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Abstract

Wigner functions are functions on classical phase space, which are in
one-to-one correspondence to square integrable functions on configura-
tion space. For molecular quantum systems, classical transport of Wigner
functions provides the basis of asymptotic approximation methods in the
high energy regime. The article addresses the sampling of Wigner func-
tions by Monte Carlo techniques. The approximation step is realized by
an adaption of the Metropolis algorithm for real-valued functions with
disconnected support. The quadrature, which computes values of the
Wigner function, uses importance sampling with a Gaussian weight func-
tion. The numerical experiments combine the sampling with a surface
hopping algorithm for non-adiabatic quantum dynamics. In agreement
with theoretical considerations, the obtained results show an accuracy of
two to four percent.
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Introduction

The fundamental equation of non-relativistic quantum molecular dynamics is
the time-dependent Schrödinger equation

i~∂τψ(τ, q) = − ~2

2m∆qψ(τ, q) + V (q)ψ(τ, q), ψ(0, q) = ψ0(q).

It is a linear partial differential equation with a unique global solution provided
by the spectral theorem. Indeed, under reasonable regularity and growth as-
sumptions on the potential V : Rd → R, the Hamiltonian P = − ~2

2m∆q + V (q)
is a self-adjoint operator in L2(Rd), and the solution can be written as

ψ(τ, q) = e−iPτ/~ψ0(q).

For most molecules, the dimension d of the configuration spaces Rd is large. In
typical applications, one might want to consider up to thirty degrees of freedom.
On top of that, the solution ψ(t, q) exhibits oscillations both in time and in
space. For quantifying the oscillatory behavior, one switches to atomic units by
setting ~ = 1 and introduces the crucial semiclassical parameter

ε =
√

1/m.

On the long time scale t = τ/ε, on which the distinguished dynamical features
develop, the Schrödinger equation writes as

iε∂tψ(t, q) = − ε2

2 ∆qψ(t, q) + V (q)ψ(t, q), ψ(0, q) = ψ0(q).

Then, all oscillations are roughly characterized by the frequency 1/ε, which
typically ranges between hundred and thousand.

The conventional interpretation of quantum mechanics does not assign any
physical meaning to the wave function ψ(t, q) itself, but to quadratic quantities
of it. The probability for finding the quantum system at time t within the set
Ω ⊂ Rd is ∫

Ω

|ψ(t, q)|2 dq.

Consequently, the initial data are always normalized, and the unitary time-
evolution guarantees

∀t ∈ R : ‖ψ(t)‖L2 = 1.

The expectation value for the position and the momentum of the system at
time t are for example

〈ψ(t), qψ(t)〉L2 , 〈ψ(t),−iε∇qψ(t)〉L2 .

More generally, one associates with smooth functions a : R2d → C on classical
phase space a Weyl quantized operator op(a) acting in L2(Rd) by the appropri-
ate interpretation of the definition

op(a)ψ(q) = (2πε)−d

∫
R2d

a( 1
2 (q + x), p)eip·(q−x)/εψ(x) dxdp.

The corresponding expectation values

〈ψ(t), op(a)ψ(t)〉L2
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then specialize to components of the position and momentum expectation by
choosing a(q, p) = qj and a(q, p) = pj , respectively.

In the semiclassical regime with small parameter 0 < ε � 1, the direct
approach to quadratic quantities is advantageous, since their dynamics are less
oscillatory than those of the wave function itself. The celebrated Egorov theorem
provides the following approximation (Theorem IV.10 in [24]). Let

q̇ = p, ṗ = −∇qV (q)

be the classical Hamiltonian system associated to the Schrödinger operator P ,
and let Φt : R2d → R2d denote its flow. Then,

〈ψ(t), op(a)ψ(t)〉L2 =
〈
ψ0, op(a ◦ Φ−t)ψ0

〉
L2 +O(ε2),

where the constant of the error term depends on time t and bounds on derivatives
of the function a and the potential V , which are greater or equal than order
three. In particular, the Egorov theorem provides an exact description for the
dynamics of harmonic oscillator, whose potential is a quadratic function. On
the level of this general asymptotic approximation, oscillations in time do not
show up any more and space oscillations must only be resolved for the initial
wave function ψ0.

