
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ARIE M.C.A. KOSTER

ADRIAN ZYMOLKA

MANUEL KUTSCHKA

Algorithms to Separate
{0, 1

2
}-Chvátal-Gomory Cuts

ZIB-Report 07–10 (May 2007)

Algorithms to Separate {0, 1
2
}-Chvátal-Gomory Cuts

Arie M.C.A. Koster∗ Adrian Zymolka§ Manuel Kutschka¶

Abstract

Chvátal-Gomory cuts are among the most well-known classes of cutting planes for
general integer linear programs (ILPs). In case the constraint multipliers are either 0 or
1

2
, such cuts are known as {0, 1

2
}-cuts. It has been proven by Caprara and Fischetti [8]

that separation of {0, 1

2
}-cuts is NP-hard.

In this paper, we study ways to separate {0, 1

2
}-cuts effectively in practice. We

propose a range of preprocessing rules to reduce the size of the separation problem. The
core of the preprocessing builds a Gaussian elimination-like procedure. To separate the
most violated {0, 1

2
}-cut, we formulate the (reduced) problem as integer linear program.

Some simple heuristic separation routines complete the algorithmic framework.
Computational experiments on benchmark instances show that the combination of

preprocessing with exact and/or heuristic separation is a very vital idea to generate
strong generic cutting planes for integer linear programs and to reduce the overall
computation times of state-of-the-art ILP-solvers.

1 Introduction

Each pure integer linear program (ILP) can be written in its standard minimization form














min cT x
s.t. Ax ≤ b

x ≥ 0
x ∈ Z

n

(1)

with integer matrix A ∈ Z
m×n, an integer right hand side b ∈ Z

m, and arbitrary objective
values c ∈ R

n (here m is the number of rows and n the number of columns of A). Objectives
to be maximized can be rewritten as minimization problem by multiplying the coefficients
by -1. Similarly, ≥ constraints are multiplied by -1 to obtain a ≤ constraint. Upper bound
constraints for single variables are included in the coefficient matrix.

We assume without loss of generality that each row in A has relatively prime coefficients,
since otherwise the row can be simplified by dividing all coefficients and the right hand side
with the greatest common divisor among the coefficients (after division, a fractional right
hand side can be rounded down). Associated with the program (1), we define the integer

∗University of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP), Coventry CV4
7AL, United Kingdom, E-mail: Arie.Koster@wbs.ac.uk

§atesio GmbH, Sophie-Taeuber-Arp-Weg 27, D-12205 Berlin, Germany. E-mail: zymolka@atesio.de
¶Zuse Institute Berlin (ZIB), Takustraße 7, D-14195 Berlin, Germany. E-mail: kutschka@zib.de

Keywords: {0,

1

2
}-Chvátal-Gomory cuts, separation algorithms, integer programming

Mathematics Subject Classification (2000): 90C10, 90C57, 65K05

1

solution set X = {x ∈ Z
n | Ax ≤ b, x ≥ 0}, its convex hull polyhedron PIP = conv(X) and

the linear relaxation polyhedron PLP = {x ∈ R
n | Ax ≤ b, x ≥ 0}.

Given a system Ax ≤ b, a Chvátal-Gomory (CG) cut is defined by

⌊

uT A
⌋

x ≤
⌊

uT b
⌋

(2)

with u ≥ 0. It is easy to show that undominated CG cuts have u ∈ [0, 1)m. By the integrality
of x ∈ X, (2) is valid for PIP . Gomory [16, 17] showed that if PIP 6= PLP , there exists for
every fractional vertex x∗ ∈ PLP a CG cut (2) that is violated, i.e.,

⌊

uT A
⌋

x∗ >
⌊

uT b
⌋

[11].
In fact, by iteratively extending the system (1) with all possible CG cuts, we obtain the
integral polyhedron after a finite number of steps (see Gomory [16, 17] for polytopes and
Schrijver [22] for polyhedrons).

Caprara and Fischetti [8] introduced {0, 1
2}-cuts for those CG cuts that are derived by

u ∈ {0, 1
2}

m. For several combinatorial optimization problems it is known that problem-
specific classes of facet-defining inequalities are {0, 1

2}-cuts with particular properties, e.g.,
the blossom inequalities of the matching polytope (describing this polytope completely) [12],
(odd-valued) odd hole inequalities of the stable (multi-)set polytope [19, 20, 21], or the
Möbius ladder inequalities of the linear ordering polytope [13]. Like Gomory showed for
general CG cuts, it has recently been shown by Gentile et al. [15] that iteratively extend-
ing the system (1) by all possible {0, 1

2}-cuts yields a complete description of the integer
polytopes in a finite number of steps as well.

For {0, 1
2}-cuts, we consider the following separation problem:

{0, 1
2}-sep

Given: The program (1) and a fractional solution x∗ ∈ PLP .
Find: A weight vector u ∈ {0, 1

2}
m such that

⌊

uT A
⌋

x∗ >
⌊

uT b
⌋

or a proof that
none exists.

Theorem 1 (Caprara and Fischetti [8]) {0, 1
2}-sep is NP-complete.

Consequently, Caprara and Fischetti [8] concentrate on polynomial-time solvable cases of
{0, 1

2}-sep. In particular, they show that if A is an integer matrix with at most two odd
coefficients per row, {0, 1

2}-sep is polynomial-time solvable. They propose therefore to
weaken A to a matrix with the described property. In Andreello et al. [4], a computational
study is presented to reveal the strength of this heuristic approach for {0, 1

2}-sep. They
restrict cuts to have

⌊

uT A
⌋

= uT A, i.e., a rounding of the left hand side is avoided. Caprara
and Fischetti [9] propose a number of reduction rules to limit the size of the separation
problem.

