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Abstract. A new approach to derive transparent boundary conditions (TBCs) for wave,
Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and
distinguishes between physical reasonable and unreasonable solutions by the location of the singu-
larities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a
Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed
coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the
power series are derived. These are coupled to the equation in the interior, and yield transparent
boundary conditions. Numerical results are presented in the last section, showing that the error
introduced by the new approximate TBCs decays exponentially in the number of coefficients.
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1. Introduction. In the simulation of wave propagation phenomena on un-
bounded domains transparent boundary conditions are needed in order to make the
computational domain finite.

Here we present a new concept based on the pole condition to derive transparent
boundary conditions for the wave equation, the Schrödinger equation and the drift-
diffusion equation. The symbol p(∂t) is used to treat all the equations simultaneously:

p(∂t)u(t, x) = ∂xxu(t, x) + 2d∂xu(t, x)− k2(t, x)u(t, x) for x ∈ R, t ≥ 0. (1.1)

The pole condition as presented here is reduced to the condition that some func-
tion U(s, t) is analytic on the unit disk. Expanding U(s, t) into a power series∑∞

`=0 a`(t)s` a system of ordinary differential equations for the coefficients a`(t) is
deduced, that is coupled to the boundary data of u. Truncating the power series
yields an algorithm to realize transparent boundary conditions.

The pole condition approach shares the variational formulation with transparent
boundary conditions based on infinite elements [2] but is nevertheless distinctively
different. In the derivation of the pole condition, ansatz and test functions are different
and the ansatz functions do not represent a meaningful solution in the exterior. The
pole condition is similar to the perfectly matched layer method [3], which does not
give a representation of the solution in the exterior either. In contrast to the PML
method the pole condition method does not rely on a damping of plane waves in the
exterior by introducing a complex coordinate stretching [4]. Hence the pole condition
method is also applicable to e.g. drift diffusion equations.

The exact transparent boundary conditions, which are reviewed briefly in Sec-
tion 2 are non-local in time. For a special choice of parameters our approach coincides
with the exact transparent boundary conditions. However one can choose parameters
such that the boundary conditions become local in time.
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The paper is organized is follows: In Section 2 the problem class is introduced
and classical transparent boundary conditions are described. Section 3 describes in
detail the derivation of the newly developed transparent boundary conditions, which
are based on the pole condition. Section 4 describes the spacial discretization and
Section 5 the time discretization. Section 6 finally gives numerical results for all four
equations.

2. Problem class and classical transparent boundary conditions. In this
section we introduce the problem class. Classical transparent boundary conditions
are described and we comment on their implementation very briefly.

For a more detailed discussion on transparent boundary conditions the reader is
referred to excellent reviews [6, 7] and [18].

The generic equation (1.1) includes the wave equation (2.1), the drift-diffusion
equation (2.2), the heat equation (2.2) with d = 0 and the Schrödinger equation (2.3).
The exact transparent boundary condition for these equations are well established in
the literature.

∂ttu(t, x) = ∂xxu(t, x)− k2(t, x)u(t, x) for x ∈ R, t ≥ 0, (2.1)
∂tu(t, x) = ∂xxu(t, x) + 2d∂xu(t, x)− k2(t, x)u(t, x) for x ∈ R, t ≥ 0, (2.2)

i∂tu(t, x) = ∂xxu(t, x)− k2(t, x)u(t, x) for x ∈ R, t ≥ 0. (2.3)

These equations have to be complemented with appropriate initial conditions. k(x, t)
and d are assumed to be real. Furthermore k(x, t) is assumed to be constant outside
the space-time strip (x, t) ∈ Ωt = [−a, a]× [0,∞) and initial values are assumed to be
compactly supported in [−a, a].

2.1. Derivation of transparent boundary conditions. Suppose one is only
interested in the solution within the strip Ωt and let v denote the restriction of u to
Ωt. To obtain an equation for v boundary conditions along the artificial boundary
Γt = {−a, a}×[0,∞) are needed, such that the solution of (1.1) (defined on R×[0,∞))
coincides with v on Ωt. To derive such transparent boundary conditions denote by w
the restriction of u to the exterior ΩC

t = {(−∞,−a] ∪ [a,∞)} × [0,∞).
A Laplace transformation of w in t with dual variable ω, where the transformed

function is denoted by w = T (w), i.e.

w(ω) = T (w)(ω) =
∫ ∞

0

eωtw(t)dt

yields

p(ω)w(ω, x) = ∂xxw(ω, x) + 2d∂xw(ω, x)− k2w(ω, x) for |x| > a, (2.4)
w(ω, x) = v(ω, x) for |x| = a. (2.5)

Equation (2.4) is obtained taking into account that the initial value(s) vanish and k is
constant outside Ωt. The Laplace transform is defined in some right half plane of the
complex plane. Assuming that <(ω) > 0 and choosing the branch of the square root
such that <

(
(p(ω) + d2 + k2)1/2

)
> 0, Equation (2.4) has only one bounded solution

that solves the problem:

w(ω, x) = Ce(−d−(p(ω)+k2+d2)1/2)x for x > a,

w(ω, x) = Ce(−d+(p(ω)+k2+d2)1/2)x for x < −a.
(2.6)
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For the Schrödinger equation it is d = 0 and thus p(ω) has non-negative imaginary
part and so has p(ω) + k2. Hence (p(ω) + k2)1/2 takes values in the first quadrant of
the complex plane. The solutions given in (2.6) are either decaying exponentially or
obey the Sommerfeld radiation condition, i.e they are outward radiating.