Moreover, all expectation values associated with a wave function ψ can be
expressed by its Wigner function W (ψ) : R2d → R, which is a function on
classical phase space. The definition

W (ψ)(q, p) = (2π)−d

∫
Rd

eix·p ψ(q − ε
2x)ψ(q + ε

2x) dx (1)

grants

〈ψ, op(a)ψ〉L2 =
∫

R2d

W (ψ)(q, p)a(q, p) dq dp

for all square integrable functions ψ and smooth symbols a, where all integrals
have to be interpreted carefully, of course. The Wigner function has first been
proposed by Wigner, further developed by Moyal, and reintroduced in the con-
text of signal analysis by Ville [31, 19, 29]. Its main properties will be briefly
discussed in §1. From the Wigner point of view, the Egorov theorem rephrases
as

W (ψ(t)) = W (ψ0) ◦ Φt +O(ε2), (2)

where the relation has to be understood in a weak sense. One then deduces a
simple particle method, which is built of the following steps.

Initial sampling. One samples the Wigner function W (ψ0) of the initial wave
function ψ0 to obtain a family of phase space points (q1, p1), . . . , (qN , pN ).

Classical transport. The phase space points are transported along the curves
of the Hamiltonian system q̇ = p, ṗ = −∇qV (q) until the desired time t.

Final evaluation. One regards the values of the initial Wigner functionW (ψ0)
in (q1, p1), . . . (qN , pN ) as an approximation of the values of the Wigner
function W (ψ(t)) in the points Φt(q1, p1), . . . ,Φt(qN , pN ) and computes
expectation values.
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It is our aim here to contribute to the initial sampling step. Hence, we
pursue the following two main objectives. First, the generation of phase space
points according to the Wigner function W (ψ) of a typical square integrable
function ψ. Second, the computation of the Fourier integral in equation (1),
which defines the value of the Wigner function W (ψ) in a given phase space
point (q, p). The first task is related to the problem of approximation, while the
second one concerns numerical quadrature.

The wave functions ψ we have in mind are laser-excited eigenstates of semi-
classical Schrödinger operators

− ε2

2 ∆q + Ṽ (q),

as they arise in the context of Born-Oppenheimer approximation. The con-
figuration vector q contains the molecule’s nuclear coordinates, the semiclas-
sical parameter ε is of the same size as the inverse of the square root of the
average nuclear mass, and the potential Ṽ gives the nth eigenvalue of the
electronic Schrödinger equation for a given nuclear configuration q. Hence,
we consider wave functions with the following properties: exponential decay,
high order differentiability, microlocalization around a few phase space points
c0, . . . , cs ∈ R2d.

The current chemical literature mostly considers Gaussian wave packets cen-
tered in a single phase space point z0 = (q0, p0), which are of the form

gz0(q) = (πε)−d/4 exp
(
− 1

2ε |q − q0|2 + i
εp0 · (q − q0)

)
.

Their Wigner function is a Gaussian

W (gz0)(q, p) = (πε)−d exp
(
− 1

ε |q − q0|2 − 1
ε |p− p0|2

)
,

whose approximation is unproblematic, of course. However, if the Wigner func-
tion were not computable analytically, one would have to solve a Gaussian
Fourier integral of the type

f(p− p0) =
∫

Rd

eix·(p−p0)e−
ε
4 |x|

2
dx

numerically, whose relative condition number

κf (p− p0) =
|p− p0|

|f(p− p0)|
|∇f(p− p0)| = 2

ε |p− p0|2

reflects the oscillatory behavior of the integrand for large distances |p − p0|.
Also the approximation problem suffers from oscillations as soon as the Wigner
function localizes around several phase space points. An illustrative example
is the superposition of two Gaussian wave packets with centers in z1, z2 ∈ R2d,
whose Wigner function

W (gz1 + gz2)(q, p) = W (gz1)(q, p) +W (gz2)(q, p) + 2c(q, p)

contains the dangerous cross term [9]

c(q, p) = (πε)−de−|(q,p)−z+|2/ε cos
(

1
ε (p+ · q− − ((q, p)− z+) ∧ z−)

)
,
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which localizes around the arithmetic mean z+ = (z1 +z2)/2 and oscillates with
a frequency proportional to z− = z1 − z2.

To summarize, one faces a highly oscillatory problem of approximation and
numerical quadrature in a high dimensional setting. Our aim is the systematic
exploration of how a Monte Carlo approach can deal with the situation. For
the approximation, we propose an adaption of the Metropolis algorithm, which
jumps between predefined phase space regions and accounts for the negative
values of the Wigner function. The quadrature uses importance sampling with
a Gaussian proposal distribution and is complemented by a convergence test for
the oscillatory regime.

