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On the strength of cut-based inequalities for capacitated
network design polyhedra *
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Abstract

In this paper we study capacitated network design problems, differentiating directed, bidi-
rected and undirected link capacity models. We complement existing polyhedral results for the
three variants by new classes of facet-defining valid inequalities and unified lifting results. For
this, we study the restriction of the problems to a cut of the network. First, we show that facets
of the resulting cutset polyhedra translate into facets of the original network design polyhedra
if the two subgraphs defined by the network cut are (strongly) connected. Second, we provide
an analysis of the facial structure of cutset polyhedra, elaborating the differences caused by the
three different types of capacity constraints. We present flow-cutset inequalities for all three
models and show under which conditions these are facet-defining. We also state a new class of
facets for the bidirected and undirected case and it is shown how to handle multiple capacity
modules by mixed-integer rounding (MIR).

Keywords: cutset polyhedra, flow-cutset inequalities, capacitated network design, integer pro-
gramming

MSC: 90C11, 90C35, 90C57, 90B18

1 Introduction

We address variants of the following capacitated network design problem. Given point-to-point
demands between locations and potential links of a network connecting these locations, a minimum
cost assignment of capacity to the links has to be found such that all demands can be realized by
a network flow. In most practical applications the admissible capacities follow a discrete structure.
We consider a finite set of capacity modules. Each module has a base capacity and cost. It can be
installed multiple times on every link of the network (modular capacity assignment). The routing
of a demand from its source to its destination can be done by splitting the flow among several paths
(bifurcated routing). Capacitated network design arises in the context of planning and dimensioning
telecommunication or public transport networks.

We distinguish three different types of capacity usage. A link might offer its capacity for flow in
one direction only (DIRECTED link capacity model), the capacity of a link may be consumed by the
flow of both directions independently (BibirecTeD link capacity model) or it is shared between them
(UnpirecTED link capacity model). In this paper, we focus on the polyhedral combinatorics of these
variants, whereas we report on the practical strength of the studied inequalities for the different link
models in [28]. We prove a central lifting theorem, showing that facets of cutset polyhedra defined
by the restriction of the problems to a cut of the network translate to facets of the original network
design polyhedra if the two (directed) subgraphs defining the cut are (strongly) connected. Known
classes of valid inequalities defining facets on the cutset polyhedra are cutset inequalities which are
based on capacity variables of the network cut, simple flow-cutset inequalities also containing outflow
variables with respect to one of the nodesets defining the cut, and, for the DIRECTED case, flow-
cutset inequalities with outflow and inflow-variables. We extend the latter class to the BIDIRECTED
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and UNDIRECTED case and provide conditions under which they define facets, unifying the results
for cut-based inequalities. Finally, we present a new class of facet-defining inequalities for the
BIDIRECTED and UNDIRECTED case that has no counterpart in the DIRECTED model. This shows that
flow-cutset inequalities alone do not suffice to provide a complete description for single-commodity,
single-module cutset polyhedra for the BIDIRECTED and UNDIRECTED case, in contrast to the result
of Atamtiirk [3] for the DiIREcTED model.

The network design polyhedra considered in this paper have already been studied for special cases
by several authors. Magnanti and Mirchandani [20], Magnanti et al. [21, 22] consider UNDIRECTED
link models and a modular capacity structure with up to three different modules. The base capacities
are integer multiples of each other. Magnanti et al. initiate the study of network design polyhedra
and introduce cutset inequalities, three-partition inequalities and arc residual capacity inequalities.
Bienstock and Giinliik [8] study polyhedra based on BIDIRECTED problems with two modules also
having divisible base capacities. In addition to cutset and partition inequalities they consider a
generalization of cutset inequalities to simple flow-cutset inequalities containing outflow variables.
General flow-cutset inequalities for DIRECTED models with a single module have been introduced by
Chopra et al. [11] showing their validity. Atamtiirk [3] gives a detailed analysis for DIRECTED cutset
polyhedra. He studies the flow-cutset inequalities introduced in [11] and proves that they induce a
complete description in the single-commodity, single-module case. Further, Atamtiirk [3] generalizes
DIreCTED flow-cutset inequalities to an arbitrary number of modules via lifting and states conditions
under which these inequalities define facets in the multi-commodity, multi-module case.

Cutset polyhedra as introduced by Atamtiirk [3] are based on network design problems for
networks with two nodes (allowing parallel links). Hence every cut of a larger network together with
the demands across the cut defines a cutset polyhedron. Most of the strong valid inequalities for
network design polyhedra given in the literature are based on simple substructures of the network
such as single arcs, cuts, three-partitions or, more general, k-partitions. These inequalities have
been derived as facets of simple structured relaxations such as single-arcset polyhedra or network
design polyhedra corresponding to simple k-node networks. Figure 1 shows simple networks and the
corresponding polyhedral studies. Brockmiiller et al. [10], van Hoesel et al. [17], Magnanti et al. [21]
and Rajan and Atamtiirk [29] consider single-arc sets. Magnanti et al. [21] and Bienstock et al. [9]
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Figure 1: small network structures

study the capacity formulation that is obtained by projecting out all flow-variables in the classical
multi-commodity link-flow formulation, see [6, 18]. They present a complete description of a three-
node network design polyhedra. Agarwal [1] identifies facet-defining inequalities for the capacity
formulation of the four-node UNDIRECTED problem.

It is of interest to know under which conditions facets for polyhedra based on these substructures
translate to facets for the original network design polyhedra. For facets based on k-partitions of
the nodeset this question was partially answered by Agarwal [1]. He considers the UNDIRECTED
capacity formulation with a single module and shows that every facet-defining inequality for the
k-node problem based on capacity variables is a facet of the original problem if the subgraph of each
component of the considered k-partition is connected. Since Agarwal aggregates parallel edges in the
shrunken k-node network, his result applies to inequalities with capacity variables having identical
coeflicients on parallel edges.

This article is closely related to the work of Agarwal [1] and Atamtiirk [3]. In contrast to



[1], we consider the link-flow formulation which gives rise to more general classes of facet-defining
inequalities. These may contain flow as well as capacity variables and they may have different
coefficients for variables on parallel links. We extend the result of [1] for k£ = 2 to multiple modules,
all link models, and the inclusion of flow variables. This can be used to lift the facets studied
by Atamtiirk [3] which expands his work on DIRECTED cutset polyhedra to general network design
polyhedra. Similar to [3] we provide an analysis of cutset polyhedra but we also consider the
BIDIRECTED and UNDIRECTED models presenting a unifying and comparing study.

Cutsets (see Figure 1(e)) and cutset polyhedra are closely related to single node flow sets, which
have been studied extensively in the literature. Cutset polyhedra can be seen as single node flow
sets with unbounded integer capacity variables. The polyhedral study of single node flow sets was
initiated by Padberg et al. [26]. They introduce a special case of so-called flow-cover inequalities
with only outflow arcs. A generalization to inequalities with non-zero coefficients also for inflow arcs
is from Van Roy and Wolsey [31]. Important work on the strengthening of flow-cover inequalities
by superadditive lifting has been carried out by Gu et al. [15]. Reverse flow-cover inequalities were
introduced by Stallaert [30] and studied by Atamtiirk [2]. Single node flow sets with a very general
capacity model based on additive variable upper bounds are investigated in Atamtiirk et al. [5].
Louveaux and Wolsey [19] recently showed how strong valid flow-cover inequalities can be obtained
by a MIR procedure applied to single node flow sets that has been introduced by Marchand and
Wolsey [23]. We apply the same procedure to cutset polyhedra in order to obtain flow-cutset
inequalities with the difference that we do not complement capacity variables because these are
unbounded.

This paper is structured as follows. After defining network design polyhedra and cutset polyhedra
in Section 2 and Section 3, respectively, we show how facets of these polyhedra are related to each
other which is subsumed by the central Theorem 3.6. A detailed analysis of the facial structure of
cutset polyhedra for the three link capacity models is provided in Section 4 addressing the single-
module case in Section 4.1 and Section 4.2 as well as the multi-module case in Section 4.3. For
the multi-module we will lift single-module facet-defining inequalities by using subadditive MIR-
functions. We conclude with some remarks and open questions in Section 5.

2 Network design polyhedra

A network design instance is given by a directed graph G = (V, A) (DirecTED link model) or an
undirected graph H = (V, E') (BipirecTED and UNDIRECTED link model), a set M of capacity modules
installable on the network links, and a set K of commodities. The literature often refers to M as
being the set of facilities or technologies. We will use the term modules throughout. We assume G
to be strongly connected and H to be connected. Note that we explicitly allow for parallel arcs and
edges. In order to handle flow on edges for the BIDIRECTED and UNDIRECTED link model we define
G = (V, A) to be the digraph obtained by bidirecting all edges in E. The two arcs corresponding
to edge e € E are denoted by e™ and e, hence A := {eT = (i,j), e~ = (j,i) :e={i,j} € E}. A
module m € M has a capacity ¢ € Z,\{0}. For simplicity we consider the same set of modules
for all arcs or edges. With every k € K we associate a vector d¥ € Z" of demand values such that
Y wev d¥ = 0. We call d* the emanating demand of node v with respect to commodity k.

We define variables 27, 2* to be the number of installed modules of type m € M on arc a € A
or edge e € E, respectively. We assume a fractional multi-commodity flow routing. Let f* Rﬁ be
the vector of flow variables corresponding to commodity k£ € K.