For the drift-diffusion and the heat equation p(ω) has non-negative real part. For
all d, k ∈ R it holds that −d−(k2+d2)1/2 ≤ 0 and −d+(k2+d2)1/2 ≥ 0. Thus the real
part of −d−(p(ω)+k2+d2)1/2 is negative and the real part of −d+(p(ω)+k2+d2)1/2

is positive. The solutions given above are hence decaying exponentially.
As the wave equation is time reversible, we assume that ω is purely imaginary.

This formally corresponds to a Fourier transform from t = −∞ to t = ∞ instead
of a Laplace transform along [0,∞). Having d = 0, (p(ω) + k2)1/2 takes values on
the imaginary semi-axis or on an interval on the real line, i.e. in {iy : y ∈ R+} ∪
[0, k]. Again, the solutions are either decaying exponentially or obey the Sommerfeld
radiation condition.

The constant C is chosen such that the boundary condition (2.5) is fulfilled.
Inserting the normal derivatives ∂νv(t,−a) = −∂xv(t,−a), ∂νv(t, a) = ∂xv(t, a)
into the equation for v, the solution in the interior is obtained from

p(∂t)v(t, x) = vxx(t, x) + 2dv(t, x)− k2v(t, x) for x ∈ I, t ≥ 0

∂νv(t,±a) = −∂νw(t,±a) = T −1
((
∓d− (p(·) + k2 + d2)1/2

)
T (v(·,±a))

)
(t)

=
∫ t

0

T −1
(
∓d− (p(·) + k2 + d2)1/2

)
(t− τ)v(τ,±a)dτ.

(2.7)

Alternatively one obtains

p(∂t)v(t, x) = vxx(t, x) + 2dvx(t, x)− k2v(t, x) for x ∈ I, t ≥ 0

v(t,±a) = L−1

((
∓d− (p(·) + k2)1/2

)−1

T (∂νv(·,±a))
)

(t)

=
∫ t

0

T −1

((
∓d− (p(·) + k2 + d2)1/2

)−1
)

(t− τ)∂νv(τ,±a)dτ.

(2.8)

As is seen from (2.7) and (2.8) transparent boundary conditions are in general of con-
volution type. The discretization of (2.8) with respect to time is not straightforward
and may introduce instabilities. A stable discretization is obtained using convolution
quadrature [11, 12], based on the same time integration scheme as used in the interior.
It is shown in [14] that this is equivalent to the derivation of time-discrete transparent
boundary conditions given below.

2.2. Derivation of time discrete transparent boundary conditions. The
equation for u (1.1) is discretized in time using an A-stable multi-step method, such as
the trapezoidal rule. Time discrete transparent boundary conditions are now derived
following almost the same procedure as above. The only difference is that instead of
applying a Laplace transform in the variable t a Z-transform is applied.

u(ζ) := Z(u)(ζ) :=
∑

n

u(nh)ζn
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Denoting by δ(ζ) 1 the generating function of the multi-step method, the time-discrete
transparent boundary condition is

v(nh,±a) = Z−1
(
∓d− (p(δ(·)/h) + k2 + d2)−1/2Z(v)(·)

)
(n) =

n∑
j=0

wn−j∂νvj ,

(2.9)

where the convolution weights wn are given by the power series expansion

∓d− (p(δ(ζ)/h) + k2 + d2)−1/2 =
∑

j

wjζ
j . (2.10)

The timediscrete transparent boundary condition (2.9) has the same structure as (2.8).
In general the weights have to be calculated numerically. To calculate N weights

with precision ε the complexity is is O(N log Nε log(ε)), c.f. [12, Sec. 7]. In our simple
setting it should however be possible for the trapezoidal rule to calculate the weights
analytically, see e.g. [1, 17].

In the derivation of the exact transparent boundary conditions in Sections 2.1
and 2.2 it was necessary after applying a Laplace- or Z-transform to solve the second
order differential equation in x, and to chose among two linear independent solutions
the one that has the correct asymptotic behavior for x → ∞. For higher spatial
dimensions however this is, if at all, only possible in very special cases. In what
follows we present a more general concept, that avoids solving ODEs and picking
certain solutions. The basis for this is the pole condition approach proposed by
Schmidt in [15, 9, 16].

3. An alternative derivation of transparent boundary conditions. The
basic idea of the pole condition is to test the exterior solution against any incoming
field exp(sx) by trying to evaluate

∫∞
a

u(x) exp(sx). This integral will diverge in case
u(x) has incoming components. What is incoming and outgoing is now determined
by the phase of the test function exp(sx), i.e. by the complex value s. The situation
will be analyzed for each type of equation in Section. 3.2.

3.1. Variational formulation. The starting point is the Laplace transform in
t of (1.1)

p(ω)u(ω, x) = ∂xxu(ω, x) + 2d∂xu(ω, x)−K(u) (3.1)

Here the term K(u) is the Laplace transform of the k(x, t)u(x, t) and additionally
contains the initial value(s). Multiplying by a test function v and integrating over R
the variational form is given by: Find u ∈ H1(R) such that∫

R
p(ω)u(ω, x)v(x) dx =

∫
R
−ux(ω, x)vx(x) + 2dux(ω, x)v(x)−K(u)v(x) dx

(3.2)

for all v ∈ H1(R). ω may be considered to be the dual variable with respect to t
or the generating function δ(ζ). It is sufficient to test against all v in some dense

1In case of the trapezoidal rule δ(ζ) = 2 1+ζ
1−ζ

. For the implicit Euler method δ(ζ) = 1
1−ζ

. In

general δ is the quotient of the generating polynomials [8, III.2]. An Extension to Runge Kutta
methods is possible [13].
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subset and we will use that freedom and restrict to the set of all v ∈ H1(R), such
that v(x) = ce−s(x−a) for x > a and v(x) = ces(x+a) for x < −a, with <s > 0 and
c ∈ C. The set of test functions can be restricted even further to those satisfying
c = 1. Splitting the integral in (3.2) one obtains∫

[−a,a]

p(ω)u(ω, x)v(x) dx +
∫
|x|>a

p(ω)u(ω, x)v(x) dx =∫
[−a,a]

−ux(ω, x)vx(x) + 2dux(ω, x)v(x)−K(u)v(x) dx +∫
|x|>a

−ux(ω, x)vx(x) + 2dux(ω, x)v(x)− k2u(ω, x)v(x) dx.