For the numerical validation we consider a variant of the above mentioned
particle method, which belongs to the family of surface hopping algorithms.
These algorithms are widely used for the simulation of non-adiabatic quantum
dynamics as they are generated by Schrödinger systems with conical intersec-
tions. The Schrödinger system

iε∂tψ(t, q) = − ε2

2 ∆qψ(t, q) + V (q)ψ(t, q), ψ(0, q) = ψ0(q)

with real symmetric potential matrix

V (q) = 1
2 trV (q) +

(
v1(q) v2(q)
v2(q) −v1(q)

)
has a conical intersection, if the eigenvalues λ+(q) and λ−(q) of V (q) coincide
on a smooth submanifold of codimension two of the configuration space. In this
case, there is a suitable set of coordinates such that near the crossing set

{q ∈ Rd | λ+(q) = λ−(q)}

the two eigenvalue surfaces Rd → R, q 7→ λ±(q) look like two cones touching each
other in their end points. Conical intersections are ubiquitous for the descrip-
tion of radiationless decay and isomerization processes of polyatomic molecules
[2]. The eigenvalues λ±(q) are also eigenvalues of an electronic Schrödinger
operator, which parametrically depends on the nuclear position q. Their in-
tersection violates the adiabatic Born-Oppenheimer approximation in the fol-
lowing sense. If χ±(q) denotes a normalized eigenvector of the matrix V (q)
and ψ±(t, q) = 〈χ±(q), ψ(t, q)〉C2 the solution’s component in the corresponding
eigenspace, then it may happen that

ψ−(0) = 0 & ∃t : ψ+(t) = O(1), ε→ 0.

That is, the wave function performs a leading order non-adiabatic transition
from one eigenspace to the other, from the plus space to the minus space or
vice versa. For systems with conical intersections the particle method has to be
supplemented by a surface hopping step.

Initial sampling. One samples the Wigner functions W (ψ±(0)) to obtain two
families of phase space points (q±1 , p

±
1 ), . . . , (q±N± , p

±
N±) with associated

real-valued weights w±1 , . . . , w
±
N± , which are the values of the Wigner func-

tion W (ψ±(0)) in these points.

Classical transport. The phase space points are transported along the curves
of the corresponding Hamiltonian system q̇ = p, ṗ = −∇qλ

±(q).
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Surface hopping. Whenever a trajectory t 7→ (qt, pt) passes one of its minimal
surface gaps at a point (q, p), that is whenever the function

t 7→ (λ+(qt)− λ−(qt))

attains a local minimum, then a branching occurs. The transition branch
carries the old weight times the Landau-Zener factor

T (q, p) = exp
(
−π
ε

|v(q)|2

|dv(q)p|

)
,

where dv(q) denotes the 2 × d gradient matrix of v(q) = (v1(q), v2(q)),
and starts a new trajectory in (q, p), which is associated with the other
eigenvalue. The remaining branch continues the old trajectory and carries
the old weight times 1− T (q, p).

Final evaluation. At the desired time t, one obtains two families of phase
space points (q±1 , p

±
1 ), . . . , (q±M± , p

±
M±) and weights w±1 , . . . , w

±
M± , which

approximate the values of the Wigner function W (ψ±(t)) in these points.
One computes the final expectation values.

The chemical physics’ literature contains an overwhelming variety of surface
hopping algorithms, which all differ in the way the non-adiabatic transitions
are performed. The method considered here is called single switch surface hop-
ping, since its constitutive branching condition allows for non-adiabatic switches
just at minimal surface gaps along trajectories, whereas most of the established
algorithms have random jumps at every time step of the discretization [6]. More-
over, the single switch approach is the only way of surface hopping, which has
been derived from a rigorous mathematical analysis of Schrödinger systems with
generic crossings [16, 14]. The main observables for the evaluation of the initial
sampling are the energy level populations P±(t) = ‖ψ±(t)‖2

L2 , which give the
probability of the wave function to be in the plus or minus eigenspace at time t.
In terms of Wigner functions they express as the phase space integral

P±(t) =
∫

R2d

W (ψ±(t))(q, p) dq dp.

If W±(t, q, p) denotes the value of the phase space functions at time t generated
by the single switch method, then the generalization of the Egorov theorem
guarantees

W (ψ±(t))(q, p) = W±(t, q, p) +O(ε1/8),

where the relation holds in a weak sense (Theorem 2.2 in [14]) . However, all the
numerical experiments so far have even shown a convergence rate of order

√
ε,

see [15, 14] and §5.3 later on.
Our article is organized as follows. In section §1, basic properties of Wigner

functions are discussed. §2 contains the detailed set up for the numerical exper-
iments, while §3 presents the Monte Carlo methods for the approximation and
the quadrature problem at hand. §4, §5, and §6 validate the proposed method
for initial wave functions, which are a single Gaussian wave packet, a superpo-
sition of two Gaussian wave packets, and an excited harmonic oscillator state,
respectively. Then, we offer an assessment of the obtained results in the final
section.
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1 Wigner functions

Considering dimension d = 1, the phase space R2 of classical and quantum
mechanics can also be thought of as the time-frequency plane of signal analysis.
In this context the Wigner function has been called the musical score [1]. Since
expositions of its main properties have been given many times, see for example
chapter 1.8 in [3] or chapter 4.3 in [7], we will only focus on those, which are
relevant for its intended Monte Carlo sampling to start an asymptotic particle
method.