Consider the following inequalities:

D M R A VeV, ke K (1)
a66g(v) a€dg (v)
fof < Z c"xyt VYae A (DIRECTED) (2a)
keEK meM
max{ k. fo,} < Z "z’ VYee E (BIDIRECTED) (2b)
keK keK meM
Z(feﬁ—i—ff,) < Z "zt Yee E (UNDIRECTED) (2¢)
keEK meM

The flow conservation constraints (1) ensure a feasible routing. Inequalities (2a), (2b), and (2¢)
are the capacity constraints for the three model types. The network design polyhedra for the link
capacity models DIRECTED, BIDIRECTED, and UNDIRECTED are given by

NDY = conv {(f,z) € RfXK X ZfXM : (f,z) satisfies (1) and (2a)},
NDY = conv {(f,z) € R 5 22 M - (f, ) satisfies (1) and (2b)},
ND"™ = conv {(f,z) € R 5 22*M - (f, ) satisfies (1) and (20)}.

The problem of optimizing a linear cost-function over one of these polyhedra is called a capacitated
network design problem. This problem is known to be NP-hard already for special cases, see for
instance Bienstock et al. [9] and Chopra et al. [11]. A valid inequality is called trivial if it is equivalent
to one of the capacity or non-negativity constraints defining ND%, N'D” or ND*". Notice that
the capacity constraints (2b) for A D% can be expressed by two linear inequalities for each edge,
that AD" is a relaxation of N'D"", and that the constraint matrices and right-hand side vectors
are integral. Since the capacity variables are not bounded and the underlying graphs are (strongly)
connected we can construct a feasible flow for every demand vector (e. g., by applying a (min-cost)
flow algorithm). Hence the given polyhedra are not empty.

For special cases of these network design polyhedra the following dimension result has been proven
by Atamtiirk [3], Bienstock and Giinliik [8], and Magnanti et al. [22]. A generalization can be easily
obtained. We present a proof here primarily because we will make use of the same arguments in the
proof of Theorem 3.6.

Proposition 2.1. The dimension of ND¥ is |K||A| + |M||A| — |K|(]V]| = 1). The dimension of
NDY and ND* is 2|K||E| + |M||E| — |K|(|]V] — 1).

Proof. For ND¥/ there are |K||A| + |M||A| variables and |K|(|V| — 1) linearly independent flow
conservation constraints (1). We show that there are no additional implied equations. Let

SO Ak Y Brar)=mx (3)

a€A keK meM

be an equation satisfied by all points in ND% and let p = (f,2) € NDY. For all a € A and every
m € M we can modify p by increasing the capacity variable 2, without leaving A D% Hence,
Bt =0 for all @ € A and m € M. Now we choose a spanning arborescence 7' C A of G with root
r € V, that is, for every node v € V\{r} there exists a unique directed path in T" from r to v. The
arborescence 1" exists since G is strongly connected.

By adding a linear combination of the flow conservation constraints (1) to (3) we can assume
that v¥ = 0 for all @ € T,k € K. Now let (vg,v1) be an arc in A\T and (v, va, ..., v; = 1) a directed
path in G from vy to r with ¢ > 1, which exists because G is strongly connected. Now, the unique
path from 7 to v;—1 in T and the arc (v;—1,7) define a circuit in G. For every commodity k we can
modify p by sending a circulation flow along that circuit, increasing capacities on arcs if necessary.
This way we get a new feasible point satisfying (3). It follows that ”yﬁ)h”) = 0 since v¥ = 0 for
all @ € T. Similarly, there is a closed directed path defined by the unique path from r to v;_9 in



T and the arcs (v¢—a,v;—1) and (vi—1,7). Again, sending a circulation flow on that circuit gives

”nyFQ)UFl) = 0. We proceed inductively and conclude that

k k o _ k _
Ywo,v1) = Vwr,w2) = 7= Vwer,o0) = 0.

Since (vg, v1) was chosen arbitrarily we obtain 4% = 0 for all @ € A and k € K. Hence, equation (3)
is a linear combination of flow conservation constraints.

The corresponding result for A’ D" and N'D"" can be proved analogously by using a spanning
tree T'in H and by sending circulation flows (in both directions) on undirected circuits defined by
edges of T and single edges in E\T (see for instance Bienstock and Giinliik [8], proof of Theorem
2.2). O

3 Cutset polyhedra

Cutset polyhedra arise from the aggregation of flow conservation constraints for all nodes in a non-
empty nodeset S C V. The network design problems are restricted to the two artificial nodes
S and V\S and the corresponding network cut. Since a significant part of the characteristics of
cutset polyhedra carries over on the related network design polyhedra, their polyhedral structure is
important. After introducing the cutset polyhedra CS?, CS%i and CSg", we show that facet-defining
inequalities for these cutset polyhedra define facets of ND%, N'D% or N'D"", provided that rather
mild conditions on the structure of the underlying graphs are satisfied.

Let the network cut Ag C A in G be the set of arcs with one endnode in S and one endnode in
V\S where A}' C Ag is the set of arcs with source in S and Ag := AS\A}'. Similarly, EFs denotes
the undirected cut in H, containing all edges with one endnode in S and one endnode in V\S. For
the BipiRECTED and UNDIRECTED link model, every edge e in the cut Eg is represented by the two
arcs eT and e~ in Ag such that e € A;L and e~ € Ag. The total flow with respect to @ C K
on A* C A'is denoted by f2(A*) := 3,0 Yaca- [¥. We abbreviate f#(A*) for f{*(A*). Notice
that the sets AJSF, Ag and Eg are all non-empty since G' is strongly connected and H is connected.

Let d’g =D es d® be the total demand over the cut given by S with respect to commodity
k € K and define

Ki={keK:d;>0}, Kg:={keK:d5<0}, K={keK:di=0}

Considering the UNDIRECTED link capacity model, we may reverse the direction of every demand and
exchange the corresponding flow variables without changing the problem. Hence, without loss of
generality we assume that K g = () for UNDIRECTED models.

1,2,0 o —L-L1 12,0 a -L,-2,0
1 >
® ® o
[ o _a
o o — 3
0,0,0 @ 0,—1,-1 S V\S
(a) 4-node network with emanating demands (b) cutset corresponding to S with \K;\ =2
for three commodities (| K| = 3) and |[K§| =1

Figure 2: Relation between network design polyhedra and cutset polyhedra

Definition 3.1. Given S C V, the cutset polyhedron CS¥ (CS%, CSY") is the network de-
sign polyhedron N'D¥ (N'DY N'D"") with respect to the graph Gg = ({S,V\S}, As) (Hs :=
({S,V\S}, Es)) defined by the two artificial nodes S and V'\ S, the cut arcs Ag (cut edges Eg), and
the aggregated demand vector (df, d"“,\ g) for every k € K.

Throughout we assume that there is demand across the considered cut, i.e., K;r # 0 w.lo.g.
Note that the cutset polyhedra of S and V'\S are identical with d% = —d"“,\s for all k € K.



Corollary 3.2. Let S C V. The dimension of CS% is |K||As| +|M||As| — |K|. The dimension of
CSY% and CSY" is 2|K||Es| + |M||Es| — |K]|.

In the following we will work out some statements about cutset polyhedra and their relation
to network design polyhedra, preparing the main result of this section which is given in Theorem
3.6. For proofs we will concentrate on the DIRECTED case, but we will mention how to vary the
argumentation for the BIDIRECTED and UNDIRECTED models, if not obvious.

Let p € ND% and for S C V consider the sub-vector pg of p obtained by deleting all entries in p
that correspond to A\Ag or K2. Since the demand constraints for csd o are aggregations of demand
constraints for ND¥, the point pg is in CS%:

peENDY — pgeCSE
This property holds similarly for points in N’ DY and ND*". From here it follows directly that

Lemma 3.3. Given S C V, a valid inequality for CS% (CS%, CSY") is also valid for NDY (N'D",
ND").

The reverse of Lemma 3.3 is not true in general.

Example 3.4. Consider the strongly connected 4-node network given in Figure 2 and assume that
there is sufficient capacity on all arcs. For the first commodity there is a demand of d} = 1 from the
left to the right which has to be realized using arc a;. Hence f;l > 1. This inequality is not valid
for the cutset polyhedron corresponding to S since for the problem on the cutset it is also valid to
route the demand using arc as. The information about the structure of G[S], which is not strongly
connected, is lost in the aggregation process.

If both G[S] and G[V'\S] are strongly connected (H[S] and H[V\S] are connected), then any
point of the cutset polyhedron can be extended to a point of the network design polyhedron without
changing the values on the cut. Hence, valid inequalities of network design polyhedra with non-zero
coefficients only on the cut correspond to valid inequalities of the associated cutset polyhedra.

Lemma 3.5. For some S C V, let the gmphs G[S] and G[V\S] be strongly connected. There exists
a point p € ND¥ for every point p € CSS . such that pg = p. Any valid inequality for NDU with
zero coefficients for A\ Ag is also valid for C’SdZ

For some S C V, let the graphs H[S] and H[V\S] be connected. There exists a point p € N'D"
(p € ND"™) for every point p € CS% (p € CSY"), such that ps = p. Any valid inequality for N'D"
(N'DY") with zero coefficients for E\Es is also valid for CS% (CS%").

Proof. Let p = (f,%) € CS%. We can w.l.0.g. assume that Z € ZL{VI”KI

b= (f,#) € ND¥ the following way:

. We construct a point

o e y
fEi=Efor ke K,a€ Ag and gmi=i0 EASME 7
M ae A\Ag,me M

where M € Z, is alarge number. It remains to define f¥, k € K for arcs a in A\Ag = A[SJUA[V'\S].
For every k € K, we define two (min-cost) flow problems on G[S] respectively G[V\S] by using the
demand-vector

v T

P {dﬁ + [H (g (0) N Ag) = JF @5 N AS) ves
dy + [P0 () NAS) — P65 () N Ag) veTV\S.
Thus dk is the emanating demand of the node v with respect to commodity k plus the flow that
has to leave (or enter) v across the cut. Note that > odb = > ev\s d¥ = 0. Since G[S] and
G[V'\S] are strongly connected and the capacity is large enough, a min-cost flow (with arbitrary cost
function) can be computed. The resulting flow values are completing the point p = ( f &) EN DY,
By definition p meets all flow conservation constraints (1) and capacity constraints (2a) for A” DY,
Hence p € NDU and pg = p. O



We are now ready to proof the central lifting result of this article, stating that valid inequali-
ties describing facets of cutset polyhedra also describe facets of the corresponding network design
polyhedra, provided the subgraphs are (strongly) connected.