Contribution. This paper reports on our study to separate general {0, 1
2}-cuts effectively,

despite its NP-completeness. We recall that the 0 and 1
2 coefficients of the vector u allow to

reduce the size of {0, 1
2}-sep considerably by an extended set of preprocessing steps, ranging

from obvious observations to a sophisticated procedure based on Gaussian elimination to
eliminate rows and columns. After preprocessing, violated {0, 1

2}-cuts can often be indicated
directly as single rows of the reduced problem. Our computational experiments show that
this is a very vital idea generating many violated {0, 1

2}-cuts with small effort.
Independently from the preprocessing, an ILP is formulated to find the most violated

{0, 1
2}-cut. This auxiliary ILP can be solved either for the original separation problem or

2

the reduced one. In a computational study we show that the exact separation can be sped
up by a factor of at least 10 if preprocessing is performed first.

The effect of the separation of {0, 1
2}-cuts on the performance of state-of-the-art ILP

solvers is documented in a further computational study. It shows that by exact separation
the number of branch&cut nodes is reduced by 20% on average at the cost of increased
overall computation times due to the auxiliary ILP that has to be solved. Moreover, it is
unclear whether the most violated {0, 1

2}-cut is also the one that strengthens the formula-
tion the most. Therefore, we additionally propose a heuristic routine (after preprocessing)
to find violated {0, 1

2}-cuts that are likely to strengthen the formulation. Computational
experiments show that in such a way the overall computation times can be sped up by 20%
for moderately sized instances.

Recently, Fischetti and Lodi [14] followed independently a similar integer programming
approach as to optimize over the first Chvátal closure, i.e., the polytope derived by adding
all inequalities (2) with u ∈ [0, 1)m. In contrast to their approach, we can exploit the
addressed preprocessing techniques for {0, 1

2}-sep as to reduce the problem size. By this,
we can optimize more effectively over the first Chvátal closure in case the {0, 1

2}-cuts are
the only undominated CG cuts, e.g., for the matching polytope.

Outline. The rest of the paper is organized as follow. This section is completed with some
further notation used in this paper. Section 2 is dedicated to preprocessing for {0, 1

2}-sep,
whereas exact and heuristic separation algorithms for {0, 1

2}-sep are presented in Section 3.
In Section 4 we report on the results of the computational studies on the effectiveness of the
developed ideas and algorithms. The paper is closed with concluding remarks in Section 5.

Notation. Let ej denote a unit vector of appropriate size with j-th coefficient equal to
one, whereas 1 (0) denotes the all one (zero) vector and 1lI(i) the indicator function being
1 if i ∈ I and 0 otherwise. With modulo applied component-wise, we define Ā = A mod 2
and b̄ = b mod 2. Moreover, for a fractional solution x∗ ∈ PLP , we set s = b − Ax∗ ≥ 0 as
slack vector. The violation of (2) for a vector u ∈ {0, 1

2}
m and fractional solution x∗ ∈ PLP

is denoted by z(u, x∗) :=
⌊

uT A
⌋

x∗ −
⌊

uT b
⌋

.

2 Preprocessing {0, 1
2
}-sep

To find a separating {0, 1
2}-cut, we seek for a weight vector u such that z(u, x∗) > 0. The

next lemma restates this task.

Lemma 2 Let x∗ ∈ PLP be a fractional solution. There exists a vector u ∈ {0, 1
2}

m such
that z(u, x∗) > 0 if and only if there exists a binary vector v ∈ {0, 1}m such that vT b̄ is odd
and

vT s + (vT Ā mod 2)x∗ < 1 (3)

holds.

Proof: The violation z(u, x∗) can be rewritten as follows:

z(u, x∗) =
⌊

uT A
⌋

x∗ −
⌊

uT b
⌋

= 1
2

(

(2u)T b mod 2
)

− uT s − 1
2

(

(2u)T A mod 2
)

x∗

v:=2u
= 1

2

(

(vT b̄ mod 2) − vT s − (vT Ā mod 2)x∗
)

3

Since Ā, b̄, s, and v = 2u are all non-negative, the only way to obtain a positive violation
z(u, x∗) consists in vT b̄ mod 2 ≡ 1 and vT s + (vT Ā mod 2)x∗ < vT b̄ mod 2 ≡ 1. �

Note that both conditions in Lemma 2 are independent of the actual values of coefficients
and right hand sides, but take into account only their parities, i.e., whether they are even or
odd. The vector v indicates the original inequalities to combine with weight 1

2 such that the
right hand side is in fact rounded down, and this strengthening (by 1

2) is not compensated
by the collected slacks together with the necessary rounding of the fractional left hand side
coefficients.

In order to simplify the restated task, the system (Ā, b̄, s) and x∗ can be preprocessed by
a series of transformations and problem size reductions, see also Caprara and Fischetti [9].
The following observations are helpful in this regard:

Lemma 3 The reductions below do not influence the set of undominated {0, 1
2}-cuts for the

original system (and can be assumed to be carried out before for the follow ups):

(i) All columns in Ā corresponding to variables x∗
i = 0 can be removed.

(ii) Zero rows in (Ā, b̄) can be removed.

(iii) Zero columns in Ā can be removed.

(iv) Identical columns in Ā can be replaced by a single representative with associated vari-
able value as sum of the merged variables.