1.1 Basic properties

By the Fourier transform of a square integrable function ψ ∈ L2(Rd) we always
mean the ε-scaled Fourier transform

(Fψ)(p) = (2πε)−d/2

∫
Rd

e−iq·p/ε ψ(q) dq.

Then, the Wigner function

W (ψ)(q, p) = (2πε)−d

∫
Rd

eix·p/ε ψ(q − 1
2x)ψ(q + 1

2x) dx

is the inverse Fourier transform of the dilated product x 7→ ψ(q− 1
2x)ψ(q+ 1

2x).
Hence,

W (ψ) : R2d → R

is a square integrable function on phase space, and one obtains for any q0 ∈ Rd

with ψ(q0) 6= 0 the inversion formula

ψ(q) = ψ(q0)−1

∫
Rd

ei(q−q0)·p/εW (ψ)( 1
2 (q + q0), p) dp.

Let a : R2d → C be a smooth function on phase space and op(a) the associated
Weyl quantized pseudodifferential operator,

op(a)ψ(q) = (2πε)−d

∫
R2d

a( 1
2 (q + x), p) eip·(q−x)/ε ψ(x) dxdp.

Then,

〈ψ, op(a)ψ〉L2 =
∫

R2d

W (ψ)(q, p) a(q, p) dq dp.

In addition to the relation with expectation values, the marginals are the posi-
tion and momentum density,∫

Rd

W (ψ)(q, p) dp = |ψ(q)|2,
∫

Rd

W (ψ)(q, p) dq = |(Fψ)(p)|2,

and consequently ∫
R2d

W (ψ)(q, p) dq dp = ‖ψ‖2
L2 .

The balance between position and momentum is also observed in the identity

W (ψ)(q, p) = W (Fψ)(p,−q).
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Moreover, W (ψ)(q, p) 6= 0 implies that (q, p) lies in the convex hull of

supp(ψ)× supp(Fψ).

The interpretation of the Wigner function as a phase space density has the
defect, that it might attain negatives values. Indeed,

W (ψ)(0, 0) = −(επ)−d‖ψ‖2
L2

for odd functions ψ(q) = −ψ(−q). However, in an averaged sense the negativity
is rather mild because of the sharp G̊arding inequality (Chapter 2.10 in [17]).
For smooth non-negative functions a ≥ 0 there exists a positive constant C =
C(a) > 0 depending on derivative bounds of a such that∫

R2d

W (ψ)(q, p) a(q, p) dq dp ≥ −Cε‖ψ‖2
L2 .

1.2 Husimi functions

An alternative quadratic phase space representation of square integrable func-
tions ψ ∈ L2(Rd) is the Husimi function [11], which can be defined as a suitably
scaled Gauß transform of the Wigner function,

H(ψ)(q, p) = (επ)−d

∫
R2d

W (ψ)(x, ξ) e−(|q−x|2+|p−ξ|2)/ε dxdξ.

A few lines of computation yield the non-negativity of the Husimi function,
which can be expressed as the modulus squared of the FBI transform

H(ψ)(q, p) = |T (ψ)(q, p)|2

with

T (ψ)(q, p) = 2−d/2(πε)−3d/4

∫
Rd

ei(q−y)·p/ε e−|q−y|2/(2ε) ψ(y) dy.

The FBI transform is the inner product of the wave function with a Gaussian
wave packet. The initials stand for Fourier, Bros and Iagolnitzer [12]. Aver-
ages of the Husimi and the Wigner function are rather close in the following
asymptotic sense. For smooth phase space functions a one obtains∫

R2d

H(ψ)(q, p) a(q, p) dq dp

= (επ)−d

∫
R4d

W (ψ)(x, ξ) e−(|q−x|2+|p−ξ|2)/ε a(q, p) dxdξ dq dp

=
∫

R2d

W (ψ)(x, ξ) a(x, ξ) dxdξ +O(ε).