Theorem 3.6 (Cutset lifting theorem). Let S C V and

Yo afa+ Y Brar) = (4)

a€As keK meM

be a facet-defining inequality of CS%. Then it also defines a facet of NDY if both G[S] and G[V\S]
are strongly connected. Let S CV and

SO AR Y AR Y gy >

e€Es keEK keEK meM

be a facet-defining inequality of CS% (CSY"). Then it also defines a facet of ND" (N'D*™) if both
H[S] and H[V\S] are connected.

Proof. We will first show that the related face
F = {(f, z) € NDU : (f,x) satisfies (4) at equality}

is non-trivial, i.e., it is not empty and it does not equal N D% Then we will show that it is
inclusion-wise maximal. Let

Fg:= {(ﬁ z) € CSY : (f,x) satisfies (4) at equality}

be the facet of CS‘éi defined by (4). Choose a point p € Fg. From Lemma 3.5 follows that there is a
point p € ND¥ with pg = p. It follows that p fulfills (4) at equality and hence p € F. Since Fg is
a facet of CS?, there is a point g € CSdSi with ¢ ¢ Fs. Again by Lemma 3.5 there is ¢ € NDY with
gs = ¢. Thus, this point is not on the face F. We conclude that F is a non-trivial face of N D%, Tt
remains to show that F is inclusion-wise maximal. Choose a facet F of ND% with F - F and let

F be defined by )
SO AN+ D Brar) > # (5)

a€A keK meM

Every point in F satisfies (5) at equality. We will show that (5) equals (4) up to a linear combination
of flow conservation constraints. To see that

AR =" =0 Va¢ As,me M,k € K, (6)

we apply the arguments of the proof of Proposition 2.1 to G[S] and G[V'\S] respectively. We can
thus concentrate on coefficients of variables in the cut. Now, by Lemma 3.5, inequality (5) is valid
for CSdSZ. Let Fg be the corresponding face of CSdSZ. For a fixed arc a € Ag it can be assumed that

Ak =y =0 VvkeK

by adding a linear combination of the flow conservation constraints to (4) and (5), respectively. By
construction every point in Fg also fulfills (5) at equality. Since Fg is a facet, it follows Fg = Fs.
Hence, (5) is (4) up to a scalar multiple and a linear combination of flow conservation constraints.
We conclude that also F = F', and hence F defines a facet of ND%. This completes the proof.

The proof for the BIDIRECTED and UNDIRECTED case is analogous. O



4 Facets of cutset polyhedra

By Theorem 3.6, every facet of a cutset polyhedron translates into a facet of the corresponding
network design polyhedron if both components of the cut are (strongly) connected. This result
motivates the analysis of the facial structure of cutset polyhedra. In this section we unify the
existing results for the three link models by deriving the class of so-called flow-cutset inequalities for
the BipiRECTED and UNDIRECTED case. We further expand results on the strength of these inequalities
for all three cases.

In Section 4.1 and Section 4.2 single-module problems, i.e., |[M| = 1, are investigated. Results
for the class of flow-cutset inequalities for CS‘éi will be reviewed and supplemented in Section 4.1. In
Section 4.2 we study CS? and CS¢". We will define a new general class of flow-cutset inequalities,
similar to the one for CS?, and existing facet results will be extended accordingly. Additionally, a
new class of facet-defining inequalities will be presented that has no counterpart in the DIRECTED
case. This new class reflects the special structure of the polyhedra CS% and CS%". Finally, in Section
4.3 we will investigate how facet-defining inequalities for cutset polyhedra with a single module can
be generalized to strong valid inequalities in the multi-module case.

The total demand over the cut defined by S C V with respect to a non-empty commodity subset
Q C K is denoted by d¥ := Y keq d§- Given a module m € M, we define 2™ (A*) = 3 \. «}* or
2™ (E*) =) cp- xl" to be the total number of modules on arcs of A* C A or edges of E* C E. Let

r(a,c) i==a—c([2] =1)>0 (7)

be the remainder of the division of a € R by ¢ € R{\{0} if 2 ¢ Z, and ¢ otherwise. The same
operator has already been used by Bienstock and Giinliik [8], Magnanti and Mirchandani [20] in the
context of strong valid inequalities of network design polyhedra.

4.1 The single-module case for CS%

Let |[M] = 1 and ¢ denote the unique module capacity. We also omit the superscript m for the
capacity variables. For fixed S C V', we define for every commodity subset @)

re = r(dg,c), n = [ﬁ—‘ .9 = r(—dg,c) and n;Q = {7(1‘5" )

Q
If de ¢ 7 then the relations 1752 =1-7% and r® = ¢ — @ hold.

Al

i A§
> dg 2 S

Figure 3: A directed cutset with selected cut arcs

Flow-cutset inequalities for DIRECTED problems have been introduced by Chopra et al. [11] and
were studied in detail by Atamtiirk [3]. We consider two subsets Af C Af and Ay C Ay of the cut
arcs Ag (see Figure 3). Define AT := A5\ AT.

Lemma 4.1 (Atamtiirk [3], Chopra et al. [11]). The following flow-cutset inequality is valid for
S

FOAT) = FOAY) + % (A) + (e = rP)a(Ay) > r¥nQ. (8)

The flow-cutset inequality (8) is the 1-MIR inequality (see [24, §11.1.7], [4], and [28]) for the base

inequality - -
FUAD) + TO(AY) + e(e(AT) — 2(4y)) = dF (9)



with fQ(A;) = cx(Ay) — f2(A5). We call inequality (8) a simple flow-cutset inequality if A5 = 0.
A simple flow-cutset inequality will be called a cutset inequality if additionally A = AJSr (i.e., they
contain no flow-variables). Cutset inequalities are given by z(Ag) > 79. Notice that if dg is an
integer multiple of ¢, then r? = ¢ and (8) reduces to a trivial aggregation of flow conservation,
capacity and non-negativity constraints (see [3, 28]). If not explicitly stated otherwise, we assume
rQ < ¢, i.e., ¢ does not divide dg.

Flow-cutset inequalities have the nice property to be symmetric in S and V\S in the sense
that for every flow-cutset inequality of CSdSi there exists a unique flow-cutset inequality for CS"i,i\ g

Adding the flow conservation constraint f9(Ag) — f9(AL) = —dg to (8) gives

FRUAT) = AT + (e — r)a(AT) + 792(A5) > r@ —d2 =rO? —en® 4 ¢ — 19
=799 —1) —c(n? - 1)
_ 19

It turns out that if dg < 0, then (8) is equivalent to a flow-cutset inequalities for CS“i,i\S with

positive right-hand side. Interchanging S and V\\S we can assume w.1l.0.g. that dg > (0. Moreover,
we concentrate on commodity subsets with @ C K; in the sequel.

Before reviewing the results of Atamtiirk [3], we will give some necessary conditions for flow-
cutset inequalities to be facet-defining for CS%.

Lemma 4.2. If (8) defines a facet of CSY, then
i) 19 <cand AT #0.
i) If (8) is a simple flow-cutset inequality and A7 # AL, then either n@ > 2 or |Q| = 1.
iii) If (8) is a cutset inequality, then n® = 77K§.

Proof. i) If r9 = ¢, then inequality (8) reduces to f@(A]) + cx(A]) — f9(45) > dg, which
is the sum of fQ(AY) — f9(Ag) > d?, non-negativity constraints for Ag\A; and capacity
constraints for A].

If AT =0 and r? < ¢, then inequality (8) can be written as
FUAE) = FUAY) + (e = ra(Ay) = 199 = dF — (n° = 1)(c = r9),
and is dominated by fQ(AL) — fQ(Ay) > dg since n® > 1 and ¢ > r¢.

ii) Suppose 4, =0, AT € As, n? =1and Q = {q,...,q:} with [ > 2. Tt follows dii <cVie
{1,...,1}, dg =79 = Zé:l di = Zé:l r% and n® = n% = 1. Hence (8) is the sum of the
following [ valid simple flow-cutset inequalities:

FECAR) + 1% a(Af) 2 .

+
iii) By definition dg < d?s and thus n% < nK;. If 9 < an, then z(Af) > nK; dominates
z(AY) > n@. O

We will now give sufficient conditions for flow-cutset inequalities of type (8) to be facet-defining for
CS‘éi. We start with the proof of an important result for cutset inequalities, since it introduces most
of the methodology needed for facet-proofs for cutset polyhedra without being too technical, and
because Atamtiirk [3] does not explicitly consider this well-known subclass of flow-cutset inequalities.
These inequalities are crucial for the performance of cutting-plane-based algorithms for network
design problems, see Barahona [7], Bienstock et al. [9], Bienstock and Giinliik [8] or Raack et al.
[28].

Theorem 4.3. The cutset inequality x(A?;') > an defines a facet of CS‘éi if and only if rKs <.



+
Proof. Necessity was shown in Lemma 4.2. Notice that by definition can = d?s +c— K5 and
d?;

c

Fo= {(f, z) € CSY : p(AY) = nKé}

that &5 < ¢ is equivalent to ¢ Z. We will show that the related face

is non-trivial i. e., it is not empty and it does not equal CSdSi. Then we will show that it is maximal
(inclusion-wise). Choose a1 € AY and a» € Ag (G is strongly connected). Now we construct a
feasible point p on the face F' the following way. We install exactly nKS+ capacity units on ay.
The capacity on ag is chosen sufficiently large. Every demand d’g for k € K; is routed on a; and
commodities in K¢ are satisfied on a2 such that the arcs a;, a2 are not saturated and carry a total

I -
flow of d?s and d?s , respectively. By construction it holds p € F. Modifying p by increasing
capacity on A;L gives a point that is in CSdSl but not on the face F. It follows that I is non-trivial.