(v) Any unit vector column āi = ej , 1 ≤ j ≤ m, in Ā can be removed provided that x∗
i is

added to the slack sj of row j.

(vi) Any row 1 ≤ j ≤ m with slack sj ≥ 1 can be removed.

(vii) Rows identical in (Ā, b̄) can be eliminated except for one with smallest slack value.

Proof:

(i) Zero variable values do not contribute to the left hand side of (3).

(ii) Though originally Ā does not contain zero rows due to the assumption of relatively
prime coefficients, after any (combination) of the other preprocessing steps, zero rows
can appear in (Ā, b̄). Such rows have neither impact on the value vT b̄ nor on the value
of vT Ā, only the total slack is increased. Hence, such rows can be left out of further
consideration.

(iii) The corresponding variable has only even coefficients, hence left hand side rounding
will never occur.

(iv) Either all or none variables of identical columns will have to be rounded on the left
hand side.

(v) Whenever v indicates to include inequality j, the i-th variable’s coefficient on the left
hand side will have to be rounded down (after division by two) since the inequality
holds the only odd coefficient for that variable. So, x∗

i adds to the left hand side of
(3) whenever the slack sj does.

(vi) Setting vj = 1 where sj ≥ 1 violates directly condition (3).

4

(vii) Whenever an indicated cut involves one of the eliminated inequalities, the latter can
be replaced in the generation by the associated one kept in the system, yielding a cut
with at least the same violation value.

�

As a result, we obtain a reduced system which is equivalent for the separation. For
notational convenience, we continue to use m and n for the (reduced) numbers of rows
and columns, respectively. Moreover, we assume throughout the sequel that for any arising
interim system, all of these reductions are applied as well.

So far, any row of the system (Ā, b̄, s) represents a single original inequality. A further
reduction in problem size can be obtained by row combinations according to rules specified
below. For this, we associate with each row j of (Ā, b̄, s) an index set Rj holding the indices
of original inequalities currently combined for this row. These index sets are initialized by
Rj = {j}.

We consider a basic operation performed on the rows of (Ā, b̄, s): the addition of one
row to another one, where the coefficients of Ā and b̄ are added in modulo 2 arithmetic,
the coefficients of s in normal arithmetic, and the symmetric difference is taken for the
associated index sets. So, adding row i to row j gives a new row j with the following values:

ājk := āik + ājk mod 2 ∀k, b̄j := b̄i + b̄j mod 2, sj := si +sj, and Rj := Ri△Rj,

where X △ Y = (X ∪ Y) \ (X ∩ Y) for sets X,Y .
Using this operation, the system (Ā, b̄, s) can be further transformed and might then

allow for additional application of reduction rules from Lemma 3. Except for this, we are
particularly interested in rows with zero coefficients and non-zero right hand side.

Lemma 4 Let j be the index of a zero row in Ā with b̄j = 1. If sj < 1, then the weight
vector u defined by ui = 1

2 for all i ∈ Rj and 0 otherwise, defines a violated {0, 1
2}-cut on

the original system (A, b, s)

Proof: Let v = ej . Then vT b̄ = 1 and the left hand side of (3) equals sj < 1, and thus
by Lemma 2 a violated {0, 1

2}-cut inequality is found. By construction, the index set Rj

defines exactly the original inequalities to be combined. �

Notice that rows with slack zero have a special property: Adding such a row i twice to
any other row j results in the original row j. Rows with slack zero play a key role in the
next reduction rule.

Proposition 5 Let i be the index of a row and k the index of a column of Ā such that
āik = 1 and si = 0. Then column k can be removed from Ā provided that row i is added to
all other rows j with ājk = 1 and the slack of row i is set to si := x∗

k.

Proof: Let i be the index of a row and k the index of a column of Ā such that āik = 1 and
si = 0. Further let J := { j : ājk = 1}\{i}. Consider a cut which is generated by combining
all rows with indices j ∈ I ⊆ {1, ...m} of the system (Ā, b̄) such that w.l.o.g. |I ∩ J | = q.
W.l.o.g. we assume Rj = {j} for all j ∈ I. This gives R = I for the symmetric difference R

5

of all index sets Rj and for the violation z(R,x∗) holds

z(R,x∗) =
∑

j∈I

sj +
∑

ℓ

[(
∑

j∈I

ājℓ) mod 2] x∗
ℓ

=
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I

ājℓ) mod 2] x∗
ℓ + [(

∑

j∈I∩J

ājk + 1lI(i)āik) mod 2] x∗
k

=
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I

ājℓ) mod 2] x∗
ℓ + [(q + 1lI(i)) mod 2] x∗

k

Now consider the reduced system (Ā′, b̄′) which results by adding the row i to all rows j ∈ J .
Thus ā′jℓ = ājℓ if j ∈ I \ J and ā′jℓ = ājℓ + āiℓ for i ∈ I ∩ J . Let R′

j denote the updated
index sets, s′j the updated slack values and R′ the associated symmetric difference for row
set I ′. The violation is z(R′, x∗) =

∑

j∈I′\(J∪{i}) s′j +
∑

ℓ 6=k [(
∑

j∈I′ ā
′
jℓ)mod 2] x∗

ℓ +1lI′(i) s′i.
In addition it follows that

∑

j∈I′

ā′jℓ =
∑

j∈I′\(J∪{i})

ā′jℓ +
∑

j∈J∩I′

ā′jℓ + 1lI′(i)ā
′
iℓ (4)

=
∑

j∈I′\(J∪{i})

ājℓ +
∑

j∈J∩I′

ājℓ + āiℓ + 1lI′(i)āiℓ (5)