The above relation is due to the properties of the phase space Gaussian

G(q, p) = (επ)−d e−(|q|2+|p|2)/ε,

whose integral is one, while its mean is zero, and its variance is ε/2. A second
order Taylor approximation of the function a then gives for the convolution

(a ∗G)(q, p) = a(q, p) +O(ε),
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where the error depends on second order derivatives of a. The Husimi function
of the Gaussian wave packet gz0 is the Gaussian

H(gz0)(q, p) = (2πε)−d exp
(
− 1

2ε |q − q0|2 − 1
2ε |p− p0|2

)
,

whose variance is larger than that of the corresponding Wigner function. Hence,
in general the Husimi function’s marginals are not position and momentum
densities. For a superposition of two Gaussian wave packets with centers in
z1, z2 ∈ R2d one computes

H(gz1 + gz2)(q, p) = H(gz1)(q, p) +H(gz2)(q, p) + 2c(q, p),

where the cross term

c(q, p) = (2πε)−d e−
1
8ε |z−|

2
exp
(
− 1

2ε |(q, p)− z+|2
)
cos
(

1
2ε (c1,2 − (q, p) ∧ z−)

)
expectedly localizes around the mean z+ = (z1 + z2)/2. The cosine has a
phase shift c1,2 = q(z1) · p(z1) − q(z2) · p(z2) and oscillates with a frequency
proportional to the difference z− = z1− z2. However, due to the damping term,
which is exponentially small in |z−|2, the oscillations are absorbed by the tails
of the two Gaussian functions H(gz1) and H(gz2). For the Husimi function,
the Egorov theorem holds with a remainder of order ε, which is worse than the
error of order ε2 valid for Wigner functions. Indeed, if ψ(t) solves the scalar
Schrödinger equation

iε∂tψ = Pψ, ψ(0) = ψ0,

and if Φt denotes the associated classical flow, then

H(ψ(t)) = H(ψ0) ◦ Φt +O(ε) (3)

holds in a weak sense. The remainder term of order ε is sharp, since∫
R2d

H(ψ(t))(q, p) a(q, p) dq dp =
∫

R2d

W (ψ(t))(q, p) (a ∗G)(q, p) dq dp

=
∫

R2d

W (ψ0)(q, p)
(
(a ∗G) ◦ Φ−t

)
(q, p) dq dp+O(ε2)

=
∫

R2d

W (ψ0)(q, p)
(
(a ◦ Φ−t) ∗G

)
(q, p) dq dp+O(ε)

=
∫

R2d

H(ψ0)(q, p) (a ◦ Φ−t)(q, p) dq dp+O(ε),

where the estimate of order ε2 stems from the classical transport of Wigner
functions and the order ε term from the relation(

(a ∗G) ◦ Φ−t
)
(q, p) = a(Φ−t(q, p)) +O(ε) =

(
(a ◦ Φ−t) ∗G

)
(q, p) +O(ε).

Hence, the error in the Egorov theorem (3) depends on derivatives bounds for
a and Φt, which are of order greater or equal than two.
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1.3 Ambiguity functions

The Wigner function is also in close relation to another quadratic phase space
representation, the ambiguity function

A(ψ) : R2d → C, (x, ξ) 7→ (2πε)−d

∫
Rd

e−iq·x/ε ψ(q − 1
2ξ)ψ(q + 1

2ξ) dq,

whose connection to radar theory is discussed in chapter 1.4 of [3] or chapter 4.2
of [7], for example. Indeed, Fourier transformation gives

A(ψ)(x, ξ) = (FW (ψ))(x, ξ).

The ambiguity function can be written as the convolution of the modulated
wave function q 7→ e−iq·x/εψ(q) with its inflection q 7→ ψ(−q),

A(ψ)(x, ξ) = (2πε)−d e
i
2ε x·ξ

((
e−i•·x/εψ(•)

)
∗ ψ(−•)

)
(ξ).

The analogous expression holds on the Fourier level,

A(ψ)(x, ξ) = (2πε)−d e
i
2ε x·ξ

((
e−i•·ξ/ε(Fψ)(•)

)
∗ (Fψ)(−•)

)
(x).

Hence, A(ψ)(x, ξ) 6= 0 implies

(x, ξ) ∈ (supp(Fψ)− supp(Fψ))× (supp(ψ)− supp(ψ)) .

This estimate on the support of the ambiguity function A(ψ) = FW (ψ) agrees
with the previous observation, that the Wigner function of the two superposed
Gaussian wave packets with phase space centers z1 and z2 has oscillations of
size |z1 − z2|.