We will now prove that F' is inclusion-wise maximal. Choose a facet F' of CS% with F C F. Let

F be defined by
Y Baat+ Y At =T, (10)
a€As keK

where 3,,7¥, 7 € R. We will show that (10) is a multiple of z(A¥) = n%$ up to a linear combination
of flow conservation constraints. Since multiples of the |K| flow conservation constraints may be
added to (10) without changing the induced face, we may assume that 751 =0 for all k£ € K.
We can also modify the point p by increasing capacity on Ag resulting in 3, = 0 for all a € Ag.
Modifying p by simultaneously increasing flow on a; and on some arc of Ag by a small amount for
every commodity k € K gives new points on F. Hence 7% =0 for allk € K, a € Ag. The proof is
complete for |A§| = 1. Otherwise, we choose a € A:g different from a; and construct another point
on the face F' the following way. We modify p by deleting one unit of capacity on a; and installing
one unit of capacity on a. The total capacity on AJSr remains unchanged. We shift a total flow of

rKS from the arc a1 to the arc a since c(an —-1)= dg(; — rKS. The new point is on the face F.
Note that the capacity on a is not saturated since rK& < ¢. We can increase the flow on a and on
some arc in Ag, resulting in y% = 0 for all a € A‘SL, k € K since a was chosen arbitrarily. Finally,
this implies 3, = 3,, for all a € A‘SL.

Plugging in all coefficients in (10) shows that F is given by a multiple of z(AY) = nK; (up to a

linear combination of flow conservation constraints). Thus F' = F, concluding the proof. O

The following two results by Atamtiirk [3] give more classes of facet-defining flow-cutset inequal-
ities. It turns out that flow-cutset inequalities capture a significant part of the facial structure of
cutset polyhedra. Theorem 4.5 is crucial for the theory of strong valid inequalities for DIRECTED
network design polyhedra stating that in the single-commodity, single-module case, the trivial in-
equalities and all flow-cutset inequalities completely describe CS? . In the following section we will
show that this does not hold for CS% and CS%".

Theorem 4.4 (Atamtiirk [3]). Let 0 # Q C K& and r9 < c. The flow-cutset inequality (8) defines
a facet of CSE if 0 # AT C AL and O # A5 C Ag.

Theorem 4.5 (Atamtiirk [3]). Let |Q| = |K&| = 1. The flow-cutset inequality (8) defines a facet
of CSY if and only if rKs < ¢ and AT #0. The inequalities (1), (2a), (8), and the non-negativity
constraints completely describe CS?.

In this paper we solely consider strongly connected digraphs, which implies Ag # 0. If however
Ag = 0, then Theorem 4.3 and Theorem 4.5 do not hold. It can be shown that if z(A%) > nKS+
defines a facet of CS¥ and |Af| > 2, then either nks > 2 or Ag # 0. In particular if Ag = 0,
Ky =Kg=0,|Af|>2, and n®$ =1 then the inequality z(AL) > 1is not a facet of CS%. Taking
AIL C Ag, it is the sum of the flow-cutset inequalities

FREAD) + 055 u(AT) > 55 pKs and RS (AT) + S w(A)) > pKEnRS

10



+ +
because rKs = d?s and fKs (A§) = d?s . In this respect, Atamtiirk [3], Theorem 1 is not correct.
In the corresponding proof flow is routed using an arc s € A;L having capacity nK; — 1, which is

possible only if 77K§ > 2. For Ag # 0 this can be fixed by using the arguments presented in the
proof of Theorem 4.3 (routing epsilon-flows using arcs of Ay).

4.2 The single-module case for CS% and CSY"

For the BIDIRECTED and UNDIRECTED case, cutset inequalities and simple flow-cutset inequalities
have been studied in the literature as well. In this section, we will generalize these to the class of
flow-cutset inequalities analog to the DIRECTED case and extend the facet results of Magnanti and
Mirchandani [20] and Bienstock and Giinliik [8]. For a compact presentations it was decided to put
the (rather technical) proofs of the main results to the Appendix.

We consider two subsets E7, Eo of the undirected cut edges Fg (see Figure 4). Remember that
to handle flow across the cut we bidirect all edges in Eg. Edge e € Eg of the cut corresponds to
et € A} and e” € Ag. Let AT and A] denote all forward and backward arcs with respect to E;
(similar A5 and A5 with respect to Fs), while AT := AT\ AT and A7 := A5\ A7.

E\ Eg

—>

PN|
‘JI_U

Vv

pay
SR O m—" W

— 9
Figure 4: An undirected cutset with selected cut edges

Lemma 4.6. The following flow-cutset inequality is valid for CS? and CS§":
FOAT) = fOAL) +rP(Er) + (¢ — r9)a(E2) > 9. (11)

The flow-cutset inequality (11) is the 2-MIR inequality (see [24, §I1.1.7], [4], and [28]) for the
base inequality - -
FOAD) + F2(A7) + ela(Br) — a(Bn) = dS. (12)

with f@(A;) = cx(E2)— f?(A5). It can be seen as the undirected analogon of (8) and is considered
in this general form here for the first time (also see the parallel computational study [28]). Special
cases have been studied in [7, 8, 20, 21, 22]. An important difference to the directed case is that the
two edge-sets E; and Es are not necessarily disjoint. A simple flow-cutset inequality is a flow-cutset
inequality with E» = () and a cutset inequality is a simple flow-cutset inequality with E; = Eg, i.e.,
it reduces to x(Eg) > n%.

For BipiRECTED and UNDIRECTED models we consider a second class of strong valid inequalities
that turns out to have no analogon in the DIRECTED case. Example 4.7 shows that in contrast
to Theorem 4.5 flow-cutset inequalities of type (11) do not completely describe CS? and CS¢" if
K| =[M]|=1.

Example 4.7. Define a cutset polyhedron with |K| =1, |Eg| = 2 for the BipirecTED link model:
P:conv{xEZi,fERi it fo—fs—f.=17,
0 <f, <3z, Vie{l,3},
0 <f, <3x, Vie {2,4}}

When adding all flow-cutset inequalities (11) to the LP-relaxation of P, the resulting polyhedron

still has the two fractional vertices (%, %, 1,0, %, g) and (%, %,O, 1, %, %), (PORTA [12]). But we

can formulate two valid inequalities cutting off these points, namely:

3+ 2z, + f3— f1 >2 and 3xy+ 22+ f1 — fo > 2.

11



The inequalities of the last example can be generalized to a large new class of valid inequalities
for CSY% and CS%".

Lemma 4.8. The following new flow-cutset inequality is valid for CS? and CS§":
cx(Ey) + (C—TQ)x(El) —I—fQ(A1 ) — fQ(A+) >c—7rQ. (13)

Proof. If 79 = ¢ then inequality (13) reduces to cx(E;) — fQ(A]) + fQ(A]) > 0, which is valid
because of cx(E1) > fQ(Af) and f@(A]) > 0. Now consider r? < c. First assume that x(E;) = 0.
All flow has to be routed through Fj. It follows that

FAUAD) = foAT) = and a(By) =[] = 9.
Hence
cx(Br) = (f2(A)) = fRAD) 2 en® —dg = c =19
If, on the other hand, z(E;) > 1 then from cx(E;) — fQ(A]) + f@(A]) > 0 we conclude that
ca(Br) + (e = r9)z(Er) + fO(A]) = fOAT) 2 e =19 O

The class of flow-cutset inequalities (11) is (in this general form) symmetric in S and V\S, i.e.,
if dg < 0 we can exchange the two nodesets such that dg becomes positive and we find an equivalent
flow-cutset inequality. The new class of inequalities (13) is not symmetric in the sense above, but
for dg < 0 it is weak because in this case inequality (13) is dominated by the sum of the capacity
constraint cz(B;) — f2(AT) > 0 and the simple flow-cutset inequality r<z(Ey) + fQ(AT) > r<n<.
We assume

0#QC K&

for both classes throughout the rest of this article. In the following we will provide necessary and
sufficient conditions for these classes to define facets for CS% and CS%". We consider necessity first.

Lemma 4.9. If (11) is facet-defining for CS% or CS%™, then
i) 79 < ¢ and E;\Ey # 0.

i) If (11) is a simple flow-cutset inequality with Ey # Eg, then either n© > 2 or |Q| = 1.

iii) If (11) is a cutset inequality, then n® = nis > nfg. If additionally |Es| > 1, then nis > 2.
If (11) is facet-defining for CSE", then E1 N Ey = ).