=
∑

j∈I′\{i}

ājℓ + (q + 1lI′(i))āiℓ. (6)

We now consider three cases: First, q is even. We set I ′ = I. Then the following holds:

z(R′, x∗) =
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I

ājℓ) mod 2] x∗
ℓ + 1lI(i) x∗

k = z(R,x∗)

and hence the same violated inequalities can be found.
Second, q is odd, i ∈ I. Then we set I ′ = I \ {i} and consider the violation:

z(R′, x∗) =
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I′

ā′jℓ) mod 2] x∗
ℓ

=
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I\{i}

ājℓ + qāil) mod 2] x∗
ℓ = z(R,x∗)

Third, q is odd, i 6∈ I. Then we set I ′ = I ∪ {i}. Then the following holds:

z(R′, x∗) =
∑

j∈I

sj +
∑

ℓ 6=k

[(
∑

j∈I

ā′jℓ + ā′il) mod 2] x∗
ℓ + s′i

=
∑

j∈I\{i}

sj +
∑

ℓ 6=k

[(
∑

j∈I

ājℓ + (q + 1) āil) mod 2] x∗
ℓ + x∗

k = z(R,x∗)

For all cases we have shown that given an index set I of the system (Ā, b̄), we can select
an index set I ′ of the reduced system (Ā′, b̄′) that generates a cut with exactly the same
violation, and vice-versa. �

In case a zero row in Ā is constructed by (repeated) application of Proposition 5, we
either have a row with b̄j = 0 and Lemma 3 (ii) can be applied to remove the row as well,
or b̄j = 1, and, by Lemma 4, the row describes a {0, 1

2}-cut with violation 1 − sj. If in

6

addition sj = 0, the violation is maximal. By Lemma 2 on the other hand, a {0, 1
2}-cut

with maximal violation can be only combined from rows with slack zero and parity sum
zero (modulo 2) for all columns k with x∗

k > 0. Since the above procedure can be applied
as long as there are rows with slack zero, it provides a polynomial-time exact algorithm for
maximally violated {0, 1

2}-cuts. Caprara et al. [10] observed the same in the more general
context of mod-k-cuts.

Further, a zero row j in Ā with b̄j = 1 and sj = 0 can be very helpful in generating
further violated {0, 1

2}-cuts: Any other row i with b̄i = 0 and si < 1 can be turned into
a violated {0, 1

2}-cut by adding row j. This way, a zero row with right hand side 1 is
generated, whereas the slack remains the same. Only in case Ri ∩ Rj = ∅, the {0, 1

2}-cut is
dominated by the one identified by row j. Therefore if such a row j exists, the condition
uT b = 1 can be neglected in the search for further violated cuts.

Corollary 6 Let i be the index of a row and k the index of a column of Ā such that āik = 1,
si = 0, and x∗

k ≥ 1. Then both row i and column k can be removed from Ā provided that
row i is added to all other rows j with ājk = 1.

Proof: After application of Proposition 5, si = x∗
k > 1 and thus Lemma 3 (vi) can be

applied to remove row i. �

The above holds in particular for tight upper bound constraints from the original system.
If b̄i = 0, only the index sets Rj have to be updated. If b̄i = 1, b̄j have to be adapted
additionally.

Corollary 6 indicates that it is benefical to perform Proposition 5 on columns with
large x∗

k. Altogether, the combination of Lemma 3 and Proposition 5 provides an algorith-
mic framework for preprocessing the system (Ā, b̄, s) and generation of maximally violated
{0, 1

2}-cuts.

3 Separation algorithms

With or without preprocessing, the separation problem {0, 1
2}-sep can be described by a

system (Ā, b̄, s) and a fractional solution x∗ ∈ PLP . To find the most violated {0, 1
2}-cut,

we first formulate the problem as integer linear program. This ILP allows for the exact
separation of {0, 1

2}-cuts. Next, we present some ways to advance the solution of such an
auxiliary ILP as well as an heuristic routine to find violated cuts fast.

3.1 Exact separation

The exact separation problem can be modeled by an auxiliary integer linear program which
maximizes the violation. By Lemma 2, {0, 1

2}-sep can be restated as the search for a binary
weight vector v ∈ {0, 1}m such that vT b̄ mod 2 = 1 and (3) is satisfied. These weights are
used as binary variables vi in the formulation.

Condition (3) requires to determine uT Ā mod 2 ∈ {0, 1}n. To this end, the variables
yi ∈ {0, 1} for all i = 1, . . . , n are introduced to express whether the i-th variable’s coefficient
becomes odd in the indicated inequality sum or not. To model the modulo 2 computations,
we further need auxiliary integer variables r = (ri)i=1,...,n ∈ Z

n
+ for all columns i = 1, . . . , n,

7

as well as an additional q ∈ Z+ for the right hand side. The separation problem then reads:







































ẑ = min sT v + (x∗)T y
s.t. b̄T v − 2q = 1

ĀT v − 2r − y = 0
v ∈ {0, 1}m

y ∈ {0, 1}n

r ∈ Z
n
+

q ∈ Z+

(7)

The optimum value ẑ of (7) indicates whether a violated cut has been found or not. If
ẑ ≥ 1, this is not the case. If 0 ≤ ẑ < 1, 1 − ẑ equals twice the violation z(u, x∗) of the
cut generated by combining the original inequalities which are obtained from symmetric
difference of those sets Rj with vj = 1 in the optimum solution.