2 Numerical set up

In this section, we present the general setup of our numerical experiments and
give the results of the surface hopping algorithm with grid based sampling of the
initial Wigner function. We consider the two-dimensional isotropic Schrödinger
system

iε∂tψ(t, q) = − ε2

2 ∆qψ(t, q) +
(
q1 q2
q2 −q1

)
ψ(t, q), ψ(0, q) = ψ0(q) (4)

which provides the simplest example for a conical intersection of eigenvalues.
Indeed, the potential matrix’s eigenvalues

λ±(q) = ±
√
q21 + q22 = ±|q|

intersect in the point q = 0, which constitutes a codimension two submani-
fold of R2. Up to a quadratic diagonal term, our Hamiltonian is the linear
E ⊗ e Jahn-Teller Hamiltonian, which models a large class of molecular sys-
tems including a triatomic molecule’s displacement from the equilateral triangle
configuration, see for example chapter 10 in [2]. The default choice for the
semiclassical parameter is

ε = 0.01,

which corresponds to a real life’s molecular system, where values between 0.001
and 0.01 have to be expected.
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2.1 Initial data

The initial data are the pointwise product of a scalar wave function ψ+
0 : R2 → C

with an eigenvector χ+(q) of the potential matrix associated with the eigenvalue
λ+(q),

ψ0(q) = ψ+
0 (q)χ+(q).

Such initial data are typically chosen for the simulation of quantum molecular
dynamics after excitation of the molecule by light or a laser-pulse. We have
considered three different scalar functions ψ+

0 ,

ψ+
0 ∈

{
gz0 ,

1√
2

(gz1 + gz2) , e
}

where gz0 , gz1 , gz2 are Gaussian wave packets centered in

z0 = (5
√
ε, 0.5

√
ε,−1, 0), z1 = z0, z2 = −z1,

while

e(q) = 2ε−3/2π−1/2(q1 − q0,1)(q2 − q0,2) e−
1
2ε |q−q0|2 , q0 = (5

√
ε, 0.5

√
ε)

denotes one of the three excited states of the shifted two-dimensional harmonic
oscillator with eigenvalue 3ε,(

− ε2

2 ∆q + 1
2 |q − q0|2

)
e(q) = 3ε e(q).

The supports of gz1 and gz2 have negligible overlap, such that the superposi-
tion (gz1 + gz2)/

√
2 can be regarded as a wave function of L2-norm one. The

eigenvectors of a potential with conical crossings are discontinuous at the cross-
ing points, and smoothness away from the crossing is only possible, if they are
chosen complex-valued. We have considered the two cases

χ+(q) ∈
{
χ̃(q), e

i
2 ϑq χ̃(q)

}
, χ̃(q) =

(
cos( 1

2ϑq), sin( 1
2ϑq)

)T
,

where ϑq ∈ (−π, π) is the polar angle of q ∈ R2. The complex-valued phase
factor exp( i

2ϑq) compensates the discontinuity of χ̃(q) across the left half axis
{q ∈ R2 | q1 ≤ 0, q2 = 0}. Since the overlap of the single Gaussian wave
packet and the excited oscillator state with the left half axis is negligible, we
have chosen the real-valued eigenvector for them. The complex eigenvector is
considered for the superposition. The time interval is set to

[ti, tf ] = [0, 10
√
ε] or [ti, tf ] = [0, 20

√
ε],

for the Gaussian wave packets and the excited state, respectively. It allows
the solution of the Schrödinger equation to pass the crossing point once and
to generate leading order non-adiabatic transitions to the eigenspace associated
with the eigenvalue λ−(q).

2.2 Grid based surface hopping

Since the considered initial data are only associated to the eigenvalue λ+(q),
the first step of the single switch algorithm requires the sampling of the Wigner
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function W (ψ+
0 ) to obtain a family of phase space points (qk, pk)n

k=1. Using the
fact that ∫

R4
W (ψ+

0 )(q, p) dq dp = 1,

a number of points (qk, pk)n
k=1 is selected such that

n∑
k=1

W (ψ+
0 )(qk, pk)ω(qk, pk) = 1− tolW

for a given tolerance tolW . Here, ω denotes the weight of (qk, pk). For points
distributed along a grid, ω is equal to the corresponding volume elements. If
the location of the grid points does not depend on the value of W (ψ+

0 ), many
points may be located in regions where the Wigner function nearly vanishes. In
the following, we will demonstrate the need for an adaptive approach even in a
low dimensional situation.

