TakustralRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

CHRISTIAN RAACK
ARIE M.C.A. KOSTER
SEBASTIAN ORLOWSKI

ROLAND WESSALY

Capacitated network design using
general flow-cutset inequalities

This research has been supported by the German Ministry of Education and Research (BMBF) within the EIBONE project under contract number 01BP567.

ZIB-Report 07-14 (Juni 2007)

Capacitated network design using
general flow-cutset inequalities *

Christian Raack® Arie M.C.A. Kostert Sebastian Orlowskif
Roland Wessily'

Abstract

This paper deals with directed, bidirected, and undirected capacitated network design prob-
lems. Using mixed integer rounding (MIR), we generalize flow-cutset inequalities to these three
link types and to an arbitrary modular link capacity structure, and propose a generic separation
algorithm. In an extensive computational study on 54 instances from the Survivable Network
Design Library (SNDIib), we show that the performance of CPLEX can significantly be enhanced
by this class of cutting planes. The computations reveal the particular importance of the sub-
class of cutset inequalities.

Keywords: general flow-cutset inequalities, capacitated network design, mixed integer round-
ing, SNDIib

MSC: 90C11, 90C35, 90C57, 90B18

1 Introduction

The task of capacitated network design is to assign capacity to the links of a potential network
topology by selecting capacity modules (wavelength channels, leased lines, STM-N capacities) from
a discrete set such that given communication demands can be satisfied and total installation cost is
minimized.

In this paper we revisit polyhedral approaches based on cutsets for directed, bidirected and
undirected link models E, @, , @, @, |lli5p] Flow-cutset inequalities that have been studied by
Atamtiirk] for the directed case are generalized to bidirected and undirected link models in this
paper, and their efficiency within a branch-and-cut framework is investigated. A generic separation
algorithm, that unifies known separation heuristics H, E, %, E, @, @] for all three link models and an
arbitrary modular link capacity structure, is presented.

Our computational study comprises 54 instances covering all SNDIib [E] networks, the link types
DIRECTED, UNDIRECTED, and BIDIRECTED, as well as the capacity models MopUuLAR and ExpLICIT de-
fined in SNDIib. In all 54 cases, separating general flow-cutset inequalities substantially improves
the performance of CPLEX. In particular, 27 instances can be solved to optimality within one hour of
computation time, compared to 17 with the default settings of CPLEX. The best solutions are avail-
able at the SNDIib homepage http://sndlib.zib.de. It is the first time that the practical strength
of these cutting planes for capacitated network design problems is proven using such a variety of
realistic instances. These results confirm their theoretical importance, shown in an accompanying
polyhedral study [19].

A network instance is given by a directed graph G = (V, A) (DirecTeD link model) or an undi-
rected graph H = (V, E) (BipirecTED and UNDIRECTED link model), a set M of installable modules,
and a set K of commodities. For undirected graphs we define G = (V, A) to be the digraph that

*This research has been supported by the German Ministry of Education and Research (BMBF) within the EIBONE
project under contract number 01BP567.

TZuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, {raack,orlowski,wessaely}@zib.de

fUniversity of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP), Coventry CV4 7TAL,
United Kingdom, Arie.Koster@wbs.ac.uk

http://sndlib.zib.de

is obtained by introducing a pair of antiparallel arcs e and e~ for every edge e in E. We set
A= {et =(i,j), e” = (j,i) : e ={i,j} € E}. For all models, 6/,(v) and d;(v) denote the arcs in
A that have v as their source and target node, respectively. A module m € M has a capacity
™ € Z4\{0}. Let 2, 2" be the number of installed modules of type m € M on arc a € A or edge
e € F, respectively.

With every commodity k € K we associate a vector d* € Z" of demands such that > cv drk =0,
assuming a fractional multi-commodity flow routing. There are mainly two approaches related to the
definition of commodities and demands. The first is to consider an individual commodity for every
point-to-point demand, resulting in |K| € O(|]V|?) commodities. In our formulations, point-to-point
traffic demands are assumed to be aggregated at their source nodes. Thus, every commodity k € K
can be identified with a unique source node s such that d* > 0 and d* < 0 for all v € V\{s}. There
might be several target nodes with negative demand value. This approach may lead to a significantly
reduced problem size with |K| € O(]V]). The flow of a commodity can be split among several paths
and it is allowed to be fractional. Let f¥ € R, be the flow variable for arc a € A and commodity
k € K. We consider the flow conservation constraints

Yo=Y fh=di wweVikek (1)

a€5g(v) a€dg (v)

and, depending on the link type, one of the following sets of capacity constraints

Z ff < Z cmal' VaeA, (2)

kEK meM
max{ Q,fo,}g Zcmac;" Vee I, (3)
keK ke K meM

S+ <Y M Veek. (4)

keK meM

The network design polyhedra for the link types DIRECTED, BIDIRECTED, and UNDIRECTED are given
by

Py =conv {(f,z) € RfXK X ZﬁXM : (f, x) satisfies (1)), (2)} ,
Py =conv{(f z)¢€ R M (f, o) satisfies (1), (3)} ,
Py = conv {(f,z) € R 5 22XM - (f,) satisfies (1), 4} .

Notice that the capacity constraints (3) for Py; can be expressed by two linear inequalities for each
link, that P,; is a relaxation of P,,, and that the constraint matrices and right-hand side vectors
are integral. In addition to this MoDpULAR capacity model, we also consider the ExpriciT capacity
model where the constraints), zi* < 1 for a € A are added to the DirecTED formulation and
the BipirecTED and UNDIRECTED formulations are extended by >, x7* <1 for all e € E. These
generalized upper bound constraints ensure that at most one module is installed on every network
link.

We study network design problems whose objective is to minimize a linear function incorporating
flow and module cost over one of the defined polyhedra. We focus on these core problems of
capacitated network design and do not consider any further problem-specific constraints such as
survivability requirements or node capacities. Depending on the application, integral or single-path
routing may be required; the polyhedra under consideration relax both cases at a uniform level.
The general flow-cutset inequalities derived in this paper can easily be generalized to arc-dependent
module sets and to models with preinstalled capacity.