To guide the search to highly violated {0, 1
2}-cuts, we can add an inequality

sT v + (x∗)T y ≤ 1 − ε (8)

to (7) where ε ∈ (0, 1]. In this way only cuts with a violation of at least 1
2ε are found.

3.2 Heuristic search

After the above described reductions, the auxiliary ILP might nevertheless stay large for
larger ILPs (1). Hence the search for violated {0, 1

2}-cuts might still be time-consuming. As
a faster alternative, we study combinatorial search heuristics which examine the reduced
system (Ā, b̄) for violated cuts.

A simple approach is to enumerate all possible combinations of k or less rows of (Ā, b̄)
that yield a violated {0, 1

2}-cut with 0 < k ≤ m: First, we check if any single row of (Ā, b̄)
results in a violated {0, 1

2}-cut. If none of them is violated, we test all combinations of two
rows for violation. This process is continued to combinations of k rows, if all combinations
up to k − 1 rows are not violated or the number of detected violated cuts does not exceed
a given limit.

4 Computational results

Framework. We implemented our preprocessing and separation algorithms as additional
separator within the branch&cut framework SCIP v0.90 [1, 2] using CPLEX 10.01 [18] as
underlying LP solver. All of SCIP’s standard modules (e.g. separators, heuristics) are kept
if not stated differently. SCIP’s parameters are set to their default values except for a global
time limit of 1 hour per instance and avoidance of restarts during solving.

If not stated differently, our separator is called only in the root node like SCIP’s stan-
dard separators. To investigate the added value of {0, 1

2}-cut separation more accurately
our separator is called before SCIP’s separators (Gomory, Strong Chvátal-Gomory, Com-
plemented MIR [2]) and cut generating constraint handlers (knapsack, linear). At default,
SCIP’s separators and constraint handlers are called to separate cuts if and only if our
separator does not find a violated cut anymore.

Instead of adding violated {0, 1
2}-cuts directly to the LP, they are first stored in a pool

from which only the best cuts are selected and added to the LP. We tested several methods
to rate the cuts in the pool but we restrict to two methods in the following. The first one

8

is to rate cuts by their violation (i.e., cuts with large violation are better than those with
small violation). The second one is similar: Cuts are rated by non-increasing efficacy which
is defined as its violation divided by the Euclidian norm of its coefficients (i.e., cuts are
better the higher the “average” violation is). The best up to p cuts are transferred to SCIP
(with p given as input parameter) which uses further criteria like the parallelism to the
objective and other cuts to select the best among all violated inequalities found.

All computations are done on a computer with 3.6 Ghz CPU, 3.7 GB RAM and Linux
as operating system. Our computational study includes all pure integer (i.e., non-mixed)
instances from MIPLIB 3.0 [6] and MIPLIB 2003 [3] as well as the 2-matching-relaxations
of TSP instances from the TSPLIB [5] that also have been studied in [14].

Speed-up by preprocessing. We implemented the preprocessing methods suggested
in Section 2 in the following order: Removing columns whose corresponding variables (a)
are zero in the current LP solution (Lemma 3 (i)) or (b) have a tight variable bound
constraint, (c) removing rows with slack at least 1 (Lemma 3 (vi)), (d) removing columns
by repeatedly applying Proposition 5, and (e) removing unit vector columns (Lemma 3 (v)).
Next we check for empty rows of the preprocessed matrix with a nonzero right hand side
(i.e., b̄j = 1). Such a row directly yields a {0, 1

2}-cut. It is (f) deleted from the matrix and
if the corresponding cut is violated with violation at least ε, it is added to the pool because
every further combination of rows containing such a row cannot yield a stronger cut. Finally,
(g) we erase identical rows except for one with the lowest slack value (Lemma 3 (vii)).

Whenever a zero column, a zero row, or a row with slack at least 1 results from a
preprocessing step, it is removed from (Ā, b̄) immediately (e.g., zero rows that result from
Proposition 5 are removed from (Ā, b̄) and yield a reduction in the number of rows).

To test the effect of preprocessing, we ran all instances with separation of {0, 1
2}-cuts at

all nodes of the branch&cut tree without a minimum violation (i.e., ε = 0). The steps (a)-(c)
reduce the size of Ā significantly, e.g., considering the MIPLIB instances, on average 83.2%
in number of rows (ranging from 46.96% (stein27) to 99.9% (nw04)) and can be applied
without greater effort. Considering the 2-matching relaxations of the TSPLIB instances this
reduction is even more effective, namely 99.5% of the size of Ā is eliminated (on average).
Hence, these steps should certainly be applied and we focus on the further reductions.
Figure 1 shows the effect of the steps (d), (e), (f) and (g), using the number of rows as a
measure for the problem size. All reduction values are given relative to the number of rows
of Ā after applying steps (a)-(c) and are averaged over all times they are applied within the
branch&cut. Hence a value of 0% means that no further reduction beside the steps (a)-(c)
can be achieved and a value of 100% corresponds to a reduction resulting in an empty pair
(Ā, b̄). The instances are sorted according to non-decreasing total reduction. Figure 1 shows
that on average a reduction of about 14.6% of the remaining size (after applying (a)-(c))
is achieved by applying Proposition 5 (step (d)), 1.26% by removing unit vector columns
(step (e)), 1.5% by removing empty rows that yield a violated cut (see above) and finally
40.7% can be achieved by removing identical rows which arise from applying the previous
preprocessing methods (in particular within step (d) and (e)).

Moreover the total reduction in number of rows of (Ā, b̄) (including the steps (a)-(c))
is increased to 95.5% on average (ranging from 70.0% (stein27) to 99.9% (air03)) for the
MIPLIB instances, respectively to 99.9% on average for the 2-matching relaxation of the
TSPLIB instances.