2.2.1 Single Gaussian wave packet

As in our previous work [15], the sampling domain [z0 − 5
√
ε, z0 + 5

√
ε] is dis-

cretized by a uniform 164-grid, while the sampling tolerance is tolW = 0.001.
We first sample from the marginal densities, which requires the evaluation of
|ψ+

0 |2 and |Fψ+
0 |2. The tolerances for position and momentum, tolp = tolm =

tolW /1000, generate 108 · 112 = 12096 phase space points, at which the Wigner
function must be evaluated. Thereof, 2188 points, that is 18 percent are subse-
quently selected to enter the hopping algorithm, which computes for the final
level populations the values P+(tf) ≈ 0.441 and P−(tf) ≈ 0.559. As a reference
solution of the Schrödinger system (4) we consider the outcome of a numerically
converged pseudospectral Strang splitting scheme, see appendix A. For the level
populations it computes the values 0.422 and 0.578. Hence, the surface hopping
result differs by 0.02, which is well below the theoretically expected accuracy.

2.2.2 Superposition of Gaussian wave packets

The sampling domain [z2 − 5
√
ε, z1 + 5

√
ε] is discretized by uniform m4-grids

with m ∈ N. The sampling tolerance is tolW = 0.001. Due to the disconnected
support of the position and momentum densities, a sampling of the marginals
is not advantageous any more, since the Wigner function is supported in the
convex hull of supp(ψ+

0 )× supp(Fψ+
0 ). If m = 32, then 5024 points are finally

selected, which amounts to 0.48 percent of the grid. The minimal m for reaching
the tolerance tolW is 27, which results in 3089 points or a rate of 0.58 percent.
The surface hopping starting from the 324-grid gives level populations of 0.405
and 0.594, respectively, in contrast to the values 0.436 and 0.564 obtained from
the reference solution. Hence, the error is 0.03.

2.2.3 Excited harmonic oscillator state

The excited oscillator state has the position and momentum expectation value
(5
√
ε, 0.5

√
ε) and (0, 0), respectively. Therefore, the sampling domain is set

to [z3 − 5
√
ε, z3 + 5

√
ε] with z3 = (5

√
ε, 0.5

√
ε, 0, 0). With 16 grid points per

direction and the tolerance tolW = 0.001, we end up with 5068 sampling points,
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that is a rate of 7.73 percent. The level populations amount to 0.616 and 0.383
on the upper and lower level, respectively, in contrast to the values 0.571 and
0.429 from the Strang splitting scheme. The minimum number of grid points
per direction for achieving the desired tolerance tolW is 12, which results in
1136 sampling points, that is a rate of 5.48 percent, and level populations of
0.604 and 0.395. Hence, the two different grids give errors of roughly 0.04.

3 Monte Carlo sampling

We propose Monte Carlo sampling techniques for the generation of approxi-
mation points for the Wigner function. Furthermore, for the evaluation of the
Wigner function at these points, Monte Carlo quadrature methods will be used
as well. The reason is the following: deterministic algorithms for approximation
and integration problems imply computational costs, which increase exponen-
tially with the dimension d of the problem. Randomized approaches like Markov
chain Monte Carlo (MCMC) can break this curse of dimensionality [23, 26, 20].

3.1 Metropolis Monte Carlo

MCMC methods construct a random walk through the region in sampling space
where a non-negative function W is non-negligible. In this random walk, a trial
move is rejected if W becomes too small and is accepted otherwise. The rule
for this decision must satisfy the constraint that the probability of finding the
system in a point (q, p) is proportional to W (q, p).

3.1.1 Standard approach

The Metropolis-Hastings algorithm [18, 8, 22, 4] is one of the most popular
sampling schemes. Select a point (qold, pold) in sampling space and calculate
Wold = W (qold, pold). Then start the following iteration.

1. Proposition step: Give the point a random displacement,

(qnew, pnew) = (qold, pold) + ∆,

and calculate Wnew = W (qnew, pnew).

2. Acceptance step: Generate a random number r from a uniform distribu-
tion in the interval [0, 1]. Accept the trial move if

r < Wnew/Wold

and set (qold, pold) = (qnew, pnew). Otherwise, reject the trial move and
keep the old point (qold, pold).

In our examples, the random displacement will be chosen from the normal
distribution which corresponds to a symmetric proposal density as in the original
work of Metropolis et al. [18]. Therefore, we will always speak of Metropolis
Monte Carlo when referring to this algorithm. The Metropolis points (qk, pk)N

k=1

form a Markov chain, which has W as equilibrium distribution. If the chain is
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uniformly ergodic, then the central limit theorem holds [28], and the empirical
means 1

N

∑N
k=1 a(qk, pk) approximate expectation values

〈a〉W =
∫

R2d

W (q, p) a(q, p) dq dp

in the following sense. If 〈a2〉W <∞, then there is a constant γa > 0 such that

lim
N→∞

P

(∣∣∣∣∣ 1
N

N∑
k=1

a(qk, pk)− 〈a〉W

∣∣∣∣∣ ≤ cγa√
N

)
= Θ(c) (5)

converges with

Θ(c) =
1√
2π

∫ c

−c

exp(−t2/2) dt = erf(c/
√

2).