This paper is organized as follows. In Section[2 we introduce the necessary notation and present
general flow-cutset inequalities for the three link types. It is shown how to derive these cutting planes
by mixed integer rounding (MIR) and how to strengthen so-called simple flow-cutset inequalities.
Section[3 focuses on the separation problem. We present a generic separation procedure that can be
used for all considered models and an arbitrary number of modules. In Section 4] we report on the

effect of the generated inequalities in reducing computation times and gaps for a large set of test
instances taken from SNDIib. Section(5 contains some concluding remarks. A literature review can
be found at the end of Section [2]and at the beginning of Section [3.

2 General flow-cutset inequalities

In this section, we generalize flow-cutset inequalities that have been presented in H, %, @, @L @, @]
for special cases of the network design problems considered in this paper. We derive them by
aggregating model constraints on a cut in the network and applying a subadditive MIR function to
the coefficients of the resulting inequality. As shown in E, , these inequalities are facet-defining
for the network design polyhedra Py;, P,,, and Py; under rather general conditions. We will first
introduce the subadditive MIR function that we use to derive strong inequalities. We will then
develop the cut-based inequalities to which the function is applied. Special cases studied in the
literature are reviewed at the end of this section.

Mixed integer rounding. Let a,c,d € R with ¢ > 0 and define a™ := max(0,a) and o~ :=
min(0, a). Furthermore, let
Tae:=a—c([2]—=1)>0 (5)

be the remainder of the division of a by cif % ¢ Z, and c otherwise. A function F': R — R is called
subadditive if F(a) + F(b) > F(a+ b) and superadditive if F(a) + F(b) < F(a + b) for all a,b € R.
We consider the function Fy . : R — R defined by

Fdac(a’) = ’—%-'rd,c - (Td,c - ra,c)+

Lemma 2.1. The function Fy . is subadditive and nondecreasing with Fg .(0) = 0. If% ¢ Z, then

Fycla) == limp o M =at for all a € R. If otherwise % € Z, then Fy.(a) = Fy.(a) = a for all

a €R.

Proof. Define f, :=x — |z| for z € R. For b € R, let ¢ : R — R, defined by

(fa - fb)Jr
a):=|a| +-——"—
pv(a) = la] =7
be the MIR-function for <-base-inequalities with right-hand side b. According to Nemhauser and
Wolsey , §I1.1.7], the function ¢ is superadditive and nondecreasing with ¢5(0) =0 and if b ¢ Z
then B
lim —@b(at) - ¢
t\0 t 1-— fb
for all a € R.
Using the relation c¢f-o = ¢ — r, . which follows by definition (5) of the operator 74 ., it holds

that

—Tde P a(—¢) = —Tacl—¢] —Tac - =Tdele] —Tde
:

c
c—= Cf,g Td,c
c

= Fd,c(a).

It follows that Fy .(a) is subadditive and nondecreasing with Fy;.(0) = 0. If ¢ ¢ Z, then

Fyclat p_a(=%1) —ay-
lim M = —rg.lim # =—rg 676(=) = —(—a)” =at.
t\.0 t AN t Te—cf _a
If % € Z, then rq. = cand Fy.(a) = [¢]lc—c+rqc=a= Fyc(a) for all a € R. O

Lemma 2.2. |F,.(a)| < |a| for all a € R. Moreover, a,c, d € Z implies Fy.(a), Fy.(a) € Z.

Proof. If a, ¢, d € Z, then F, .(a), Fy.(a) € Z by definition. It remains to show that |Fj.(a)| < |al
for any a € R. First assume a > 0. If r4. <74, then

0< Fd,C(a) = Td,t[%1 < Ta,C(%] =a— ((%1 - 1)(C - Ta,C) <a
since [¢] > 1and 0 <7, < c. Now let r4. > 74, Then 7y < cand
0< Fyela) =rac[t] = (Tde —Tae) =Tael] +Tae <clE] +7ac=a.
For a < 0, the result follows from Fy.(a) = F_q.(—a) + a. O

The function Fy. can be seen as the 1/¢-MIR function for >-base-inequalities with right-hand
side d, scaled by the factor rq .. Similar subadditive and superadditive functions based on MIR have
been considered for instance by Atamtiirk @, 3, M] and Louveaux and Wolsey M]

Lemma 2.3 ([T?, Chapter 11.1, Theorem 7.4]). Let

X = {(fw) ERY XZT: Y yfi+ Y ¢y Zd}

JEN1 JEN2

with N1, Na being two finite index sets and v;, ¢;, d rational numbers. If the function F: R — R is
nondecreasing and subadditive on R with F(0) =0 and F exists for all j € Ny, then

ST F(f+ Y Fleyz; > F(d)

JEN1 JEN2

is valid for X .

General flow-cutset inequalities. By Lemma[2.1T and Lemma[2.3, applying the function Fy . to
the coefficients of valid base inequalities yields new valid inequalities. In the sequel we will consider
base inequalities for network design polyhedra that correspond to cuts of the underlying network.
We first introduce the necessary notation.

Consider a cut defined by a subset S of the supply nodes V and let Q be a subset of the
commodities K. For UNDIRECTED and BIDIRECTED link types, consider the undirected cut

Es:={ecE:i€S, jeV\S}
with subsets Ey, Es C Fg (see Figure|1(a)). Similarly, for DirEcTED models, define
AL ={(i,j) e A:ie S, jeV\S} and Ag:={(i,j)eA:j€ S, ieV\S},

and consider subsets Af C Af, Ay C Ag, and Af := A}\AT (see Figure [1(b)). The sets Af,
A7, and A, are also used for UNpIRECTED and BIpIRECTED models. In this case, the sets A], Al
correspond to forward flow on edges of E; and its complement with respect to the cut, whereas A5
corresponds to backward flow on edges of Fj.