Proof. For proving i) and ii) simply follow the proof of Lemma 4.2 i) and ii). For iii) consider
the cutset mequahty z(Es) > n9. The largest r1ght hand side is obtained if 79 = K K$ . Also

x(Fg) > 777 is a valid cutset 1nequa11ty for CS and CS¢" and hence 7 K > 17 . Suppose

|Es| > 1 and K$ = 1. Tt follows that d S K . Choose E* C Eg such that E*, E* # (). Then
with Lemma 4.8

(B + 1UAT) — FAAT) 2 e and

cx(E*) + (c—r&
K)a(B) + fOAT) — fRUAL) > e —rFe

cx(E*) +(c—r

are both valid inequalities for CS% (and CS%") of the form (13) different from flow conservation
constraints. Adding them up gives

(2¢ — rK5)2(Es) + f(A3) — fAAS) > 2¢ — 2757 = (2c—rF )(Es) 453 > 00— 2pKE
= l‘(Es)Zl:n 4

It turns out that the cutset inequality z(Es) > 1 is the sum of non-trivial valid inequalities when
|Es| > 1. To prove the last statement, we show that (11) is the sum of valid inequalities for CSg"

12



if By N FEy # (. Aggregating the UNDIRECTED capacity constraints for Ey N Fy gives cx(Ey N Ey) —
fRAT N AT) — f9(AT NAy) > 0. Adding the flow-cutset inequality

)
FOCAT) + FRAT N AS) = FOANAD) + 102(B\Bo) + (¢ = r9)a (B \Bv) = 79,
for the two edge sets F1\FE2 and F>\ Fj results in
FOAD) ~ FOATVAD) — FO(AT 1 A7) + r(B\By) + ex(By 1 By) + (e~ 19)a( o\ By)
> r9n°
which is (11). O
Lemma 4.10. If (13) is facet-defining for CS% or CSY", then it holds:
i) r9 <ec
i) If Ev =0, then nks =1 and |Es| =1
iii) If By = ), then either n®@ = nks > 2 or |Es| =1

Proof. 1f r@ = ¢ then inequality (13) reduces to cz(E1) — (fQ(A]) — f@(A7)) > 0, which is the sum
of capacity constraints and non-negativity constraints. Assume 7% < ¢ in the sequel.
Suppose E; = (. Inequality (13) reduces to xz(Es) > 1, which is dominated by the cutset

inequality x(Fg) > n&& if p¢ > 2. If on the other hand n& =1 and |Eg| > 1, then z(FEg) > 1 is
the sum of two valid inequalities (see Lemma 4.9). Now suppose that F; = (. We can write (13) as

cx(Es) + fO(Ag) — f9(AL) > c— 19 = ca(Eg) > dg +e—r9=cn?

which is either dominated by the cutset inequality z(Es) > n’¢ & or it is the sum of valid inequalities
when 7@ = 5 =1 and |Es| > 1 (see Lemma 4.9). O

After stating necessary conditions, the following results provide sufficient conditions for flow-
cutset inequalities of type (11) and (13) to be facet-defining for CS% and CSY". We start with
the well-known cutset inequalities [7, 8, 20, 21, 22] in Theorem 4.11. Theorem 4.12 can be seen
as the analogon of Theorem 4.4. Theorem 4.13 extends Theorem 4.12 to the case 1 U Ey = Eg
with E1, B # () and E; # Es. Corollary 4.14 summarizes the results of this section for the single-
commodity, single-module case for inequalities (11). Eventually, Theorem 4.15 is a facet theorem
for the new flow-cutset inequalities (13). Recall that by reversing demand directions, Kg = ) can

- el -
be assumed for UNpirecTED models. Hence for CS§" the conditions nks > nfs and d?s > |d§s |
are trivially fulfilled.

Theorem 4.11. The cutset inequality x(Fg) > nK; defines a facet of CS% (CSE™) if and only if

rKs <, nK; > nfg and if either nK; >2 or|Eg|=1.

Proof. Necessity was shown in Lemma 4.9 iii). Related sufficiency-results were proven by Bienstock
and Giinliik [8] for CS% and Magnanti et al. [22] for CS%". O

Theorem 4.12. Let ) # Q C K& and r? < c. The flow-cutset inequality (11) is facet-defining for
CSY% if E\\Ey # 0, E1\Ey # 0, and one of the following conditions holds:

i) By = and either n° > 2 or |Q| =1
i) Fa # 0
The same holds for CS¢" if additionally E1 N Ey = ().
Proof. See Appendix A.1. O
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Theorem 4.13. Let ) # Q = K& with d?s > |d§5 | and r&¢ < c.

The flow-cutset inequality (11) is facet-defining for CS% if E1\Ey # 0, E1 C Ey # 0, and one of the
following conditions holds

Z) ElﬂEQZ(Z)

+ _

i) By NEy #0, K& =0 and either Kg =0 or d?s > max(|d§5 [, c)
The flow-cutset inequality (11) is facet-defining for CSg" if K = K;r, E1,Ey #0 and B, = E>.
Proof. See Appendix A.2. O
Corollary 4.14. Let |K| = |K&| = 1. The flow-cutset inequality (11) is facet-defining for CcSY% if
and only if rKs < ¢, E1\Ey # () and one of the following conditions holds:

i) By =0, Ey =0 and either n’s > 2 or |Es| = 1

ZZ) EQ#@ 07”E1¢®
The same holds for CS¢&" if additionally E1 N Ey = ().

Rt i A5 Kg

Theorem 4.15. Let ) # Q = K with dg® > |dg® |.

The new flow-cutset inequality (13) defines a facet of CS? if and only if rKS < ¢ and one of the
following conditions holds:

i) By, By #0)
i) By =0 and ns =1 and |Eg| =1
iii) Ey =0 and either ns >2 or |Eg| =1
Given that K = KJ the same holds for CS¥".
Proof. See Appendix A.3. O

4.3 The multi-module case

In the sequel, we will generalize flow-cutset inequalities (8) and (11) to the multi-module case
|M| > 1. It turns out that for each single-module flow-cutset inequality there are |M| multi-module
flow-cutset inequalities, one for every available capacity module.

Furthermore, the lifting of the flow-cutset inequalities (8) and (11) to the multi-module case
can be done using a subadditive lifting function that is based on mixed-integer rounding [24, 25].
We start by introducing the concept of subadditivity and present lifted flow-cutset inequalities. We
propose a strengthening for the case that Ay = 0 or F2 = () and conclude by showing that our
approach generalizes special cases considered in the literature on network design [8, 20].

Definition 4.16. A function F': D C R — R is called subadditive on D if F(a)+ F(b) > F(a +b)
for all @, b such that a, b, a + b € D. If the limes exists set

F(a) = }{1(1) @

Proposition 4.17 (Nemhauser and Wolsey [24], Theorem 7.4). Let Ny, Ny be two finite index sets
and
X = {(f,;v) ERT X Zf2 : Z vl + Z Bz ; Z?T},
JEN1 JEN2

wherey;, B; and 7 are rational numbers. If the function ' : R — R is nondecreasing and subbadditive
on R with F(0) =0 and F exists for all j € Ny, then

S° FOfi+ Y F(By)a; 2 F(m)

JEN1 JEN2

is valid for X.
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We will now introduce the subadditive function used to generalize flow-cutset inequalities to the
multi-module case. Given a,c¢,d € R with ¢ > 0 and % ¢ 7, define a™ := max(0,a) and consider the
function Fj . : R — R defined by

Ficla):= [%-‘ r(d,c) — (r(d,¢) — r(a,c))".

The function Fy . is the %-MIR function for >-base-inequalities with right-hand side d scaled by the
factor r(d, ¢), see Nemhauser and Wolsey [24], §I1.1.7, Atamtiirk [4], and Raack et al. [28]. It has
the following nice properties.

Lemma 4.18 (Raack et al. [28]). Let c,d € R with ¢ > 0 and % ¢ 7. The function Fg . is subadditive
on R and nondecreasing with Fy .(0) = 0 and Fy.(a) = a™ for alla € R. It holds that | Fy.c(a)| < |al
for alla € R. If a,c, and d are integral, then also Fyc(a), Fyc(a) € Z.

Now, we are prepared to generalize the inequalities (8) and (11) to the multi-module case. Let
S Cc Vand @Q C K be fixed and let dg > 0 be the corresponding cut demand as defined in Section
4. By aggregating model inequalities and substituting f@(Ay ) :== > -\, ¢ma™(Ay ) — fQ(Ay), the
following base inequality is valid for CS?:

FRAD) + F2A7) + > ™ (a™(Af) —a™(4Ay)) > dF. (14)

meM

Similarly, the following base inequality is valid for CS% and CS%":
FRAD + A7) + D ¢ (@™(By) — 2™ (By)) > dY. (15)
meM

For every module s € M with capacity ¢® € Z4\{0} we consider the functions
Fy = 49 co and Fy := 42 e

By Proposition 4.17 and Lemma 4.18 we can apply these function to the coefficients in (14) and (15)
which results in valid inequalities for CS¥, CS% and CSY", respectively. Resubstituting f9 (A5 )
gives the following result (also see Atamtiirk [3] for an alternative derivation of the DIRECTED case):

Proposition 4.19. For every s € M the flow-cutset inequality

FUAD) = fOA) + D F(@ma™(A) + Y (€™ + Fy(=c™)a™(Ay) = Fo(dg) (16)

meM meM

is valid for CSdSi, whereas the following flow-cutset inequality is valid for CS%i and CS¢":

PRAN - £245) + 3D BB + Y (€0 4 B~ (B) > Fy(dD).  (17)
meM meM
Inequalities (16) and (17) generalize (8) and (11) since Fs(c¢®) = r(dg,cs) and Fs(—c®) =
—r(dg,cs). If dg is an integer multiple of ¢*, then (16) and (17) reduce to the base inequalities
(14) and (15) because in this case Fs(a) = a for all a € R.
Atamtiirk [3] has been the first to study the general multi-module case for DIRECTED problems.

His approach is based on lifting. Given a module s € M, let CS¥(s) be the restriction of CS¥
obtained by fixing all module variables to their lower bound zero that do not correspond to s:

CS%(s) = {(f.2) € CS¥ 12l =0, a € Ag, M\{s}}.
Now, flow-cutset inequalities of type (8) with ¢ = ¢* and 7@ = rQ := r(dg, ) are valid for CS%(s)

and can be facet-defining for CS?(S) by Theorems 4.3, 4.4, and 4.5. Atamtiirk considers the problem
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of exact lifting (8) to a valid inequality of CS? and shows that lifting can be done in a sequence-
independent way and for all coefficients simultaneously (see Atamtiirk [4], Gu et al. [16], Wolsey
[32]) by using subadditive lifting functions. The resulting inequalities are given by

FRAT) = (A + D of (e™a™(AN) + > ¢y (™2™ (A7) > ¢ (d2) (18)
meM meM
where for a € R

—k(c® =@ if ke® < kc® Q
(b:(a):_{a (c®—7r¥) ifke® <a < ke®+rs  integer

(k+1)r@ if ket +79 <a < (k+1)c®

and ¢, (a) = a+ ¢ (—a). Now by setting k = [ ] —1 it can be seen that ¢ (a) = Fy(a) and hence
it turns out that the inequalities (16) and (18) are identical. Obviously flow-cutset inequalities can
be obtained by lifting using the subadditive MIR-function Fs. In this context flow-cutset inequalities
are closely related to the concept of complemented-MIR inequalities introduced by Marchand and
Wolsey [23] and to the flow-cover inequalities presented by Louveaux and Wolsey [19] (besides the
fact that we do not complement integer variables since they are not bounded). Notice that Louveaux
and Wolsey also consider a lifting function different from MIR.