(3.3)

Note that v has to be equal to 1 at x = ±a and that u(ω,±a ± h) = u(ω,±a ∓ h).
for h → 0. Inserting the special form of v outside [−a, a] one obtains∫

[−a,a]

p(ω)u(ω, x)v(x) dx + p(ω)U (l)(ω, s) + p(ω)U (r)(ω, s) =∫
[−a,a]

−ux(ω, x)vx(x) + 2dux(ω, x)v(x)−K(u)v(x) dx

+ s(sU (l)(ω, s)− u(ω,−a))− 2d(sU (l)(ω, s)− u(ω,−a))− k2U (l)(ω, s)

+ s(sU (r)(ω, s)− u(ω, a)) + 2d(sU (r)(ω, s)− u(ω, a))− k2U (r)(ω, s),

(3.4)

where

U (r)(ω, s) =
∫ ∞

a

u(ω, x)e−s(x−a) dx =
∫ ∞

0

u(ω, x + a)e−sx dx,

U (l)(ω, s) =
∫ −a

−∞
u(ω, x)es(x+a) dx =

∫ ∞

0

u(ω,−x− a)e−sx dx

are the Laplace transforms of the solution in the exterior. Transparent boundary
conditions may be now be set by imposing appropriate conditions on U (l,r), c.f. Sec-
tion 3.2.

Classical transparent boundary conditions are connecting Neumann and Dirichlet
data at the boundary. A reinterpretation of (3.4) will supply the Neumann data at
the boundary. Suppose a function u on I = [−a, a] is given obeying (3.1). Multiplying
by a test function and integrating by parts yields∫

I

p(ω)u(ω, x)v(x)dx =
∫

I

−∂xu(ω, x)∂xv(x)dx + 2d∂xu(ω, x)v(x)−K(u)v(x)dx

+ ∂xu(ω, a)v(a)− ∂xu(ω,−a)v(−a).

Choosing a test function that vanishes at −a and is 1 at a the above equation allows
to weakly define the outward normal derivative of u(ω, a) at x = a by

∂xu(ω, a)v(a) =
∫

I

p(ω)u(ω, x)v + ∂xu(ω, x)∂xv − 2d∂xu(ω, x)v + K(u)vdx

and similarly for the outward normal derivative of u(ω,−a) at x = −a

−∂xu(ω, a)v(a) =
∫

I

p(ω)u(ω, x)v + ∂xu(ω, x)∂xv − 2d∂xu(ω, x)v + K(u)vdx.
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3.2. Pole condition. Suppose the Laplace transform in the exterior U as func-
tion of s has some singularities in the complex plane. By Cauchy’s integral formula

U(s) =
1

2πi

∫
γ

(s− τ)−1U(τ)dτ

where γ is a path enclosing the singularities of U . This path integral may be inter-
preted as a superposition of (s − τ)−1. This is easily seen by inserting the Riemann
sum for the path integral, which gives

U(s) = lim
N→∞

N∑
j=1

bj(N,U(τj))
1

s− τj

for weights bj . Transforming back to space domain we have the correspondence

1
s− τ

↔ exτ

Depending on the location of τ in the complex plane, exτ is outward radiating/ex-
potentially decreasing or incoming/exponentially increasing. This way the complex
plane can be divided into two regions; a region Cin = {τ ∈ C : exτ is incoming } and
a region Cout = {τ ∈ C : exτ is outward radiating }. Now split the contour γ in two
contours γin and γout where γin lies in Cin and encloses all singularities of U in this
region. while γout lies in Cout enclosing all singularities in this region. The integral
over γ is then decomposed as follows

U(s) =
∫

γin

(s− τ)−1U(τ)dτ +
∫

γout

(s− τ)−1U(τ)dτ.

Requiring that u(ω, x) is purely outward radiating is now equivalent to the condition∫
γin

(s − τ)−1U(τ)dτ = 0, which in turn is equivalent to the condition that U(s) is
analytic in Cin. We can summarize this in the following definition.

Definition 3.1 (Pole condition). A solution u(ω, x) obeys the pole condition if
the Laplace transform U(ω, s) is analytic in Cin.

The equivalence of the pole condition with the Sommerfeld radiation condition
for the two dimensional Helmholtz equation for a homogenous exterior domain was
proven in [9]. What these regions Cout and Cin look like is discussed in Sections 3.2.1
to 3.2.4 for the different type of equations.

The above reasoning can be made more explicit for the simple one-dimensional
model problem. It is stressed however that for the construction of the transparent
boundary condition the following explicit calculations are not necessary. They are
presented to give the reader some confidence in the method and to show how classical
transparent boundary conditions are contained as a special case.