Let f9(A*) denote the total flow on some subset A* of the arcs A with respect to Q, i.e.,
feA%) = D okeQ DacAar f¥, and let 2™(A*) := Y 4. a7 be the total number of modules of
type m € M on arcs of A*. The value 2™ (E*) :=) _p. x7" is defined analogously for undirected
edges E* C E. In the following, the node-set S and the commodity subset @ are fixed. Let
dg =D ves ZkEQ d* be the total demand value with respect to) over the cut defined by S,

where d’fg = dgk} for k € K. By switching between S and V\S we may assume that dg > 0 since
dg = fdg\s. Let K;r = {k e K: d’fg > 0} and Kg := {k e K: d’fg < 0} be the commodity subsets
with positive and negative demand over the cut, respectively.

E A+ A

—_— dQ

Ay
— & 2

(a) Undirected cut and edge-sets (b) Directed cut and arc-sets

Figure 1: Network cuts

We will now develop a valid base inequality that is defined for S and @Q). By aggregating all flow
conservation constraints corresponding to nodes in S and commodities in @@ we obtain

FAL) ~ f2(A5) = dF
Adding this aggregated flow conservation constraint to the aggregated DIRECTED capacity constraint

> cma™(Af) > fOAf)

meM
and to the non-negativity constraints for Ag\ A5 results in

fRA]) - + > cmam(A]) > dg.
meM
By defining f@(A7) = >, ,car ¢™a™(A5) — f9(A7) to be the slack of the aggregated DIRECTED
capacity constraint for A, , we may write
JRAD) + FA7) + D (e (AT) —a™(437) > df, (6)
meM

where f9(A 5) can be treated as a single nonnegative continuous variable. By construction, inequal-
ity (6) is vahd for Py;. Notice that it is also valid for the linear relaxation of Pj;. Considering
edge-sets Fy and Es gives a similar inequality for BIDIRECTED and UNDIRECTED problems:

FOUAD) + FOAy) + Yo & (@™ (Br) — a™(Br)) > dS. (7)
meM
Notice that in contrast to the arc-sets A and A5, the edge-sets F; and E, are not necessarily

disjoint. Applying the MIR function Fy . with d = dg and ¢ = ¢’ for t € M to the coefficients of (6)
and (7) leads to the class of general flow-cutset inequalities.

Proposition 2.4. For any t € M, let F;, = 49 et and F; = ng ot The general flow-cutset
inequality
FUAD) = fOUAD) + D F(ema™Af) + Y (" + F(—c™)a™(45) > F(dd) (8)
meM meM

is valid for Py;, whereas the following general flow-cutset inequality is valid for Py; and Py, :

FUAD) = A7) + 3D BB+ Y (€™ + Fi(—c™)a™(B) > F(d2). (9)

meM meM

Proof. Applying F; to all coefficients of module variables and F; to all coeflicients of flow variables
in (6) and (7) yields inequalities (8) and (9), respectively. Notice that F;(1) = 1. The proposition
follows then by Lemma [2.1] Lemma and resubstituting f?(A5). O

In the light of M], general flow-cutset inequalities are derived by aggregating, substituting, scaling
and MIR. In fact, the function F} is responsible for the last two steps. It scales the base inequalities
(6), with 1/c! and then applies MIR. The resulting inequality is additionally rescaled to obtain
integer coefficients. The MIR procedure to obtain flow-cutset inequalities is similar to the one
presented by Louveaux and Wolsey [ﬁ] for single node flow sets and flow-cover inequalities. The
only difference is that we do not complement capacity variables because they are not bounded. There
are also relations to the concept of simultaneous (subadditive) lifting E, @, M, @H In particular, the
function F; is identical to the lifting function ¢;" used in H] to lift flow-cutset inequalities from the
single-module to the multi-module case.

If dg is an integer multiple of ¢!, then Lemma implies that Fi(a) = a for all ¢ € R and
the inequalities (8) and (9) are identical to the trivially valid base inequalities (6) and (7). By
Lemma 2.2, Fy.(a), Fy.(a) are integral if a,c, and d are integral. Moreover, |Fj .(a)| < |a| holds
for all @ € R. This means that the considered inequalities have small integral coefficients as long
as capacities and demands are small and integral. From a numerical point of view, this property is
desirable in a cutting plane or in a branch-and-cut algorithm.

Special cases and strengthening. We call flow-cutset inequalities with A5 = 0 (or Ey = 0)
simple. Simple flow-cutset inequalities can be strengthened by rounding down all left-hand side
coefficients to the value of the right-hand side. Given that F; is nondecreasing, this strengthening
can either be applied to the base inequalities (6) and (7) or to the MIR inequalities (8) and (9).
Both ways lead to the same strengthened simple flow-cutset inequalities (seeqﬁl—Q’] for details). We
obtain

FRAN) + > F(min(c™, d@)a™ (A7) > Fi(d¥) and
meM

AN+ > F(min(c™, d@)z™(Er) > Fi(dg).
meM

For ease of exposition we assume that ¢ < dg for all m € M in the following discussion. Necessary
and sufficient conditions for (8) and (9) to define facets of their corresponding polyhedra are derived
in [2] and [19], respectively.

Inequalities (8) and (9) generalize large classes of known valid inequalities for network design
polyhedra. In particular, by choosing Ay = () (E2 = 0) and A = A} (E1 = Eg) as wellas Q = K¢,
they reduce to the well-known cutset inequalities that contain only module variables. Fixing the
network cut and the module ¢ € M leads to two cutset inequalities in the DIRECTED case, one for
each direction:

Z Ft(Cm)SEm(AZQ) > Ft(dg;r) and Z Ft(cm)xm(Ag) > Ft(ldggb-
meM meM

The left-hand sides of the two cutset inequalities for the BipiRECTED and UNDIRECTED link types are
identical. Taking the maximum of the two right-hand sides gives

S R(e™)a™(Bs) > max(F(d®), Fi(lds®])).

meM

Notice that we can assume Kg = () for UNDIRECTED link models because every demand can be
reversed without changing P,,. Hence every negative commodity, i.e., a commodity with d’g <0,
can be made positive with respect to a cut of the network. Reversing demand directions is done
implicitly in our implementation.