Considering the lifting problem (instead of simply applying Proposition 4.17) allows to make
statements about the strength of the resulting inequalities [4, 16, 32]. This way Atamtiirk proves that
certain lifted flow-cutset inequalities (16) define facets for CS% in the multi-module case. Theorem
4.20 is a generalization of Theorem 4.4 and Theorem 4.21 is a generalization of Theorem 4.5. Similar
results for CS%i and CS¢" are not known although lifting using the function F is still valid.

Theorem 4.20 (Atamtiirk [3]). Let Q C K& and s € M with r¢ < ¢*. The flow-cutset inequality
(16) is facet-defining for CS? if AT AT AL AL # 0.
Theorem 4.21 (Atamtiirk [3]). Let |Q| = |KZ| =1 and s € M with r? < ¢*. The flow-cutset
inequality (16) is facet-defining for CSE if AT, Af Ay #0.

Notice that Theorem 4.20 and Theorem 4.21 explicitly exclude simple flow-cutset inequalities.
In fact, inequalities (16) cannot be facet-defining if A; = (). In this case the left-hand side contains
only non-negative coeflicients which can be strengthened to the value of the right-hand side. This
strengthening has already been proposed by Atamtiirk [3]. Since Fy is non-decreasing, applying
the strengthening and MIR can be exchanged, resulting in the same inequality. In particular, the
coefficient Fy(¢™) can be reduced to min(FS(cm),Fs(dg)) = Fs(min(cm,dg)) for all m € M. By
setting Ay = (), the strengthened simple flow-cutset inequality for CS? writes as

FEAN) + ) Fo(min(c™, d2))a™(A]) > Fu(dQ) (19)
meM

for every s € M, whereas the strengthened simple flow-cutset inequality for CS? and CS¢" is given
by
FRAD) + Y Fu(min(c™,d$))2™ (Ey) > Fu(dQ). (20)
meM
To give a formal proof of the validity of (19) and (20) we consider the function Fg . : Ry — Ry for
d,c € R \{0} given by
Facla) = Fy(min(a,d)).
Lemma 4.22. Let ¢,d € R{\{0} with ¢ > 0 and 4 ¢ Z. The function Fy. is nondecreasing and
subadditive on Ry with Fy..(0) =0 and Fgc(a) =a for all a € Ry.
Proof. Let a1, a2 € Ry with a1 < as. It holds that Fy .(a1) < Fa.c(az2) because Fy . is nondecreasing
and min(ay,d) < min(ag,d). Using that Fy . is subadditive and nondecreasing gives
Faclar) + Faclaz) = Fgc(min(ay, d)) + Fy..(min(asz, d))

> Fy(min(ay, d) + min(ag, d))

> Fy c(min(ar + ag,d))

= .7:,170(@1 + ag).
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From d € R:\{0} and F,;.(0) = 0 follows that Fg .(0) = 0, and for any a € R4 it holds

ﬁd)c(a) — }I\I% Fd,c(mi;l(atyd)) — tli\iI(l) Fd’ct(at) = q. I:‘

Assume A5 = (). Using Proposition 4.17 and applying the subadditive function Fy . with d = dg
and ¢ = ¢® to the valid base inequalities (14) and (15) shows the validity of (19) and (20). Note

that we may extend fd)c to R by setting Fq.(a) := 0 for a < 0.

Corollary 4.23. The strengthened simple flow-cutset inequality (19) is valid for CS?, and the
strengthened simple flow-cutset inequality (20) is valid for CS% and CS%".

In the single-commodity case the strengthening has no effect since Fs(c®) = r(dg,cs) < dg.
For |M| > 1, it is not known in general under which conditions strengthened simple flow-cutset
inequalities define facets for CS%, CS% or CS%™. There is also no analogon of Theorem 4.20 and
Theorem 4.21 on the strength of flow-cutset inequalities for BIDIRECTED or UNDIRECTED models in
the multi-module case. For some special cases these inequalities define facets as shown by Bienstock
and Giinliik [8] as well as Magnanti and Mirchandani [20] and Magnanti et al. [21, 22]. In particular,
these authors consider the network design polyhedra N DY and N'D"", respectively. For |[M| < 3
and divisible base capacities they provide conditions for simple flow-cutset inequalities and cutset
inequalities to define facets. This may serve as an indication that our approach produces strong
valid inequalities for cutset polyhedra (and by Theorem 3.6 also for network design polyhedra) in
the multi-module case.

Example 4.24. Bienstock and Giinliik [8] consider network design polyhedra with BIDIRECTED
capacity constraints and two modules, where ¢! =1 and ¢ = A\ € Z,, A\ > 1. Specializing (17) with
d=dg. =\ r=r(dN),n=[%] gives

FRAD) = (A7) + 2 (By) + ra®(Ey) + min(L, A — r)a’ (Bo) + (A= r)a®(B) > v, (21)

Setting Fo = () results in one of the simple flow-cutset inequality introduced in [8]. A strengthening
as proposed above has no effect here. Bienstock and Giinliik also consider other classes of inequalities
of this type, all corresponding to the case that d is fractional, which we do not consider here (also
see Atamtiirk [3], Example 1). By [8, Theorem 3.5, inequality (21) defines a facet of N'D" if r < ,
QC K&, 0+ E C Eg, ds > 1 and if H[S] and H[V\S] are connected.

Magnanti and Mirchandani [20] investigate single-commodity network design polyhedra with
UNDIRECTED capacity constraints, three modules and one commodity, where ¢! = 1, ¢2 = C €
Zy,C >1and ¢ = \C € Z,, A > 1. We can formulate two non-trivial cutset inequalities of type
(20) corresponding to ¢® = C and ¢®* = AC, which are

2! (Es) +ra2*(Eg) + Ariz®(Eg) > [4]  and (22)

2 (Eg) +min(C, ry)x?(Eg) + roz®(Es) > 1o [%w . (23)

where 11 = r(d,C) and ro = r(d, \C'). These are two of the cutset inequalities considered in [20].
Inequality (22) is known to be facet-defining for CS§" under certain conditions [20]. Notice that if
d < AC, then (22) can be strengthened to

a'(As) + ra?(Ag) + min(A, [£])r1a®(As) > 1 [&]

by using Corollary 4.23. Inequality (23) defines a facet of CS¢" if H[S] as well as H[V\S] are
connected and if ro < AC' by [20, Proposition 5.2].

Magnanti and Mirchandani present a third facet-defining cutset inequality, which can be seen as
a 2-step MIR-inequality or knapsack-partition inequality, see Pochet and Wolsey [27].
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5 Concluding remarks

We have studied polyhedral aspects of capacitated network design cutset polyhedra for three different
link models: DIRECTED, BIDIRECTED and UNDIRECTED. We have shown that given a network cut, any
facet of the corresponding cutset polyhedron translates to a facet of the network design polyhedron
if both network components are (strongly) connected. In the single-module case we could state
necessary and sufficient conditions for flow-cutset inequalities to be facet-defining. We worked out
the differences caused by the three variants of capacity constraints. For the models BipiIRECTED and
UNDIRECTED we identified new classes of facet-defining inequalities. Flow-cutset inequalities were
lifted to the multi-module case using mixed-integer rounding. Providing a unifying framework this
approach generalizes all known facet-defining flow-cutset inequalities for network design polyhedra.
The computational study in an accompanying paper [28] affirms the practical importance of these
inequalities.

We want to conclude this article with some extensions and ideas on interesting future research
topics. None of the considered inequalities in this paper does exploit the structure of the subgraphs
defined by the cut components. This might be a drawback when optimizing sparse networks as they
are common in practice. Consider the UNDIRECTED model and assume that the condition of Theorem
3.6 does not hold, i.e., the subgraph H[S] is not connected but decomposes into the components
H[S] and H|[Ss], where (S1,S2) is a partition of S. Assume that some point-to-point commodity &
with value d > 0 has to be realized from H[S;] to H[Ss]. The corresponding flow has to cross the
cut Eg twice. It follows that we can add the value 2d to the right-hand side of the base inequality
(15). Notice that the resulting inequality is valid for N'D*" but not for CS¢" as considered here, in
particular k ¢ K. For the capacity formulation and inequalities only containing capacity variables,
this approach leads to the well known metric inequalities, see [6, 18]. It might now be of interest to
study metric type flow-cutset inequalities and metric inequalities lifted by MIR.