Suppose for the moment u is given on [−a, a] and consider the right exterior only.
The equation for U (r) is then

−p(ω)U (r)(ω, s) + s2U (r)(ω, s) + 2dsU (r)(ω, s)− k2U (r)(ω, s) = r(s,u)

with the remainder term

r(s,u) = ∂xu(ω, a)v(a) + 2du(ω, a) + su(ω, a)



Transparent boundary conditions 7

which is analytic in s. Solving for U (r) we obtain

U (r)(ω, s) =
(
s2 + 2ds− (p(ω) + k2)

)−1
r(s,u). (3.5)

For fixed ω there are always two roots s− and s+ of s2 + 2ds− (p(ω) + k2), so U can
be decomposed as follows

U (r)(ω, s) = (s− s+)−1r1(ω,u) + (s− s−)−1r2(ω,u). (3.6)

with

r1(ω,u) =
1
2

(
u(ω, a) +

∂xu(ω, a)v(a) + 2du(ω, a)√
p(ω) + k2 + d2

)

and

r2(ω,u) =
1
2

(
u(ω, a)− ∂xu(ω, a)v(a) + 2du(ω, a)√

p(ω) + k2 + d2

)

Transforming back to space domain the summands in (3.6) correspond to solutions
exp(xs+) and exp(xs−). Depending on the location of s± in the complex plane
incoming and outgoing, exponentially decaying and exponentially increasing solutions
can be identified. A similar splitting is obtained for the left boundary.

The possible location of the poles s+ and s− for the four different equations is
considered more closely in Sections 3.2.1 to 3.2.4. It is then argued how to construct
boundary conditions that in the case of the Schrödinger and the wave equation distin-
guish incoming and outgoing waves. In case of the drift diffusion equation the bound-
ary condition distinguishes between bounded (physical reasonable) and unbounded
(unphysical) solutions.

3.2.1. Heat equation. If p(ω) = ω, where ω takes values in the right half
plane, then p(ω) + k2 is shifted by k2. The roots of s2 − (p(ω) + k2) take values in
regions to the left and right of the imaginary axis that are bounded by hyperbolas
as sketched in the right plot in Fig. 3.1. Clearly the roots to the right correspond
to unphysical exponentially increasing solutions. To exclude these, one requires that
U(ω, s) is analytic in the right half plane.

Fig. 3.1. Left: possible values of p(ω). Middle: possible values of p(ω) + k2. Right: location of
the roots s±. To each root in the left region there corresponds one root in the right region.
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3.2.2. Schrödinger equation. If p(ω) = iω, where ω takes values in the right
half plane, then p(ω) + k2 is rotated counter clockwise by π/4 and shifted by k2.
Thus p(ω) + k2 attains values in the upper half plane as sketched in the middle plot
of Fig 3.2. The roots of s2 − (p(ω) + k2) take values in first and third quadrant as
sketched in the right plot in Fig. 3.2. The roots in the first quadrant correspond
to unphysical solutions, that are either exponentially increasing or have the wrong
phase shift. To exclude these one may for instance require that U(ω, s) is analytic
in the upper-right half plane bounded by the bisecting line of the second and fourth
quadrant.

Fig. 3.2. Left: possible values of p(ω). Middle: possible values of p(ω) + k2. Right: location of
the roots s±. To each root in the first quadrant there corresponds one root in the third quadrant.

3.2.3. Wave equation. If p(ω) = ω2, p(ω) + k2 takes values everywhere. The
imaginary axis is mapped to the axis {=s = 0 ;<s < k2}. The roots now fill the whole
complex plane. The values along the cross as indicated in the right plot of Fig. 3.3
correspond to the axis {=s = 0 ;<s < k2}. Solutions corresponding to roots in the
lower half plane are incoming, transformed back to space domain they do not satisfy
the Sommerfeld radiation condition.

Fig. 3.3. Left: possible values of p(ω). Middle: possible values of p(ω) + k2. Right: location of
the roots s±.

3.2.4. Drift diffusion equation. If p(ω) = ω, where ω takes values in the right
half plane, then p(ω)+k2 is shifted by k2. The roots of s2+2ds−(p(ω)+k2) take values
in regions to the left and right of the imaginary axis that are bounded by hyperbolas
as sketched in the right plot in Fig. 3.4. Clearly the roots to the right correspond
to unphysical exponentially increasing solutions. In the drift diffusion example the
position of the roots is different for the left and right boundary, they are symmetric
with the respect to the <s = ±D for the left and right boundary respectively. To
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exclude the roots in the right region one requires that U(ω, s) is analytic in right half
plane, bounded by the axis <s = ±D.

Fig. 3.4. Left: possible values of p(ω). Middle: possible values of p(ω) + k2. Right: location of
the roots s±. To each root in the left region there corresponds one root in the right region.

Calculating the roots s± and the functions r1 and r2 for each of the above cases
this means that

u(ω, a) +
∂νu(ω, a)v(a)√

p(ω) + k2
= 0 equivalently

√
p(ω) + k2u(ω, 0) + ∂νu(ω, a)v(a) = 0

which is equivalent to the boundary conditions given in (2.8), (2.9) and (2.7).

3.3. The pole condition in Hardy space. We will now reformulate the
boundary condition in a way that will allow an easy implementation. For this we
map the domain where U(s) is required to be analytic to the unit disc. With this
change of coordinates, the condition on U to be analytic in some half plane is now
formulated as condition on U to be analytic on the unit disk. In the new coordinate
U may then be expanded into a power series.

The mapping is done by a Möbius transformation which in general form is given
by

Φ : s 7→ s̃ =
αs + β

γs + δ
(3.7)

In case of the heat, wave and Schrödinger equation we set α = γ = 1, β = s0(ω) and
δ = −s0(ω), such that the Möbius transform maps the half plane

{z : <(−z/s0(ω)) ≤ 0} (3.8)

onto the unit disk. The point −s0(ω) is mapped to 0. The inverse transform is given
by

Φ−1 : s̃ 7→ s =
as̃ + b

cs̃ + d
= s0(ω)

s̃ + 1
s̃− 1

(3.9)

This justifies the following ansatz for U(ω, s̃)

U(ω, s̃) =
∞∑

`=0

an(ω)s̃n (3.10)

In case of the drift-diffusion equation the two regions with the poles are symmetric
with respect the axis parallel to the imaginary axis but shifted by ±D for the right
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and left boundary respectively. Thus different Möbius transforms are used for the left
and right boundary. We set for the right boundary a(r) = (d− s0), b(r) = −(d + s0),
c(r) = −1, d(r) = 1 and for the left boundary a(l) = (−d − s0), b(l) = −(−d + s0),
c(l) = −1, d(l) = 1.