Literature review. Cutset inequalities for UNDIRECTED models with up to three modules have
been studied in a series of articles by Magnanti et al. m, M, E‘] for the special case of divisible base
capacities. Cutset inequalities for BIDIRECTED models with two modules and divisible base capacities
have been considered in Bienstock and Giinliik [E] These authors also introduce simple flow-cutset

inequalities. The general flow-cutset inequality (8) for DirREcTED models and a single module has
been introduced by Chopra et al. [g} The first one to study the general multi-module case and
inequalities with arbitrary capacity structure is in the context of the directed cutset
polyhedron. A polyhedral study for network design polyhedra and all three link models is presented
by Raack et al. [LYQ] General flow-cutset inequalities for a single module, a single commodity and
BIDIRECTED models are extended by Rajan [?F)A

and p-cycles.

| to the concept of survivability using directed cycles

3 Separation

Given any of the network design polyhedra Py, Py and P,, and a (fractional) point p = (f, %),
the separation problem for general flow-cutset inequalities reduces to the problem of simultaneously
determining a node-set S C V, a commodity subset @ C K, arc or edge subsets of the cut Ag
or Fg and a module ¢t € M leading to a most violated inequality. Atamtiirk shows that this
problem is already AP-hard in the special case of a single point-to-point commodity. By contrast,
the separation of cutset inequalities and simple flow-cutset inequalities can be shown to be a max-
flow problem if a single point-to-point commodity is assumed (see E, ’ﬁ]) For general commodity
sets, finding a most violated cutset inequality is known to be N'P-hard (see Bienstock et al. ﬁ])
For a fixed node-set S, the complexity of simultaneously determining @ and Af, A5 (E;, Es) is not
known. For fixed S and @, however, suitable subsets of the cut arcs (cut edges) can be identified in
linear time for every ¢t € M, as shown in H] and used below.

The efficiency of separation routines based on flow-cutset inequalities for one of the three link
types has been investigated by several authors. Some studies also incorporate the effect of arc
residual capacity inequalities and three-partition inequalities. Except for Atamtiirk] all studies
consider divisible base capacities and a restricted module set with |[M| < 2. Magnanti et al.
propose an enumeration strategy to generate cutset inequalities for the UNDIRECTED model with two
modules. For small networks with |V| < 12 they consider all network cuts in an iterative process.
If for |S| = i — 1 no violated cutset inequality can be found they check all cutset inequalities for
violation with |S| = i as long as i < ||V|/2]. Considering a capacity formulation, Barahona [5}
presents a separation routine for cutset inequalities that is based on a heuristic for the max-cut
problem. Considering a BIDIRECTED model, Bienstock and Giinliik [6] enumerate all node-sets S
with the property that the two subgraphs H[S] and H[V\S] defined by S are connected. This
is done for two networks with |V| € {15,16}. Notice that this property is necessary for a cutset
inequality to define a facet for the network design polyhedra Py;, P,., (see (6, 13,/19]). Bienstock and
Giinlitk check cutset inequalities, three-partition inequalities and simple flow-cutset inequalities in
a hierarchical manner. If no cutset inequalities can be found they check three-partition inequalities
and only if the latter fails they try to generate simple flow-cutset inequalities with |Q| < 2 and
|Ey| < 3. A similar approach was chosen by Bienstock et al. ﬁ] They study a DIRECTED model
and enumerate a subset of all node-sets S with the property that G[S] and G[V'\S] are strongly
connected for two networks with [V] € {15,27}. If the corresponding cutset inequality is violated
or tight then also simple flow-cutset inequalities with small commodity and edge-sets are checked
for violation. Bienstock et al. ﬁ] introduce a second very fast heuristic to generate subsets S that
is based on a shrinking procedure. A similar procedure is used by Giinliik [9]. Atamtiirk H] reports
computational results for network design problems with up to 29 nodes and 3 modules. Flow-cutset
inequalities are considered for |S| = |@] = 1 and tested against a pure branch-and-bound approach.

We distinguish three different approaches here. All three algorithms decompose the separation
problem, combining ideas from E, %I,) ,@, m Algorithm A heuristically computes a certain number
of violated general flow-cutset inequalities. By contrast, Algorithm B exclusively generates cutset
inequalities. Algorithm C follows a hierarchical approach that favors cutset inequalities over any
other type of general flow-cutset inequalities. Recall that cutset inequalities form a subclass of
general flow-cutset inequalities by taking A = Ag and A; =0 (or E; = Eg and Ey = (}). In the
following, we provide a more detailed description of the algorithmic steps that all three separation
routines are based on, and present some implementational details.

Algorithm A,B,C Generating General flow-cutset inequalities

Requires: LP-solution
Provides: violated general flow-cutset inequalities

1. Contract the graph. Enumerate in the resulting partition all cuts with their corresponding
node-sets S.

2A. Proceed with Step 3.
2B. For every module t € M check the corresponding cutset inequality for violation. STOP.

2C. For every module t € M check the corresponding cutset inequality for violation. If no violated
cutset inequalities can be found after several separation rounds proceed with Step 3 else STOP.

3. Given a node-set S, heuristically compute promising commodity subsets Q.

4. For given S and @ and for all t € M, exactly determine subsets A}, Ay or Ey, Ey leading to
a most violated (if any) general flow-cutset inequality of type or (9). STOP.