Flow-cutset inequalities as presented in this article are rank-1-MIR inequalities. At least in the
multi-module case it is a promising idea to apply the functions Fy . or Fg4. in a second MIR-step,
where c is one of the left-hand side coefficients and d the right-hand side of a flow-cutset inequality.
See Dash and Giinliik [13, 14] for some recent results on 2-step MIR, inequalities. The base cutset
inequalities

K+
Z "™ (Es) > dg®
meM
can be seen as an integer knapsack inequality. The corresponding integer knapsack sets have been
studied by Pochet and Wolsey [27] for the case that the base capacities ¢ are integer multiples of
each other. They prove that these sets are completely described by knapsack-partition inequalities
that can be obtained by consecutively applying MIR to the base knapsack inequality. In particular,
the (1-step) MIR cutset inequality
. m Q m K;
> Fi(min(c™,dg))a™ (Es) > Fu(dg?).
meM

that is obtained by setting 1 = Fs and Q = K; in (20), is a knapsack-partition inequality. Also
the three cutset inequalities presented by [20] and mentioned in Example 4.24 for models with three
modules are knapsack-partition inequalities. No result is known on the strength of an n-step MIR
approach for network design polyhedra applied to cutset inequalities and flow-cutset inequalities.
Also computational experience in this direction is missing. direction is missing.
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A Omitted proofs

A.1 Proof of Theorem 4.12
Proof. We will show that the related face

F =: {(f, x) € CSY (CSY") : (f, ) satisfies (11) with equality}

is non-trivial and then by contradiction, we will show that it defines a facet. This will be done for
CS? and CS¢" simultaneously. In the following we will construct points on the face F. Whenever
we can ensure that F; N Fy # ) these points may only be valid for CS% but not for CS%". Given
e € Eg, let b, denote the unit vector in RIZsI+2KIIEs| for the integer design variable of e and let
g§+ , gf, be the unit vectors for the two continuous flow variables of e for commodity k € K. We set
d:= dg, n:=n%, r:=r% < ¢, e > 0small enough and M a large integral number. Let Q := K;‘\Q
Choose | € E1\E>2 and | € E1\F2. We construct a point on the face F' by sending all flow for @ on
I and the flow for all other commodities on [:

p = nb; + Mb; + Z dsgf + Z dggf+ + Z dggl@,.
keQ keQ keK

The point p is on the face F' by construction. Hence F' is not empty. p+ b; is a point that is in CS?
(CS%") but not on the face F.

It remains to show that F' is inclusion-wise maximal. Choose a facet F of CSY% (CS%") with
F C F and let F be defined by

S Bewe+ Y ARSI Ak ) =7 (24)
e€FEg ke K ke K

where ﬁe,'yf+,'y§,,7r € R. We will show that (24) is (11) up to a scalar multiple and a linear

combination of flow conservation constraints, proving that F' = F'.

Adding multiples of the |K| flow conservation constraints to (24) we can assume 7, = 0 for all
ke Q, ”ylli =0 for all k € @ and *yl@, =0forallk € Kg UKY. Set 3:= (3, and § := B;. Since p
lies on the hyperplane, we conclude that fn + M = m. Now we modify p by installing a capacity
of M +1 on I. This is another point on the face and thus 3 = 0. It follows that

pn=m (25)

The capacity on [ is not saturated since d < ¢n. Modifying p by simultaneously increasing flow on
IT™ and I~ by € for k € Q gives new points on the face and thus

Vil =0 Yk eQ
The same can be done on i1, [~ for k € Ky U Kg U Q, hence
Yook =0 Vke KgUKUQ.

Now consider the disjoint partition Es = (E; N Ea) U (E1\Es) U (E1 N Ea) U (E1\FE2). We will
compute the coefficients ﬁe,7§+,'y§, for e in each of the four sets by constructing new points on
the face F. They will obviously fulfill the flow conservation constraint and satisfy inequality (11)
with equality. To see that they meet the (BIDIRECTED) capacity constraints just use that r < ¢ and
remember the relation ¢ = d + ¢ — r. For edges in E1 N By, E1\Ey and E1\FE> we construct the
points such that they additionally satisfy the UNDIRECTED capacity constraints given that Ky = (.

Hence with £y N Ey = () and K¢ = () the theorem holds for CS&".
i) E1NE;z: Foree EyNEy and k € Q define the following three points on F:
p+be+ (c—1)gf + (c—r)g" = A+B.+(c—r) = (26)
p+ b+ cgfi + be + gl = +B+B8.+cyk =7 (27)
pt(c—r)gh +be+ 595 +(c—5)gb = Bn+B.+ 575 +(c—tnk =7 (29)
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ii)

iii)

Comparison of (26) and (27) shows that —ry*. = 8 for all e € B4 N E», for all k € Q. From
(26) it follows then that (5, = g(c — 1) Ve € By N Ey. From (28) we find that g(c —r)—(c—

%)g + gﬂyg = 0, which implies that r*yéﬂ =pforallec E,NEs, forall k € Q.

To conclude that vk =0forall k € Kg UKYUQ just modify the point in (26) by increasing
flow on [T by some € and routing this e-flow back on e”. Simultaneously increasing flow on
et e” givesy¥ =0forallk e Kg UK3UQ.

E1NEs: Fore € E1NE; and k € (Q define:
k. k k k Eo_
Vg i=pt+betcger +egl = O+ O.tevs ey =7 (29)

We can still increase flow on [T by a small amount for commodity k. Decreasing flow on e™ at
the same time gives another point on the face and thus *yéﬂ =0 for all £ € . When having
changed v* this way, some flow for a commodity in Kq U Kg U @ can be routed on et while
the same amount of flow increases on I~. Hence vé& =0foral ke Kg U K2u Q.

For k1, ke € Q,e € E1 N Ey consider the point

et — et gt —eglt +egp?
It is well defined and feasible because flow on [T is positive for every k € @ and flow on e™ is
positive for k;. It follows that ~.- := vfi = 753 for all k1, ke € Q.

To construct another point p. on the face F' we modify p by deleting one unit of capacity on
! and installing one unit of capacity on e € F1 N Es. A total flow of r has to be rerouted since
c¢(n—1)=d—r. We do so by decreasing flow of Q on I by a total of r and increasing it on
et, e” by a total of ¢ and (c — r) respectively. This can be done in such a way that flow is

positive on et, e for all k € Q. If ¢F,, o*,  ©* > 0 denote the rerouted flows on [T, e™, e,
then p. can be written as

Pei=p—bi+be— Y figh + > ohigh + > ¢k gh
keQ keQ keQ

With Y0, o @l =75 Ypeq¥he = cand Y, ok = c—r. From p, € F and the fact that
vl’i = vé& =0 and 75, = .- for all k£ € Q we conclude that

Pn—=B+PB.+(c—r)ye- =7 (30)
Now comparing (29) and (30) gives
Y- = —T’yf, =B Vk € Q.

From (29) and (25) follows then
B, :cg Ve € E1 N Es.

Again considering the point pe, the total flow on e™ is ¢ — r, thus the capacity on e~ is not
saturated. Increasing flow on [T and e~ gives *yf, =0forallke Kg UK2UQ.

E;\E: : For e € E1\E; consider the following point on F:
pt+b. = Bn+pf.=7 (31)

The point can be modified by simultaneously increasing flow on [T and e~. This can be done
for every commodity in @, thus vk =0 for all k € Q. Comparing (31) with (25) gives 8, =0
for all e € El\EQ.

To construct a new point g on the face I’ we modify p by deleting one unit of capacity on
I and installing one unit of capacity on e € FE1\E,. We decrease flow of Q on [T by a total
of r and increase it by the same amount on e™. This can be done in such a way that flow is
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iv)

positive on et for all k € Q. If ©* > 0 denotes the rerouted flow with respect to k € @, then
ge can be written as

Gei=p—bitb— > gl +) ok = -8+ D ¢t =n (32
keQ kEQ keQ

with >, o ©* = r. Modifying . by simultaneously increasing flow on et, [~ and e*t, e~ gives

”yéﬂ = ”yf, =0forall k€ Kg U KU Q. It remains to show that ”yé& = g for £ in Q). We
make use of the conditions i) and ii) of Theorem 4.12.

Assume first that E, = 0. If |Q| = 1, it follows that 8y — 8+ ry*, = 7 and m/*, = 3. If
|Q| > 1 and n > 2, then d > ¢ > r and g, can be constructed such that flows are positive both
on [* and e for every commodity in Q. We choose ki, ks € Q and modify g. by adding the
flow eglli2 - eglli1 + egfi - egfﬁ. This way we conclude that Wfi = vfi. From (32) follows then
rwéﬂ = (@ for all £ € Q. Now let us assume that there is an edge € in Fq N Ez. Modify ¢,
by installing one unit of capacity on & and sending a flow of ¢ on €* and €~ for a commodity
k1 € Q. Now adding egéfi — egéfi + egfi — egfﬁ gives ”yfi = ”yjﬁ and r”yg = Qfor all k € @
again since *ygi = *yg = 0, as shown above. Finally assume that there is € in E; N Ey. For a

commodity k& € @ consider the following vector:
p+(c—r)gfs +be+be+cgh +rghs = Bn+B+ 0.+ +rb =7

— ﬁn—l—(c—r)g—cg—i—rwéﬁzw
= ﬁ=r7§+ Vk € Q

E1\E2 : We construct the vector ¢, again but for e € F1\ Fs.

Ger=p—bi+b— > Fgh+> gk = P-B+B.+ ) ¢ =r (33
keQ keQ keQ

with ZkeQ ©F =r. For k € K add an e-flow to et and e~ to conclude that 72& = —75— for
all k € K. Now we modify the point ¢, by simultaneously increasing flow on et and I~ for
a k in K. Hence ”yg = —*ylli = 0. It follows that ”yf, =0 for all Kk € K and B, = 3 for all
e c El\EQ.

Plugging in all coefficients in (24) we arrive at:

a(E\\Ez) + Tf9(A7\AF)
+ Tle—r)a(Eyn Ba) + TfOAf N A7) = 2F9(AT N Ay)

+ cBa(BinEy) - 2f9(AT NAy) = By

which is equivalent to

FOAT) = fO(AT) + ra(Er) + (c — r)a(Ea) =

We have shown that the hyperplane (24) is a multiple of (11) plus a linear combination of flow
conservation constraints. It follows that F' = F. This concludes the proof. O

A.2 Proof of Theorem 4.13

Proof. We proceed as in the proof of Theorem 4.12 and apply the definitions of the faces F, F with
- + -

F C F and the vectors b, giﬁ,gf,. We set d := d?s, d- = |d§s l, n:= an, ri=rKs < c,e>0

small enough and M a large integral number.