This reduction of almost 100% of the size of Ā yields an enormous speed-up in the

9

(a) MIPLIB instances (b) TSPLIB instances

Figure 1: Efficiency of preprocessing: reduction percentage in number of rows averaged over
all applications of the separator

(a) MIPLIB instances (b) TSPLIB instances

Figure 2: Efficiency of preprocessing: speed-up in solving the auxiliary ILP

solving time of the auxiliary ILP (7) as shown in Figure 2. Here the CPU times needed
to solve (7) with and without preprocessing (i.e., steps (d) to (g)) are displayed, averaged
over all auxiliary ILPs within the branch&cut with a time limit of 10s (i.e., no further
nodes of the auxiliary branch&cut are solved as soon as the time limit is exceeded). Note
that solving times are given in seconds and we use a logarithmic scale to display them.
The instances are sorted according non-decreasing average solving time of the auxiliary ILP
without preprocessing.

Figure 2 shows that applying the preprocessing steps (d) to (g) reduces the solving time
of the auxiliary ILP significantly. Assuming a solving time of 10s for those instances that
reach the time limit, for 33% of the MIPLIB instances solving the auxiliary ILP can be sped
up by a factor of at least 100. On average over all MIPLIB instances this factor exceeds 38.
Considering the 2-matching relaxations, the solving time is sped up by a factor of at least
30 for all instances and exceeds 270 on average. Note that increasing the time limit would
yield even higher speed-up factors.

10

Fischetti&Lodi SCIP default {0, 1
2}-cuts separator

name #nodes #cuts #nodes #cuts #nodes #cuts

a280 1 104 273 31 1 99
ch150 1 141 13 36 1 58
eil101 1 43 1 60 1 20
gil262 1 266 513 72 1 331
gr120 1 45 1 37 1 25
gr137 1 31 1 61 1 39
gr229 1 224 242 66 1 83

kroA200 1 84 1 99 1 86
kroB200 1 558 616 63 1 135
lin318 1 768 >25010 >44 1 209
pr124 1 320 1 84 1 76
pr144 1 78 1 85 1 41
pr226 1 901 1 110 1 145
rat195 1 237 194 46 1 127
ts225 1 857 2687 138 1 231

Table 1: Efficiency of {0, 1
2}-cuts separation on 2-matching problems

Effect of Separation. To identify the effect of {0, 1
2}-cut separation, two natural keys

values are available for comparison: the number of nodes of the branch&cut tree and the
overall CPU time. Since the 2-matching polytope is completely described by the model in-
equalities and all {0, 1

2}-cuts (in fact only the blossom inequalities suffice [12]), no branch-
ing is needed for these instances if the {0, 1

2}-cuts are separated exactly. Hence, for the
2-matching relaxations of TSP instances from the TSPLIB an additional value to compare
can be used: the number of cuts added to obtain an integral LP solution in the root of the
branch&cut tree. Fischetti and Lodi [14] separated for these instances the more general
Chvátal-Gomory cuts exactly. Therefore we compare three scenarios for these instances:
the results presented in the paper by Fischetti and Lodi [14], SCIP default (i.e., with its
standard separators and heuristics, etc.) and SCIP without its standard separators and
heuristics but with our {0, 1

2}-cut separation. To obtain as few {0, 1
2}-cuts as necessary

our separator adds only one cut per callback, namely the most-violated one. In order to
add {0, 1

2}-cuts to the LP until integrality is reached, we adjust some of SCIP’s parameters
(e.g., maximal number of consecutive separation rounds without improvement of objective
and integrality). The results are shown in Table 1. Compared to Fischetti and Lodi we are
able to solve 80% of the problems with less cuts. This suggests that often stronger cuts are
generated which probably can be explained by the fact that we are not restricted on those
cuts with uT A =

⌊

uT A
⌋

. Compared with SCIP default, we are able to solve the problems
with less cuts in about 40%, but SCIP needs more than one branch&cut node in more than
half the cases. In addition whenever it solves one of the problems in the root node, it needs
strictly more cuts than our separator (except for the pr226 instance).

Next, we investigate the added value of our {0, 1
2}-cut separator for general integer

programs. We consider the pure integer problems from MIBLIB that can be solved within
1 hour with SCIP’s default settings. We first compare on the number of branch&cut nodes
needed with and without {0, 1

2}-cut separation. For this, we use the following settings:
{0, 1

2}-cuts are separated exactly using the auxiliary ILP (7). The separator is called in

11

every node of the branch&cut tree up to a depth of 15. Note that not only violated cuts
obtained from the optimal solution of the auxiliary ILP, but also from earlier (non-optimal)
solutions are added to the pool. In addition, we apply a simple postprocessing: All single
rows whose corresponding variables are zero in the auxiliary ILP solutions (i.e., rows that
are not part of the most violated {0, 1

2}-cut yet) are checked. If one of these rows yields a
violated {0, 1

2}-cut, it is added to the pool as well. This way, the number of branch&cut
nodes needed to solve a problem can be reduced by 26% on average (ranging from a reduction
by 84% to an increase by 157%) at the cost of a higher overall solving time: an increase by
158% on average over all instances (primary induced by fast instances with solving times
of less than a minute). The results are shown in Figure 3. Details can be found in Table 2
in Appendix A.