Finding a node-set S To determine cutsets we generalize a heuristic proposed by Bienstock et al.
[E] and Giinlitk @] Given weights w,, w, for the arcs and edges of the network, we iteratively shrink
the arc (edge) with the largest weight, delete loops and maintain parallel links (i. e., the weights are
not adapted during the shrinking process). We apply this procedure until the shrunken graph has a
predefined number of nodes, and enumerate all cuts in that graph.

Given a fractional LP solution, let s,,s. > 0 be the slacks and 7., 7. < 0 the dual values
corresponding to the capacity constraints of arc a or edge e. For the BipDIRECTED link model there
are two capacity constraints for every edge e, so we define slacks and duals as s .+, S.—, Mo+, Te—. We
define arc (edge) weights by

DIrReCTED link model: Wy =84 + Ty a€ A,
BIDIRECTED link model: We :=MmiN(Sp+, Se—) + min(me+, Te—) ec
UNDIRECTED link model: We =8¢ + Te ece k.

With this definition, cuts are preferred that have many arcs (edges) with small slack to raise the
chance of obtaining a violated general flow-cutset inequality. Since usually many capacity constraints
have zero slack w.r.t. the current LP solution, we also consider the dual value as a second sorting
criterion. Furthermore, increasing capacity on the cut shall maximally increase the objective func-
tion. In our computational tests, taking a combination of slacks and duals outperformed shrinking
weights defined only by the slacks.

For the strength of cut-based inequalities it is crucial that the subgraphs defined by S and V\S
are connected (BipiRecTED and UNDIRECTED link types) or strongly connected (DirRecTED model),
see Agarwal [i] and Raack et al. @] By definition of the shrinking procedure, every component
of the resulting graph-partition is connected. Hence, if the shrinking procedure is continued until
the shrunken graph has only two nodes left, then it can be guaranteed that the two subgraphs are
connected. Notice however that even in this case it cannot be ensured that these subgraphs are
strongly connected. Moreover, the separation routine turns out to be most effective if the shrunken
graph has four to five nodes left and all cuts of the remaining graph are used to derive violated
inequalities. This way more cuts are considered in each separation round, but it might happen that
one of the subgraphs defined by a cut is not (strongly) connected, which results in weaker general
flow-cutset inequalities. Although not incorporated in our algorithms, a strengthening is possible in
this case by considering metric inequalities, see H, E] and the concluding remarks in [19].

In addition to the cuts obtained by shrinking we also consider all single node cuts, i.e., all
node-sets S = {v} with v € V| in every separation round.

Finding a commodity subset Q In general no efficient way is known to compute a commodity
subset that leads to a most violated general flow-cutset inequality. We concentrate on commodity
subsets Q with @ C K or, by symmetry, Q C Kg (exchanging S and V\S). Similar to E, B, @],
we use all singleton commodity subsets, some commodity subsets @ with |Q| = 2, and the whole set
K (Kg).

Finding subsets A and A, (or E; and E;) Given a point p = (f, Z),thesets SCV,QC K
and t € M, we derive a most violated general flow-cutset inequality for the DiIRECTED link model [é]
in linear time by defining

Af = {a €Ay Y Rl(emir < fg?}, Ay = {a € A5 Y (¢ + Fy(—cm)iy < fg?}.

meM meM
Similarly, for the BipiREcTED and UNDIRECTED link models, we define

E, = {e € Es: Z Fy(c™zlr < fg}, Ey = {e € Es: Z (™ 4+ Fiy(—c™)zlt < ff,}

meM meM

This definition of the arc or edge-sets yields a general flow-cutset inequalities with minimal left-hand
side. It is not the only possible definition with this property. If for instance for a € AJSr the equality
Y omen Fr(c™)al = £9 holds, then assigning arc a to either of the sets AT or Af leads to different
general flow-cutset inequalities with the same absolute violation with respect to p. It follows that
ties can be broken arbitrarily, influencing the distribution of the generated inequalities (see Figure[6]
and 8). The above definition turned out to be the most effective one in our computational tests.
It implicitly favors the generation of cutset inequalities because we avoid generating flow-cutset
inequalities with AT # () or Ay # 0 (Ey # () or By # ().

The separation algorithms are implemented as callbacks using the callable library of CpLEX 10.0
@] The number of violated inequalities identified is enormous for most of the instances. Adding
them all leads to unacceptable computation times since user-added cutting planes are never deleted
in CPLEX. We used several techniques to select a small number of the most promising cuts. First,
the total number of generated general flow-cutset inequalities is restricted to the number of rows in
the initial formulation. Second, the algorithms are called only at the root node and at every 8th
depth of the search tree. Third, every violated general flow-cutset inequalities found is written into
a cut-pool. From all inequalities in the pool we only add a small number to the current formulation
in every iteration, preferring those that have a large distance to the point p and that are not too
orthogonal to the objective function. If the number of violated inequalities that we select in this
way is very large or very small, we adapt the efficiency measures accordingly. We also avoid adding
cutting planes that are almost parallel to each other. The necessary fine-tuning of algorithmic
parameters has been carried out in a series of computational tests. The results we present here are
those obtained with our best settings.

4 Computational results

Instances. We tested the branch-and-cut approach using Algorithms A, B and C on all instances
of the Survivable Network Design Library (SNDIib) [18] with the following model specifications: link
models DIRECTED, BIDIRECTED or UNDIRECTED, capacity structure MoDULAR or EXPLICIT, no fixed-
charge costs, continuous routing allowing all paths, no hop limits and no survivability. These are 54
problem instances in total, 4 of which are DIRECTED, 25 BIDIRECTED, and 25 UNDIRECTED. There are
27 instances with MopuLAR and ExpriciT link capacity structure, respectively. The number of nodes
of the underlying networks ranges from 10 to 65, the number of links from 18 to 172, and the number
of demands from 22 to 1869. The maximum number of modules is 11 for MODULAR capacities and
55 for ExpriciT capacities. Notice that for BipiREcTED models we calculated the routing cost of a
link as the given cost parameter times the sum of the flows in both direction which conflicts with

the definition in [TS] for the SNDIib where only the cost for the maximum of the two flow values is
incurred.