In contrast to the proof of Theorem 4.12 the point p to start from is defined as follows. Choose

l € E1\Ey. All demand is routed on | with capacity exactly ¢, more precisely all flow for positive
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commodities is routed on [T and all flow for negative commodities is routed on /~. Notice that we
assume d > d~ and r < ¢. The point p can be written as:

p =nb + Z 59 + Z dsgp-.
keKE keK

By considering p and p + b; we conclude that ) # F # CS?. It is missing to prove that F = F.
We will show that (24) is (11) up to a scalar multiple and a linear combination of flow conservation
constraints. We can assume that vl’i =0 Vke K;‘ and vl’i =0Vke Kg U Kg w.l.0.g. by adding
multiples of the flow conservation constraints to (24).

Set 3 := 3,. Since p lies on the hyperplane, we conclude that

pn=mn (34)

Modifying p by simultaneously increasing flow on [T and [~ by e for every commodity gives new
points on the face and thus ”yl’i , ’ylk, =0VkeK.

Now consider the disjoint partition Fs = (E1NFE2)U(E1NE2)U(EL\E2). (Note that £1\FE2 = 0).
We calculate the coefficients 3,, 72& , 75, for e in each of the three sets by constructing new points on
the face F'. Note that all the points to be defined for edges in F1 N Es and E;\ E2 additionally satisfy
the UNDIRECTED capacity constraints when K = K;r Hence with Ey N Ey =0 and Kg UKG =0
the theorem holds for CSg".

i) E1NE2: Fore € E1NE; and k € K& we define the points (26), (27) and (28) as in the proof
of Theorem 4.12 and conclude that

—ry" =3, ry% =4 and B, = g(c—r) Ve € By NEy k€ K.

To see that v, =~* =0 Vk € Kg UK modify the point in (26) by first increasing flows on
[7, e™ and then increasing flows on e™, e~. (This is not possible in the UNDIRECTED model.)

ii) E1 NE2 : We can assume that Kg =0. Letec€c EyNEyand k € K;‘ By defining vf as in
(29) and with the same arguments it can be shown that

Vo =0Vke K& Kg and v, =" =% Vi, ky € K.

Modifying p by deleting one unit of capacity on [ and installing one unit of capacity on
e € E1 N E; gives a point p. on the face F' as in the proof of Theorem 4.12. If K¢ = () we can
conclude —r'yf, =03 Vk € K. and 8, = cg Ve € Ey N E; in a similar way. Else if Kg # ()
we also have to reroute flow on [~ and e~ for commodities in Kg. We can assume d > d~
and d > ¢ by assumption. It follows that a rerouting can be done in such a way that flow for
k € Kg is still positive on [~ and that the capacity for e~ is not saturated. If in this case
O, or ok " > 0 denote the rerouted flows on (7,17, e", e for k € K, then p. can be

written as

Pei=p—bitbe— Y Pigl— Y olgl+ Y, ehgbi+ D> gt + Y ohgh
keK Y keEKg keKE keKE keEKg

with

S ohon Yoehime Yogbcemrmd Xk - Y <

keKE keKE keKE keK keEK
implying
Bn—B+B.+(c—me-+ »_ PEak =x
keKg
We can decrease flow on [~ and increase it on e~ which gives ”yf, = 0 Vk € Kg and thus

—7“75, =0 Vk e K;r and 8, = ¢8 Ve € Ey N By as above.

T
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iii) E1\E2 : For e € E1\E> we construct the point g as in the proof Theorem 4.12 but we also
have to reroute flow for Kg:

Ge ::p_bl+be_ Z spkgl]ir - Z QPkglk* + Z spkger—i— Z SOkg§7

keK keEKZ keK keEKZ

with EkeK; % =7 and Ekng ©* < r. We conclude

Bn—=B+B.+ > ok + Y o =nx (35)

keK keEKg

For k € K add an e-flow to e™ and e~ to conclude that 7§+ = —75, Vke K. If forall k€ K
we can either show %, =0 or v*. = 0 we conclude 8. = 3 Ve € E1\E; by using (35).

By assumption Ey # (). First suppose that there is € in E; N F5. Modify g, by installing
one unit of capacity on € and sending a flow of c on e* and e~ for a commodity k € K;,
which again gives a point on F. Now decrease flow on ' and increase it on e¥ by e. Hence

v =0 Vk € K;r Having done so simultaneously increasing flow on et and e~ gives
”yg =0 Vk € Kg UK}. Finally suppose that there is € in £y N E». For k € K;r consider the
vector

p+(c— T)gzk+ + bz + be + ngf + T9§+

Simultaneously increasing flow on [~ and on e for any commodity gives ”yé& =0VkeK.

Plugging in all coefficients in (24) gives a multiple of (11) as in the proof of Theorem 4.12. O

A.3 Proof of Theorem 4.15

+
Proof. Necessity has been proven in Lemma 4.10. We show sufficiency here. If £y = () and d?s <ec,
then (13) reduces to the cutset inequality z(Es) > 1 which is facet-defining for CSY% (CS%") if
|Es| =1 (see Theorem 4.11). If E; = (), then (13) reduces to z(Eg) > n%&, which is facet-defining

+ —
if |[Eg|=1or d?s > ¢ (see Theorem 4.11). For the rest of the proof we can assume that Eq, Ey # 0.
For Q = K; we define the face

F:= {(f, x) € CSY (CSY™) : (f,z) satisfies (13) with equality}

Given e € Eg let b, denote the incidence vector of the design variable of e and let g§+,g§, be the

K <c
Ky K& K& TR

and set d := dg®, n:=mn"s, r:=r"s and € > 0 small enough. Choose !l € F; and [ € E;. We

construct a point p on the face F' by installing n capacity units on the link [ and by using this link
to satisfy all demands. The point p is given by

p=nb+ Y digh + Y digl.
keK Y keK

unit vectors for the flow variables for commodity k£ € K of e in both directions. Suppose r

Use ¢ — d = ¢ — r to verify that p is on the face. Considering p 4 b; we conclude §) # F # CS%. Tt
remains to show that F is inclusion-wise maximal. Choose a facet F of CS? with F' C F and let F
be defined by (24). We may add multiples of the | K| flow conservation constraint to (24). Therefore
we assume that ”yf, =0forall k€ K w.l.o.g.. Set 3 := (3, and B := B;. The point p lies on F C F,

hence
B+ > diafi+ Y dbaf =n (36)
keK{ keK
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Now we define a point p. for all e € Eg the following way. We modify p by deleting one unit of
capacity on [ and installing one unit of capacity on e € EFg. We decrease flow for K;r on [t by a
total of  and increase it by the same amount on e*. Some flow for K is also rerouted now using
e~. This can be done in such a way that flow is positive on e* for all k € K;f, that flow is positive
on e~ for all k € K¢, and that the capacity on e is not saturated. Note that p. € F' for e € Ey and
also for e € Ey. If ©* > 0 denotes the rerouted flow for commodity k, then p. can be written as

Per=p—bi+be— Y gl — D> gl + D gk + Y gk,
keKF kEKY keKF kEKY

with ZkeK; ‘Pkglk+ = Ekng sﬁkgf+ =rand ZkeK; ‘Pkglk— = Zkng ‘Pkgf— <r. Fromp. € FFCF
follows

Bn—=B+B.+ > (5= + D (s ="+ DY o+ DY b =m (37)

keK{ keKg keK Y keEKg
Modifying p. by simultaneously increasing flow on e and e~ by ¢ for every commodity gives
vk =A% Veec Es, ke K.

Now consider the disjoint partition Eg := E; U E;. We calculate the coefficients ﬁe,7§+,7§, for e
in each of the two sets by constructing new points from p. All these points are on the face F' for
CS?. If K = K;, then all the points additionally satisfy UNDIRECTED capacity constraints. Thus
with K5 U K% = 0 the theorem holds for CS§".

i) E;: Fore € By and k € K;r consider the point

v = pe + b+ (¢ = 1)gk + (¢ —7)gp

k

" as well as p. satisfy (24) and because Wlli = 0 we conclude (3 + (c — r)véﬂ =0, and

Since v
thus

’Yff = —’Yf+ = % Ve € El,k S K; (38)

We modify v* by increasing flow on e~ and [T for commodities in K s U KY. (This is not
possible in the UNDIRECTED model.)

vk = —4% =0 Ve € Ey,k € Kg UK. The equations (36) and (37) (with e € Ey) now
reduce to _
p

=n and On—pP—-—d——+0F. =7
c—r

pn—d
c—r
which implies 8. = 8 Ve € Fj.
ii) Ey:Fore€ Ey and k € K;‘ define the point
wh =p+ b+ (c—7)gk + (c—7r)g~

on the face F. Since w® satisfies (24) and because of (38), we get

B+ Be—(d+c—r) —(c—r)yE = (39)

For commodities in Kg U K2 increasing flow on [~ and e* gives
’yff = —’yéﬁ :”yl’i =0Vee€ Ey,ke Kg UK.

For a fixed commodity k € K ;r modify w” by decreasing flow for k on I+, e~ and simultaneously
increasing flow on [*, e~ for an arbitrary commodity k* € K;L Hence
Yo 1= vfi = 75, = —7§i = —7§+ Ve € B,k € K.
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The equation (37) with e € E; now reduces to

pn—pB—(d—r)

+08. —ry.=m (40)

cC—rTr

Evaluating (40) for e = [ and comparing with (36) gives

B

c—7T

6=

since §; = 3 and —y;, = 7% = 0 for all k € K. Then from (39) and (40) follows that
ry, = (r —¢)y, But ¢ > r > 0 and thus

Vo= =k =0Vee By, ke K.
Now comparing (39) with (36) results in
66 = B Ve € El.

Plugging in all coefficients in (24) we arrive at:
B

Do) + BoBr) + L <5 () — 2 5 (B =

c—7T cC—7T c—7T

which by multiplying with <* reduces to (13) (with Q@ = K¢). We have shown that the hyperplane

(24) is a multiple of (13) plus a linear combination of flow conservation constraints. It follows that
F = F. This concludes the proof. O
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