The space of functions f that are analytic in the unit disk, such that the integral
means ∫ 2π

0

|f(reiθ)|2dθ

are bounded as r → 1 is called Hardy space H2 [5] The Hardy space can be charac-
terized as the space of functions f(z) =

∑∞
`=0 a`z

` such that
∑

`=0 |a`|2 is finite [10,
III,3.4].

4. Space discretization. Space discretization is done using finite elements in
the interior. Ansatz and test functions are globally continuous functions, which are
piecewise polynomials. Choosing ansatz and test functions which are supported by
only one single or two neighboring finite elements yields the well established sparse
mass matrix M and a system matrix S. Locally on an interval (finite element) of
length h for linear ansatz and test functions one obtains

Mloc =
h

6

(
2 1
1 2

)
Sloc =

1
h

(
−1 1
1 −1

)
+ 2d

1
2

(
−1 1
−1 1

)
− k2 h

6

(
2 1
1 2

)
.

These have to be assembled to the global matrices M and S. In sloppy notation
(neglecting boundary terms) for the interior one obtains collecting degrees of freedom
into a vector ũ

p(ω)M̃ ũ(ω) = S̃ũ(ω). (4.1)

The situation at the boundary is different. The test function vs(x), which is depicted
in Fig. 4.1 for the right artificial boundary point for fixed s is given by

vs(x) =
{

e−s(x−a) x ≥ a
x−(a−h)

h a− h ≤ x ≤ a

Here vs(x) is not one function but a family of functions parameterized by s. vs(x)
is globally continuous but is not finitely supported (it is supported by [a − h,∞)).
Assuming that u(ω, x) on [(a− h), a] is given as the superposition

∑
j uj(ω)φj(x) of

aamh

Fig. 4.1. Boundary exp-element

φj(x) – the ansatz functions φi do not vanish on [(a− h), a] – the equation obtained
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by testing against vs(x) is∫
[a−h,a]

p(ω)
∑

j

uj(ω)φj(x)
x− (a− h)

h
dx + p(ω)U (r)(ω, s) =

∫
[a−h,a]

∑
j

uj(ω)
(
−φ′j(x)

1
h

+ 2dφ′j(x)
x− (a− h)

h
− k2φj(x)

x− (a− h)
h

)
dx

+ s(sU (r)(ω, s)− u(ω, a)) + 2d(sU (r)(ω, s)− u(ω, a))− k2U (r)(ω, s)
(4.2)

For the Laplace transform U (r)(ω, s) of the solution û(ω, x) in the right exterior do-
main the series expansion (3.10) with coefficients aj(ω) is inserted, and the series is
truncated by setting a` = 0 for ` ≥ L + 1. In what follows equations for the unknown
coefficients aj(ω) are derived using the PDE. The two cases d = 0 and d 6= 0 are
treated separately.

Case d = 0. Setting

û(0)(a) =
∑

j

∫
[a−h,a]

uj(ω)φj(x)
x− (a− h)

h
dx

and

û(2)(a) =
∑

j

∫
[a−h,a]

−uj(ω)φ′j(x)
1
h

dx

the weak form of the Neumann data can be evaluated as

û′(a) = (p + k2)û(0)(a)− û(2)(a) .

Here it is assumed without loss of generality that the initial value(s) are supported in
[−a+h, a−h] and that k is constant outside [−a+h, a−h]. With these settings (4.2)
in the variable s̃ may be conveniently written as

p(ω)û(0)(a) + p(ω)U (r)(ω, s̃) = û(2)(a)− k2û(0)(a)

+ s0(ω)
s̃ + 1
s̃− 1

(
s0(ω)

s̃ + 1
s̃− 1

U (r)(ω, s̃)− u(ω, a)
)
− k2U (r)(ω, s̃)

(4.3)

Multiplying by (s̃− 1)2 and rearranging terms yields(
s2
0(ω)(s̃ + 1)2 − (s̃− 1)2

(
p(ω) + k2

))
U (r)(ω, s̃) =

(s̃− 1)2û′(a) + s0(ω)(s̃2 − 1)u(ω, a)

Sorting for powers of s̃ we obtain((
s2
0 − p(ω)− k2

)
s̃2 + 2

(
s2
0 + p(ω) + k2

)
s̃ +

(
s2
0 − p(ω)− k2

))
U(ω, s̃) =

s̃2 (û′(a) + s0(ω)u(ω, a))− 2s̃û′(a) + (û′(a)− s0(ω)u(ω, a))

Inserting the series representation (3.10) and comparing the coefficients yields(
s2
0 − p− k2

)
a0 = û′(a)− s0u(ω, a) (4.4)

2
(
s2
0 + p + k2

)
a0 +

(
s2
0 − p− k2

)
a1 = −2û′(a) (4.5)(

s2
0 − p− k2

)
a0 + 2

(
s2
0 + p + k2

)
a1 +

(
s2
0 − p− k2

)
a2 = û′(a) + s0u(ω, a) (4.6)(

s2
0 − p− k2

)
a`−1 + 2

(
s2
0 + p + k2

)
a` +

(
s2
0 − p− k2

)
a`+1 = 0 (4.7)
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Replacing (4.6) by the sum of (4.6), (4.5) and (4.4) yields

4s2
0a0(ω) +

(
3s2

0 + p(ω) + k2
)
a1(ω) +

(
s2
0 − p(ω)− k2

)
a2(ω) = 0 (4.8)

Equation (4.5) is replaced by (4.5) plus twice Equation (4.4) yielding

4s2
0a0(ω) +

(
s2
0 − p(ω)− k2

)
a1(ω) = −2s0u(ω, a) (4.9)

These equations hold for the right boundary a, with the Laplace transform taken from
the boundary to ∞. With the corresponding definition of û(0)(−a) and û(2)(−a) we
can also define û′(−a) and get identical equations for the left boundary −a by using
a series expansion for U (l)(ω, s̃).