We used CpLEX 10.0 @] in the default mode and compared its performance to our algorithms
that augment CPLEX by the presented separation routines. All computations were performed on a
3GHz x86 Linux machine with 2GB of memory and a time limit of one hour. For the statistics we
distinguish between easy and hard instances. An instance is easy if it can be solved to optimality
within the time limit of one hour by one of the considered algorithms. All other instances are referred
to as being hard. These cannot be solved within the time limit either by default CPLEX or by adding
flow-cutset inequalities using Algorithms A, B or C. With respect to this definition, 14 MobuLAR
(13 ExpriciT) instances turned out to be easy, compared to 13 (respectively 14) hard instances.

1.7% 19% 4.3% 10% 263% gdaps

— 1h limit
2 o/ |
>% 4 1000
24% 32.6%
o 0% 4 0 | 2
E ‘o
c -25%- 100 E
£ 5
()] 3
S -50%- 3
5 10 g
-75% A
-100% e 1
n 2 o S5 @@ S5 @@ @ > S5 D o AaQ m
g 2 £ £ 5% s 3B 5 £ G 3 8 5 W
c -— -— -—
2 2 S = Sl) 3 & s 7
o o © © c -E L= L=
o

H Algorithm A B Algorithm B [] Algorithm C & CPLEX default

Figure 2: Easy instances — MoDpULAR: Relative change in solving time compared to default CPLEX
[bars], as well as absolute solving time of default CPLEX [line with markers]. For instances unsolved
within the time limit, the remaining optimality gap is reported.

Results for modular link capacities. We start with a detailed comparison of the results for
the models with a MopULAR capacity structure on the links. Figure [2 reports on the acceleration
compared to default CPLEX for easy instances. The bars represent the change in the absolute CPU
time. A value of -80% means that the solution time of default CPLEX could be reduced by 80% using
the respective algorithm. The black markers refer to the second y-axis, which displays the absolute
solving times of default CPLEX in seconds (on a logarithmic scale), according to which the instances
are sorted. Those instances reaching the time limit with default CPLEX are ordered according to the
remaining optimality gap (i.e., (upper — lower)/lower, where upper and lower are the final primal
and dual bound, respectively). For those instances, the acceleration is computed with the time limit
as an underestimation of the real computation time of default CPLEX. All instances are labeled with
the name of the underlying network and the link model, where the letters U, B and D denote the
UNDIRECTED, BIDIRECTED and DIRECTED model, respectively.

Algorithms B and C solve all easy instances to optimality within one hour of computation time.
In contrast, CPLEX fails to solve five of these instances in the default settings and two of these five
are not solved by using Algorithm A. The remaining optimality gaps of CPLEX and Algorithm A
are reported in the upper part of Figure[2. For nearly all of the easy instances the computation time
is drastically reduced by adding flow-cutset inequalities, in particular with Algorithms B and C.
Even for the instances that cannot be solved by CPLEX, the solution time is reduced to less than 10
minutes. Comparing Algorithms B and C, it turns out that for most of the instances it suffices to

10

+60
40%
+50
kel
5 30%- 40
3 | &
= (o)}
[
30
3 20%- %
£ 120 IS
v =
(o)}
c o
g 10%- 110
[S]
+0
0% .
4% -
©
c
=
_8 0% —
@
g
S -4%-
£
(]
g 8%
e
(9]
-12%

janos-us-ca-D
janos-us-D
pioro40-U
pioro40-B
cost266-B
cost266-U
germany50-U
germany50-B
newyork-B
newyork-U
norway-U
norway-B
tal-U

B Algorithm A [Algorithm B [] Algorithm C & CPLEX

Figure 3: Hard instances — MopuLAR: Relative change in lower and upper bound compared to default
CPLEX [bars], remaining optimality gap of default CPLEX [line with markers]

add cutset inequalities to the initial formulation, but an additional speed-up could be obtained in
particular cases by adding other types of general flow-cutset inequalities using Algorithm C.

For those MopuLAR instances which are hard to solve, Figure[3 shows the relative change in the
final lower and upper bounds. A value of 20% means that the corresponding final bound is 20%
larger than the one obtained by default CPLEX after one hour of computation. The instances are
sorted by the remaining optimality gap of default CPLEX, displayed on the second y-axis. Both
lower and upper bounds are improved by general flow-cutset inequalities.

Again, Algorithms B and C outperform Algorithm A, and Algorithm C is slightly better than
Algorithm B. It turns out that the improvement in the primal and dual bound is correlated to the
remaining optimality gap of default CPLEX. For the instance with the largest remaining optimality
gap, tal-U, the lower bound can be increased by almost 40% and the upper bound is decreased
by more than 10%. Whenever CPLEX has problems in finding cutting planes to increase the lower
bound or in finding solutions to decrease the upper bound, the effect of adding general flow-cutset
inequalities is significant. On the other hand, the performance of CPLEX is not deteriorated by the
cutting planes for those instances that have small gaps already in the default settings. The changes
of the resulting optimality gaps are reported in Figure [4l Again the percentages are given with
respect to the values obtained by CPLEX in the default settings. It can be seen that the cutting
planes most often significantly reduce the optimality gaps, sometimes by more than 90%.