Performance gain ILP solver. Since the computation of an optimal solution to the
auxiliary ILP (7) is time consuming and results in few violated cuts, such an approach is
not suitable for integration in general purpose ILP solvers. Therefore, we finally consider
three cases for a CPU time comparison:

(i) SCIP default

(ii) SCIP with our implementation as additional separator using the auxiliary ILP (7) to
separate {0, 1

2}-cuts exactly at the root only (cut&branch). Like in the test we used to
compare on the branch&cut nodes, not only violated cuts obtained from the optimal
solution of the auxiliary ILP, but also from earlier (non-optimal) solutions and from
single rows not part of the most violated {0, 1

2}-cut are added to the pool.

(iii) SCIP with our separator using the heuristic described in Section 3.2 to separate {0, 1
2}-

cuts at the root node only. Results of (ii) showed us that almost all added {0, 1
2}-

cuts are generated from a relative small number of rows of Ā: on average only 2
or less “preprocessed” rows. The “original” rows (i.e., rows in A) implied by the
preprocessing exceeds 10 on average and goes up to as high as 351 (mzzv11). Inspired
by this observation we studied several settings for k. Based on the results of this study
we set k = 1, i.e., we check all single rows of (Ā, b̄) if they yield a violated {0, 1

2}-cut.

Based on extensive experiments, we restrict in all cases on those {0, 1
2}-cuts with violation

greater than 0.35 (i.e., ε = 0.7 in (8)) to avoid the generation of many weak cuts. Hence not
all violated {0, 1

2}-cuts are separated. We add all violated {0, 1
2}-cuts from preprocessing to

the pool and additionally up to 100 violated {0, 1
2}-cuts found by the procedures described

in case (ii) respectively (iii). The p = 100 best (w.r.t. their efficacy) cuts of the pool are
added to SCIP which decides if they enter the LP (as it does for all its standard separators,
as well).

Figure 4 shows the relative solving times of cases (ii) and (iii) w.r.t. case (i), e.g., a value
of 0.8 means that solving the instance takes only 80% time compared to SCIP default (case
(i)). There are two bars for each instance, the first one refers to case (ii), the second one
to case (iii). Each bar is divided into two parts: the lower black part shows the fraction of
the solving time spent by SCIP methods and the upper grey part shows the fraction spent
within the {0, 1

2}-cuts separator. The black boxes refer to the second y-axis on the right
hand side which displays the absolute solving times of SCIP default (case (i)) in seconds,
according to which the instances are non-decreasingly sorted. Details of the computations
can be found in Table 2 in Appendix A.

12

Figure 3: Efficiency of separation: ratio of branch&cut nodes without and with {0, 1
2}-cuts

[bars] and absolute numbers without [line with markers]

Figure 4: Efficiency of separation: quotient of solving times of cases (ii) and (iii) w.r.t. case
(i) with a split in SCIP and separation time [bars], as well as absolute solving time of case
(i) [line with markers]

From Figure 4, we conclude that our heuristic approach (case (iii)) performs mostly
faster than the exact approach (case (ii)) (with a few exceptions like mzzv11 or fast0507).
In particular, the more difficult instances in case (i) with solving times of more than 10
seconds (i.e., instances air03 and on) can often be solved faster. A slowed-down instance
like nw04 might be sped up by a faster implementation of our separator, reducing the
additional time. Finally we observe that our heuristic approach (case (iii)) reduces the
solving time by 7% averaged over all instances (geometric mean), and by 21% averaged
over the instances with absolute solving time greater than 10 seconds in case (i).

13

5 Conclusions

In this paper, we have developed algorithms to separate {0, 1
2}-Chvátal-Gomory cuts in

general integer programs, despite the NP-completeness of the problem. Preprocessing rules
turned out to be an indispensable part of such algorithms as they do not only reduce the size
of the remaining separation problem but in many cases also provide violated inequalities
directly, canceling the need for further processing. Separating the most violated {0, 1

2}-
cut yields a substantial reduction of the number of branch&cut nodes to be searched until
optimality can be proven, whereas heuristic separation achieved the best time performance.
The savings in computation time have already aroused the interest of both commercial and
academic developers of integer programming solvers (e.g., they will be available in a future
version of SCIP [2]).

The developed algorithms are at present only applicable to pure integer programs, i.e.,
without continuous variables. The extension of the separation procedure to general mixed
integer programming problems remains as an important further research direction as these
would enhance ILP-solvers further, like the recent work of Bonami et al. [7] showed for
general CG cuts.

Acknowledgment

Most of the research has been carried out while the first and second author were at Zuse
Institute Berlin (ZIB). The first author has been supported by the DFG research group
“Algorithms, Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4) during
that time.

References

[1] T. Achterberg. SCIP – a framework to integrate constraint and mixed integer pro-
gramming. ZIB-Report 04–19, Zuse Institute Berlin, 2004. http://www.zib.de/

Publications/abstracts/ZR-04-19/.

[2] T. Achterberg, T. Berthold, T. Koch, A. Martin, and K. Wolter. SCIP (Solving Con-
straint Integer Programs), 2006. http://scip.zib.de/.

[3] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. http://miplib.zib.de, 2003.

[4] G. Andreello, A. Caprara, and M. Fischetti. Embedding cuts in a branch&cut frame-
work: a computational study with {0, 1

2}-cuts. Technical report, University of Padova,
2003.

[5] R. Bixby and G. Reinelt. TSPLIB. http://elib.zib.de/pub/mp-testdata/tsp/

tsplib/tsplib.html.

[6] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. MIPLIB 3.0. http:

//www.caam.rice.edu/~bixby/miplib/miplib.html.