Let us have a closer look at (4.4). So far we did not specify s0. If we would choose
s0(ω) such that

s0(ω) = −
√

k2 + p(ω) , i.e. s2
0(ω)− p(ω)− k2 ≡ 0

(4.4) reduces to

û′(a) = s0u(ω, a) ⇔ − 1√
k2 + p(ω)

û′(a) = u(ω, a) (4.10)

which is equivalent to the exact transparent boundary conditions (2.8) or (2.9). In
this case the equations for the a` are decoupled. Thus by construction we have the
following theorem

Theorem 4.1. For the choice s0(ω) = −
√

p(ω) + k2 the pole condition based
transparent boundary condition coincides with the classical transparent boundary con-
dition, respectively the time discrete transparent boundary condition.

Case d 6= 0 Setting additionally

û(1)(a) =
∑

j

∫
[a−h,a]

uj(ω)φ′j(x)
x− (a− h)

h
dx

the Neumann data is now given by

û′(a) = p(ω)û(0)(a)− û(2)(a)− 2dû(1)(a) + k2û(0)(a) .

(4.2) in the variable s̃ is conveniently written as

p(ω)û(0)(ω) + p(ω)U (r)(ω, s̃) = û(2) + 2dû(1) − k2û(0)

+
(s0 − d)s̃ + (d + s0)

s̃− 1

(
(s0 − d)s̃ + (d + s0)

s̃− 1
U (r)(ω, s̃)− u(ω, a)

)
+ 2d

(
(s0 − d)s̃ + (d + s0)

s̃− 1
U (r)(ω, s̃)− u(ω, a)

)
− k2U (r)(ω, s̃)

(4.11)

Multiplication by (s̃− 1)2, and rearranging terms yields

(s̃− 1)2û′(a) +
(
s0(s̃2 − 1) + 2d(s− 1)2

)
u(ω, a) =

−
(
(s̃− 1)2(p(ω) + k2 + d2)− s2

0(s̃ + 1)2
)
U (r)(ω, s̃)
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Sorting for powers of s̃, inserting the series representation (3.10) and comparing the
coefficients yields (

s2
0 − d2 − p− k2

)
a0 = û′ + (d− s0)u(ω, a) (4.12)

2
(
s2
0 + d2 + p + k2

)
a0 +

(
s2
0 − d2 − p− k2

)
a1 = −2(û′ + du(ω, a)) (4.13)(

s2
0 − d2 − p− k2

)
a0 + 2

(
s2
0 + d2 + p + k2

)
a1 +

(
s2
0 − d2 − p− k2

)
a2

= û′ + (s0 + d)u(ω, a)
(4.14)(

s2
0 − d2 − p− k2

)
a`−1 + 2

(
s2
0 + d2 + p + k2

)
a` +

(
s2
0 − d2 − p− k2

)
a2

`+1 = 0
(4.15)

Replacing (4.14) by the sum of (4.14), (4.13) and (4.12) yields

4s2
0a0 +

(
3s2

0 + p + d2 + k2
)
a1 +

(
s2
0 − p− d2 − k2

)
a2 = 0 (4.16)

Equation (4.13) is replaced by (4.13) plus twice equation (4.12) yielding

4s2
0a0 +

(
s2
0 − p− d2 − k2

)
a1 = −2s0u(ω, a) (4.17)

These equations hold for the right boundary a, with the Laplace transform taken from
the boundary to ∞. Similar equations hold for the left boundary −a.

Collecting the aj(ω) and the interior degrees of freedom in a vector u the equation
for the interior degrees of freedom (4.1) the coupling equation (4.12), the equation for
a0 (4.17), the equation for a1 (4.16) and the equations for aj ; 2 ≤ j ≥ L (4.15) are
conveniently written in matrix vector form

p(ω)Mu(ω) = s2
0(ω)C2u(ω) + s0(ω)C1u(ω) + Su(ω) (4.18)

5. Time discretization. We use the trapezoidal rule for all equations to dis-
cretize in time.

For the Schrödinger equation, s0(ω) is chosen to be constant s0 = −1− i. So the
domain where the boundary condition requires the Laplace transform to be analytic
is the set of points below the line bisecting the first and the fourth quadrant (cf. figure
3.2). After transforming back to time domain, the trapezoidal rule approximation is
given by

iM
un+1 − un

h
= (s2

0C2 + s0C1 + S)
un+1 − un

2

For the heat and drift diffusion equation, s0(ω) is chosen to be constant s0 = −1, so
that poles of U(s) at the right half plane of C are excluded (see figure 3.4). The
trapezoidal rule approximation then reads

M
un+1 − un

h
= (s2

0C2 + s0C1 + S)
un+1 − un

2

For the wave equation, we choose s0(ω) = iω. So when transforming back to time
domain, s0(ω) becomes ∂t. The trapezoidal rule yields

(M + C2)
un+1 − 2u + un−1

h2
= C1

un+1 − un−1

2h
+ S

un+1 + 2u + un−1

4
Using the leap-frog scheme one alternatively obtains

(M + C2)
un+1 − 2u + un−1

h2
= C1

un+1 − un−1

2h
+ Sun
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6. Numerical examples.