11

20% +60%
&
S 0% —50%
2 a
T -20% +40% S
£ >
S -40%- T30% &
c £
‘S -60%- +20% &
81 o]
g -80% +10%
-100% +—= + + 0%

o o -} D:.l UIJ -} -} IJIJ dIJ -} -] L‘IIJ D

§ ¢ g g 8 8§ 3 8 F £ 8§ § =&

b h] ° o o > 2 £ g2 = g -

3 2 9 i} 4 2 T] 2 2 e} S

$ & =& =& © S E £ 2 g = ¢

c (] ()

.S, o o

Il Algorithm A [Jli] Algorithm B[] Algorithm C & CPLEX default

Figure 4: Hard instances — MopULAR: Relative change in the optimality gap compared to default
CPLEX [bars], as well as the absolute optimality gap of default CPLEX [line with markers]

75% 75%-
50% - 50%-
25% 25%
0% 1 0% | Il Algorithm A
[Algorithm B
4 0/ |
~25% -25% [] Algorithm C
-50% 1 -50%
-75% -75%
-100% +—— - 5 -100% +—— - . . o
g %2 < E g 2 £ & = 5
= =] o - =] &) o e}
5 b= 5 = 3 =)
(a) Easy test instances (b) Hard test instances

Figure 5: MopuLar: Relative changes of key measures on average when adding general flow-cutset
inequalities compared to the values obtained by default CPLEX

Figure 5/ summarizes the relative changes of several performance indicators when general flow-
cutset inequalities are added, compared to CPLEX in the default settings. For this statistic we
calculated the ratio of the considered measure with and without the respective separation routine
and averaged these ratios over all instances using the geometric mean. The resulting mean value
was then translated into a percentage. The figure shows the change in the the lower bound at
the root node before branching (root), the solution time (time), the number of visited branch-and-
bound nodes (nodes), the final lower and upper bounds (lower, upper), the final gap (gap), and the
integrality gap closed at the root node (closed). The latter is defined as (root —Ip)/(best —Ip), where
Ip is the value of the linear programming relaxation and best is the best known upper bound.

For easy instances the saved computation time correlates with the number of visited nodes and
the improved lower bound at the root node. The computation time is reduced by more than 80%
on average, and the number of nodes is even reduced by more than 90%. For hard instances, adding
general flow-cutset inequalities leads to a decrease in the number of branch-and-bound nodes that
can be visited within one hour of computation time. But since the cutting planes have a positive
effect on both the lower and upper bound, the final gap is still reduced by more than 60% on average.

12

3.54%

32.67% [Jcis
B sfcis
55.21% 35067, ~ Eothers
63.79%
100.00%
(a) Algorithm A (b) Algorithm B (c¢) Algorithm C

Figure 6: MopuLAR: Average distribution of general flow-cutset inequalities added by Algo-
rithms A, B and C

Among all tested separation algorithms, the hierarchical approach (Algorithm C) performed best.
To understand the different behavior of the three algorithms we examined the distribution of the
generated inequalities. Figure [6 shows the percentage of cutset inequalities (cis), of simple flow-
cutset inequalities (sfcis) and of all other types of general flow-cutset inequalities (others). With the
integrated approach of Algorithm A, only 32.67% of all generated general flow-cutset inequalities
are cutset inequalities, whereas 100% and 55.21% are cutset inequalities with Algorithms B and C,
respectively. Given that Algorithm C only slightly increases the performance compared to Algo-
rithm B, this means that cutset inequalities are responsible for most of the progress. All other
types of general flow-cutset inequalities should carefully be generated and only if no violated cutset
inequalities are found. As already mentioned in Section[3, we restricted the total number of added
general flow-cutset inequalities to the number of rows in the initial formulation. With this restric-
tion, the number of inequalities added amounted to 62%, 44% and 48% of the size of the initial
formulation for Algorithms A, B and C, respectively, averaged over all MopULAR instances.

75% 75%
50% - 50%-
25% 25%
0% | [| Algor%thm A
[Algorithm B
0/ |
-25%] 25%] Algorithm C
-50% - -50%
-75% - -75%-
-100% " -100% +— - - ”
s % % £ e 2 8 & & §
= = = o o =]
5 = 5 = E; =
(a) Easy test instances (b) Hard test instances

Figure 7: ExruriciT: Relative changes of key measures on average when adding general flow-cutset
inequalities compared to the values obtained by default CPLEX

Results for explicit link capacities. We conclude this section with a summary of the results
for models with an ExpriciT link capacity structure. Remember that the ExpriciT formulation
is obtained by adding a general upper bound constraint for every arc or edge to the MopuLARr
formulation. Since the presented general flow-cutset inequalities neither exploit these additional
inequalities nor the implied bounds on the capacity variables, we had expected a significant decline
in the benefit of the three separation routines compared in the MoDULAR case. But as the following

13

results show, general flow-cutset inequalities are of significant practical usefulness even for models
with binary capacity variables. There are 13 easy and 14 hard to solve ExprICIT instances. CPLEX
in its default settings could not solve five of the easy instances within the time or memory limit.
Algorithm A stills fails to solve two of the easy instances, whereas Algorithms B and C solve all easy
instances to optimality within the time limit.

Figure [7 reports on the average performance of the three algorithms. The figure shows that
the positive effect on the lower bound, the computation time (easy instances) and the optimality
gap (hard instances) is still large but less than in the MopuLAR case. Again, Algorithms B and C
outperform Algorithm A. The computation time for easy instances is reduced by about 66% on
average (compared to 80% in the MopuLar case). The remaining gap for hard to solve instances
can still be reduced by 48% (compared to 66% in the modular case). In contrast to the MobpuLAR
case, we observed a small negative effect on the upper bound, which is, however, largely outweighed
by the increased lower bound.

10.81% ¢ 550, 10.78%

37.46% [cis
! B sfcis
[l others
51.76%
82.63% 100.00%
(a) Algorithm A (b) Algorithm B (c¢) Algorithm C

Figure 8: ExpriciT: Average distribution of general flow-cutset inequalities added by Algo-
rithms A, B and C

The distribution of the general flow-cutset inequalities that are added to the initial formulation
is shown in Figure[8. It turns out that for Algorithms A and C the percentage of violated cutset
inequalities is smaller than in the MopuLAR case, and therefore other types of general flow-cutset
inequalities are generated more often.

