

S (E+
1 ) = β̄

which by multiplying with c−r
β̄

reduces to (13) (with Q = K+
S ). We have shown that the hyperplane

(24) is a multiple of (13) plus a linear combination of flow conservation constraints. It follows that
F = F̃ . This concludes the proof.
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