6.1. Schrödinger equation. The analytical solution for the Schrödinger equa-
tion ic∂tu = ∂xxu, describing a single Gaußian beam that is traveling to the left or
right with an angle r, is given by

up(x, t) =

√
ci

4t + ci
exp

(
−ci(x− x0)2 − cp(x− x0)− p2t

4t + ci

)
,

with p = c/2 tan(r), r ∈ [−π, π]. In the example a superposition of three such beams
is used. Hence the initial data is u(x, 0) = up1(x, 0)+up2(x, 0)+up3(x, 0) with angles
given by r1 = 5/6π, r2 = −5/7π and r3 = −5/8π. The analytic solution is thus given
by

uref(x, t) = up1(x, t) + up2(x, t) + up3(x, t).

The spatial l2 error at t = nh is defined by

en =
(
(ũn −Πuref(x, nh))T M̃(ũn −Πuref(x, nh))

)1/2

(6.1)

where ũn is the coefficient vector of the finite element solution at time level n, M̃ is the
mass matrix and Π is the projection operator onto the finite element space. For c = 4
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Fig. 6.1. Left:Spatial l2 error over time for different L for quadratic FEM with ∆x = 1/500
and h = 5 · 10−6. Right: Spatial l2 error en at different times t = nh versus L for quadratic FEM
with ∆x = 1/500 and h = 5 · 10−6.

the Schrödinger equation is integrated from t = 0, . . . , 5. The computational domain
is the interval [−5, 5]. The angles are chosen such that the maximum of the fastest
traveling beam reaches the boundary at about t = 2. The parameter in the Möbius
transform is s0 = −1− i and we didn’t try to optimize this choice. In the experiments
shown in Fig. 6.1 second order finite elements (quadratic ansatz functions) where
used. The mesh-width is ∆x = 1/500 and the step size h = 5 · 10−6. The left sub-
plot shows the evolution of the error for various numbers of coefficients in the power
series (3.10). In the left of Fig. 6.1 at about t = 1 the error increases drastically if
only few coefficients in the power series are used. This is due to the truncation error,
which introduces reflections at the boundary, which are large for small values of L.
In the right sub plot the error is shown for several fixed t. This plot indicates that
the truncation error introduced decays super algebraic or even exponentially in the
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number of coefficients in the power series. This is an excellent result. With just a
few additional degrees of freedom, a good quality transparent boundary condition is
obtained. One has to compare the 30 additional degrees of freedom with the 10000
degrees of in the interior, that are necessary to attain an error of 10−7, cf. Fig. 6.2. In
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Fig. 6.2. Left: Spatial and temporal l2 error versus the the spatial mesh-width ∆x. As a guide
to the eye lines with slope −2, −3, and −4 are included. Right: Spatial and temporal l2 error versus
L for different ∆x obtained with quadratic FEM and h = 5 · 10−6.

Fig. 6.2 the l2 error with respect to time and space (e =
∑

n hen) is shown. The left
plot shows the error versus ∆x for first, second and third order finite elements. The
linear finite elements show the expected second order convergence. Second order finite
elements show a fourth order convergence, which is one order better than expected.
Third order finite elements show a convergence that is slightly better than may be
expected. As a guide to the eye thin lines with a slope of −2, −3 and −4 are inserted.
The number of coefficients in the power series is L = 30, and the temporal step-size
is h = 5 · 10−6. The right plot shows the error versus L for various ∆x for quadratic
finite elements. This shows for example that for ∆x = 0.04 the error saturates with
L = 16.

6.2. Heat equation. The fundamental solution of the heat equation ∂tu = ∂xxu
is

u(x, t) = exp
(
− 1

2
√

πt

(x− x0)2

4t

)
.

The heat equation is integrated form t = 0.02, . . . , 5 on the interval [−5, 5]. In the
simulation the initial data is given by u0(x) = u(x, 0.02). Again the l2 error en at
t0 +nh is defined by (6.1) with uref(x, t0 +nh) = u(x, t0 +nh). The parameter for the
Möbius transform is s0 = −1. In the experiments shown in Fig. 6.3 quadratic finite
elements where used. The mesh-width is ∆x = 1/250 and the step size h = 10−5. In
the right sub plot the error is shown for several fixed t. Again this plot indicates that
the truncation error introduced decays super algebraic or exponentially in the number
of coefficients in the power series. The left sub-plot shows the evolution of the error
for various numbers of coefficients in the power series (3.10). In Fig.6.4 the l2 error
with respect to time and space (e =

∑
n hen) is shown. The left plot shows the error

versus ∆x for first, second and third order finite elements. The linear finite elements
show the expected second order convergence. Again second and third order finite
elements show a fourth order convergence. We assume that the unexpectedly good
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Fig. 6.3. Left: Spatial l2 error en at different times t = nh versus L for quadratic FEM with
∆x = 1/250 and h = 10−5. Right: Evolution of the error for different L for quadratic FEM with
∆x = 1/250 and h = 10−5.
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Fig. 6.4. Left: Spatial and temporal l2 error versus the the spatial mesh-width ∆x for h = 10−5

and L = 17. Right: Spatial and temporal l2 error versus L for different ∆x obtained with quadratic
FEM and h = 10−5.

convergence property of the second order finite elements is due to some symmetry
in this very solution. The number of power series coefficients is L = 17, and the
temporal step-size is h = 10−5. The right plot shows the error versus L for various
∆x for quadratic finite elements.

6.3. Drift diffusion equation. The fundamental solution for the drift diffusion
equation ∂tu = ∂xxu + 2∂xu is given by

u(x, t) = exp
(
− 1√

4πt

(x− x0 + 2t)2

4t

)
.