[7] P. Bonami, G. Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and Andrea Lodi. Projected
chvtalgomory cuts for mixed integer linear programs. Mathematical Programming, to
appear, 2007.

14

[8] A. Caprara and M. Fischetti. {0, 1/2}-Chvátal-Gomory cuts. Mathematical Program-
ming, 74:221–235, 1996.

[9] A. Caprara and M. Fischetti. Odd cut-sets, odd cycles, and 0 − 1/2 Chvátal-Gomory
cuts. Ricerca Operativa, 26:51–80, 1996.

[10] A. Caprara, M. Fischetti, and A. N. Letchford. On the separation of maximally violated
mod-k cuts. Mathematical Programming, 87:37–56, 2000.

[11] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4:305–337, 1973.

[12] J. Edmonds and E. L. Johnson. Matching: a well-solved class of integer linear programs.
In R. K. Guy, H. Hanani, and N. Sauer, editors, Combinatorial Structures and Their
Applications, pages 80–92. Gordon and Breach, New York, 1970.

[13] S. Fiorini. {0, 1
2}-cuts and the linear ordering problem: Surfaces that define facets.

SIAM Journal on Discrete Mathematics, 20(4):893–912, 2006.

[14] M Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Math. Program-
ming, 110(1):3–20, June 2007.

[15] C. Gentile, P. Ventura, and R. Weismantel. Mod-2 cuts generation yields the con-
vex hull of bounded integer feasible sets. SIAM Journal on Discrete Mathematics,
20(4):913–919, 2006.

[16] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64:275–278, 1958.

[17] R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves
and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302.
McGraw-Hill, New York, 1963.

[18] ILOG. CPLEX version 10.0, 2006. http://www.ilog.com/products/cplex.

[19] A. M. C. A. Koster and A. Zymolka. Stable Multi-Sets. Mathematical Methods of
Operations Research, 56(1):45–65, 2002.

[20] A. M. C. A. Koster and A. Zymolka. On cycles and the stable multi-set polytope.
Discrete Optimization, 2(3):241–255, 2005.

[21] M. Padberg. On the facial structure of set packing polyhedra. Mathematical Program-
ming, 5:199–215, 1973.

[22] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291–296, 1980.

A Detailed computational results

Table 2 reports on the computational results for the MIPLIB instances. Four scenarios are
compared: SCIP default, exact separation in every node of the branch&cut tree with depth
at most 15, exact separation at the root node only, and heuristic separation, cf. Section 4.
All computation times are in seconds.

15

Size of A {0, 1

2
}-cuts {0, 1

2
}-cuts {0, 1

2
}-cuts

#non- SCIP default exactly, depth ≤ 15 exactly, root only heuristically
name #rows #cols zeros #nodes time #nodes time #cuts #nodes time #cuts #nodes time #cuts

air03 124 10757 91028 2 26.70 1 20.71 38 1 19.00 15 1 19.32 15
air04 823 8904 72965 196 173.12 136 579.87 1980 347 243.30 104 5 59.25 258
air05 426 7195 52121 244 93.27 208 233.56 1157 357 85.09 56 335 86.21 119
cap6000 2176 6000 48243 2621 30.79 3045 129.39 1359 3207 38.06 3 3207 38.91 3
disctom 399 10000 30000 1 59.57 1 65.50 67 1 11.39 64 1 11.44 65
enigma 21 100 289 4455 1.72 1046 5.77 297 1698 0.95 1 1698 0.94 1
fast0507 507 63009 409349 1991 2758.62 timelimit was reached 1215 1955.17 33 2306 4458.55 52
gt2 29 188 376 46 0.12 111 0.46 1 46 0.15 0 46 0.11 0
harp2 112 2993 5840 951103 1408.72 878343 2288.00 1006 422090 862.96 3 422090 883.03 3
l152lav 97 1989 9922 65 7.23 67 136.42 401 16 5.82 193 39 8.89 228
lseu 28 89 309 302 0.78 80 0.93 42 1329 1.39 9 1329 1.34 9
manna81 6480 3321 12960 1 2.67 1 2.68 116 1 1.97 272 1 1.97 272
mitre 2054 10724 37671 3 40.90 3 34.31 337 1 33.00 317 4 29.52 305
mod008 6 319 1243 217 0.85 558 3.89 120 137 0.68 2 137 0.60 2
mod010 146 2655 11203 1 2.99 1 3.10 7 10 6.59 147 1 3.42 82
mzzv11 2054 10724 37671 1525 964.05 2317 3483.63 8365 1771 870.49 140 4983 1098.48 107
mzzv42z 10460 11717 151261 1638 401.13 774 681.17 1504 1110 408.57 165 2504 389.08 80
nw04 36 87482 636666 3 96.08 3 188.13 86 5 132.64 6 7 130.60 10
p0033 16 33 98 1 0.02 1 0.40 12 2 0.14 9 2 0.06 9
p0201 133 201 1923 83 2.48 53 3.99 65 194 2.78 25 194 2.72 25
p0282 241 282 1966 45 0.60 69 2.15 106 45 1.07 29 45 0.84 29
p0548 176 548 1711 32 0.39 5 0.56 34 18 0.77 17 18 0.59 17
p2756 755 2756 8937 212 4.94 76 4.10 126 94 3.23 58 94 3.09 58
stein27 118 27 378 4173 4.57 1912 59.47 3211 4194 4.60 1 4194 4.34 1
stein45 331 45 1034 53189 58.36 18579 698.57 48786 50835 58.77 3 50122 56.71 3

Table 2: Detailed computational results for the MIPLIB instances

16