Due to the larger number of modules for the ExpriciT instances in SNDIib, the total number
of added inequalities increases. Compared to the number of rows in the initial problem formu-
lation, a percentage of 91%, 58% and 63% general flow-cutset inequalities was added by Algo-
rithms A, B and C, respectively, averaged over all ExpriciT instances. With the large number of
modules also the separation time, i.e., the time consumed by the separation routines becomes criti-
cal. For two of the hard instances (nobel-eu and nobel-us, both with 40 link modules) the separation
time amounted to more than half of the total CPU time although we restricted the number of con-
sidered modules in step 2 and 4 of the Algorithms A, B and C to 10. Notice that the number of
modules not only influences the number of iterations but also the support of the added inequalities
and hence the time consumed by frequently called operations like the computation of the relative
violation or checks for orthogonality. Nevertheless, the described separation routines turned out to
be stable and useful for the case of ExpriciT link capacities.

5 Conclusion

In this paper we have studied capacitated network design problems with DIRECTED, BIDIRECTED,
and UNDIRECTED link models, as well as MopuLar and ExpriciT link capacities with an arbitrary
number of modules on the network links. The corresponding link-flow formulations are the basis of
many real-world optimization problems, in particular in the field of telecommunications. We have
focused on the class of flow-cutset inequalities to improve the dual bound, and showed how this class
can be generalized to the three link types and arbitrarily many modules. We have discussed three

14

different generic separation algorithms and implementational details. These algorithms were used as
separators within the branch-and-cut-solver CPLEX and tested against CPLEX with default settings
on 54 network design problems stemming from the Survivable Network Design Library (SNDIib).

It was shown that the considered separation algorithms can drastically improve the performance
of CPLEX for the given instances. The best results were obtained by using an hierarchical approach
that favors cutset inequalities over other types of general flow-cutset inequalities. It turns out that
this subclass of cutting planes, which contains only capacity variables but no flow variables, is
responsible for most of the progress. The performance is only slightly better and varies over the
instances when the larger class of general flow-cutset inequalities is considered. The latter ones
should be added carefully and only if no violated cutset inequalities can be found. For almost
all of the instances we had no difficulties in finding violated general flow-cutset inequalities, but
the challenge is to find the best ones. We believe that a more elaborate selection of cuts and in
particular of commodity subsets might even increase the impact of these inequalities. The results
suggest that the success of those flow-cutset inequalities which are not cutset inequalities is rather
problem-specific. It might depend on parameters such as the underlying network, flow-cost and the
capacity structure. Also the MIR and flow-cover inequalities generated by CPLEX might influence
the impact of flow-cutset inequalities. These dependencies have not been studied in this article.

The excellent results for models with ExpriciT link capacities are unexpected, because general
flow-cutset inequalities do not exploit the fact that the capacity variables are binary. The gain in
the performance is not as large as for MopuLAR models but still striking. This motivates the use of
general flow-cutset inequalities as valid inequalities for single node flow sets in addition to flow-cover
inequalities.

References

[1] Y. K. Agarwal. k-partition-based facets of the network design problem. Networks, 47(3):123—
139, 2006.

[2] A. Atamtiirk. On capacitated network design cut-set polyhedra. Mathematical Programming,
92:425-437, 2002.

[3] A. Atamtiirk. On the facets of the mixed-integer knapsack polyhedron. Mathematical Program-
ming, 98:145-175, 2003.

[4] A. Atamtiirk. Sequence independent lifting for mixed-integer programming. Operations Re-
search, 52:487-490, 2004.

[5] F. Barahona. Network design using cut inequalities. STAM Journal on Optimization, 6:823-837,
1996.

[6] D. Bienstock and O. Giinliikk. Capacitated network design — polyhedral structure and compu-
tation. INFORMS Journal on Computing, 8:243-259, 1996.

[7] D. Bienstock, S. Chopra, O. Giinliik, and C. Y. Tsai. Minimum cost capacity installation for
multicommodity network flows. Mathematical Programming, 81:177-199, 1998.

[8] S. Chopra, I. Gilboa, and S. T. Sastry. Source sink flows with capacity installation in batches.
Discrete Applied Mathematics, 86:165-192, 1998.

[9] O. Giinliik. A branch and cut algorithm for capacitated network design problems. Mathematical
Programming, 86:17-39, 1999.

[10] CPLEX 10.0. ILOG CPLEX Division, 839 Alder Avenue, Suite 200, Incline Village, NV 89451,
USA. http://www.ilog.com/products/cplex/.

[11] M. Iri. On an extension of the maximum-flow minimum cut theorem to multicommodity flows.

Journal of the Operations Research Society of Japan, 13(3):129-135, 1971.

15

http://www.ilog.com/products/cplex/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Q. Louveaux and L. A. Wolsey. Lifting, superadditivity, mixed integer rounding and single node
flow sets revisited. JOR, 1(3):173-207, 2003.

T. L. Magnanti and P. Mirchandani. Shortest paths, single origin-destination network design
and associated polyhedra. Networks, 33:103-121, 1993.

T. L. Magnanti, P. Mirchandani, and R. Vachani. The convex hull of two core capacitated
network design problems. Mathematical Programming, 60:233-250, 1993.

T. L. Magnanti, P. Mirchandani, and R. Vachani. Modelling and solving the two-facility capac-
itated network loading problem. Operations Research, 43:142-157, 1995.

H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve MIPs. Op-
erations Research, 49(3):363-371, 2001.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessély. SNDIib 1.0-Survivable Network
Design Library. ZIB Report 07-15, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, 2007.
http://sndlib.zib.de,

C. Raack, A.M.C.A. Koster, and R. Wessédly. On the strength of cut-based inequalities for
capacitated network design polyhedra. ZIB Report 07-08, Konrad-Zuse-Zentrum fiir Informa-
tionstechnik Berlin, June 2007.

D. Rajan. Designing capacitated survivable networks: Polyhedral analysis and algorithms. PhD
thesis, University of California, Berkeley, 2004.

16

http://sndlib.zib.de

	1 Introduction
	2 General flow-cutset inequalities
	3 Separation
	4 Computational results
	5 Conclusion