We set the initial time to 0.2, x0 = 1 and use u0(x) = u(x, 0.2) as initial data to
integrate the drift diffusion equation from t = 0.2, . . . 3 on the interval [−5, 5]. Again
the l2 error en at t0 + nh is defined by (6.1) with uref(x, t0 + nh) = u(x, t0 + nh).
The results are almost identical to the ones obtained for the heat equation. In the
experiments shown in Fig. 6.5 quadratic finite elements where used. The mesh-width
is ∆x = 1/400 and the step size h = 10−5. The left sub-plot shows the evolution of
the error for various numbers of coefficients in the power series (3.10). The parameters



Transparent boundary conditions 17

1 2 3

10−10

10−8

10−6

t

 e
rr

or

L = 5
L = 7
L = 9
L = 11
L = 13
L = 15

5 7 9 11 13 15 17

10−10

10−8

L

er
ro

r

 t = 0.89
 t = 1.60
 t = 2.30
 t = 3.00

Fig. 6.5. Left: Spatial l2 error en at different times t = nh versus L for quadratic FEM with
∆x = 1/400 and h = 10−5. Right:Spatial l2 error over time for different L for quadratic FEM with
∆x = 1/400 and h = 10−5.

are such that the maximum of the solution hits the boundary at about t = 2.6. In the
right sub plot the error is shown for several fixed t. Again this plot indicates that the
truncation error introduced decays super algebraic or exponentially in the number of
coefficients in the power series.
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Fig. 6.6. Left: Spatial and temporal l2 error versus the the spatial mesh-width ∆x. Right:
Spatial and temporal l2 error versus L for different ∆x obtained with quadratic FEM and h = 10−5.

In Fig.6.6 the l2 error with respect to time and space (e =
∑

n hen) is shown. The
left plot shows the error versus ∆x for first, second and third order finite elements.
The linear and third order finite elements show the expected second order and fourth
order convergence. Second order finite elements show a again a convergence that is
better than may be expected. The number of power series coefficients is L = 17, and
the temporal step-size is h = 1e − 5. The right plot shows the error versus L for
various ∆x for quadratic finite elements.

6.4. Wave equation. The initial data for the wave equation is a Gaussian
u0(x) = exp

(
x2
)

centered around 0 The initial velocity is set to 0, which is approx-
imated by setting ũ−1 = ũ0 + h2/2(S̃ũ0) in the algorithm. As there is no analytic
reference solution available for the damped wave equation, a reference solution ũn

ref is
computed on a three times larger domain, i.e m = −3M, . . . , 3M , using the same ∆x
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and h. The error is measured in the energy norm given by

en =
1
2
(ẽn

t )T M̃(ẽn
t ) + (ẽn)T Ã(ẽn), (6.2)

where ẽt = (ẽn+1 − ẽn+1)/2/h is an approximation to the velocity, and M̃ and Ã
are the mass and stiffness matrix in the interior domain. The error vector is given
by ẽn = ũn − P ũn

ref , where P ũn
ref is the restriction of the reference solution to the

degrees of freedom corresponding to the computational domain.
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Fig. 6.7. Left: Error en (6.2) at different times t = nh versus L for quadratic FEM with
∆x = 1/250 and h = 5 · 10−5. Right: Error in energy norm over time for different L for quadratic
FEM with ∆x = 1/250 and h = 5 · 10−5.

In Fig. 6.7 the discretization parameters are ∆x = 1/250 and h = 5 ·10−5; second
order finite elements were used. The left sub-plot shows the evolution of the error
for L ranging from 5 to 15. In the beginning the error is very small as we are not
measuring any ∆x or h dependent discretization error, but solely the error introduced
by the discretization of the boundary condition. The right sub-plot displays the error
measured at about t = 4.96, 10, 15, 20 for different number of coefficients L in the
power series expansion. In Fig. 6.8 we have plotted the error over ∆x for linear,
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Fig. 6.8. Left: Error (e =
P

n en) over the the spatial mesh-width ∆x. Right: Spatial and
temporal l2 error versus L for different ∆x obtained with quadratic FEM and h = 5 · 10−5.

quadratic and cubic finite-elements. The cubic finite elements only show a third order
convergence, which is worse than one may have hoped for.
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7. Summary. We presented a new general approach to construct transparent
boundary conditions for the wave-, heat-, Schrödinger- and drift-diffusion equation.
The central idea of the pole condition is to distinguish between incoming/unbounded
and outgoing/bounded exterior solutions by looking at the poles of the spatial Laplace
transform. From this analysis it could be seen that an exact transparent boundary
condition requires the Laplace transform to be analytic in a certain domain in the
complex plane, whereas the location of this domain depends on the equation. It
was shown that the well known exact analytic TBCs are recoverd with this ansatz
by a special choice of parameters. To construct a numerical algorithm, the Laplace
transform was represented as a power series on the unit disc, which then allowed the
derivation of equations for the coefficients. The actual scheme then computes a finite
number of these coefficients, providing an approximate discrete TBC. It has been
shown in numerical experiments for all four equations, that the error introduced by
the boundary conditions decays exponentially fast in the number L of coefficients. As
all our examples were one-dimensional, the number of unknowns added to the system
in order to realize the boundary at both sides of the computational domain is 2L.
Even for very fine spatial resolution in the computational domain (order of thousands
of nodes), around 20 additional unknowns were sufficient to reduce the boundary error
to the order of the discretization error in the interior.

Although this paper was restricted to the one-dimensional case, the method can
be extended to higher dimensions. The extension to the two- and three-dimensional
case will be subject of future work.

REFERENCES

[1] A. Arnold and M. Ehrhardt, Discrete transparent boundary conditions for wide angle
parabolic equations in underwater acoustics, J. Comp. Phys., (1998), pp. 611–638.

[2] R. Astley, Infinite elements for wave problems: A review of current formulations and an
assessment of accuracy., Int. J. Numer. Methods Eng., 49 (2000), pp. 951–976.
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