In particular, Θ(2.2414) = 0.975 corresponds to a probability of 2.5 percent that
the difference between the empirical mean and the expectation value is larger
than 2.2414γa/

√
N .

3.1.2 Sampling from a real-valued function

The Metropolis Monte Carlo algorithm has been developed for the sampling
of probability distributions. Taking into account different signs of the Wigner
function, we do not sample from W but from |W |. The acceptance criterion
changes to

r < |Wnew|/|Wold|.

Afterwards, in the summation for the integral value the algebraic sign is reas-
signed.

3.1.3 Disconnected support

If W decomposes into several peaks with virtually disjoint support, as it is the
case for W = W (gz1 + gz2), then the Metropolis chain cannot switch between
the peaks, because intermediate points with small value of W are rejected, and
the chain is not ergodic. Then one must generate a proposition step jumping
to another peak from time to time. For the approximation of initial Wigner
functions, we assume a priori given phase space centers {ci}s

i=1, which define
regions on which W is non-negligible and has a local envelope of comparable
variance. Given a jump rate rjump ∈ [0, 1] and the current sampling region
i ∈ {1, . . . , s}, the proposal step is modified as follows [30]:

1.? Generate a random number r from the uniform distribution in the interval
[0, 1]. If r > rjump, generate a new point by random displacement. Else,
perform a jump step: Choose uniformly one of the other centers j ∈
{1, . . . , s}, j 6= i, and generate a new point via

(qnew, pnew) = (qold, pold) + cj − ci.

The new point is located with respect to the new center as the old point
with respect to the the old center. Hence, the proposal step is still symmetric.
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Figure 1: Typical integrands in the computation of the Wigner function by
Monte Carlo quadrature. The left and right plot show the integrands for the
single Gaussian wave packet at (q0, p) with p = p0+(0.3, 0.3) and for the excited
oscillator state at (q0, p0), respectively.

3.2 Importance Sampling

For evaluating the Wigner function, one has to solve the d-dimensional Fourier
integral W (ψ)(q, p) =

∫
Rd f(x) dx with

f(x) = (2π)−d eix·p ψ(q − ε
2x)ψ(q + ε

2x).

The real part of two typical integrands f(x) is plotted in Figure 1. With con-
ventional quadrature the integrand is evaluated on a grid, which does not only
require a very fine resolution, but also leads to the curse of dimensionality. Most
of the computing time is spent on points, where the integrand is negligible. To
sample many points in regions where the integrand is large and few elsewhere,
is the basic idea behind importance sampling.

3.2.1 Standard approach

One rewrites the integral in the form

W (ψ)(q, p) =
∫

Rd

f(x)
w(x)

w(x) dx,

where w(x) ≥ 0 is a positive normalized weight function,
∫

Rd w(x) dx = 1. If
one generates sampling points according to the function w(x), then the integral
can be approximated by

W (ψ)(q, p) ≈ I :=
1
L

L∑
k=1

f(xk)
w(xk)

. (6)

If the sampling points are independent and identically distributed or a uniformly
ergodic Markov chain, then the central limit theorem guarantees convergence
of the empirical mean as L → ∞. The quality of the approximation crucially
depends on the choice of the weight function w. If the sampling points are
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independent and identically distributed, then I has mean µ =
∫

Rd f(x) dx and
variance 〈

(I − µ)2
〉

w
=

1
L

∫
Rd

(
f(x)
w(x) − µ

)2

w(x) dx.

Hence, small variances are achieved for weight functions w, which closely resem-
ble the integrand f . On the other hand, w should allow for an efficient sampling,
and we have chosen a Gaussian function

w(x) = (2π)−d/2σ−d
w exp

(
−|x− µ|2

2σ2
w

)
, (7)

whose mean µ ∈ Rd and standard deviation σw > 0 depend on the integrand
under consideration.

Due to the possible oscillations of the integrand, convergence might be ex-
tremely slow, and we have used the following simple convergence test. Assume
we have computed M different values {Im}M

m=1 of the integral determining
W (ψ)(q, p). Moreover, we assume that these values are normally distributed
with mean Ī and variance σ2

I ,

Ī =
1
M

M∑
m=1

Im, σ2
I =

1
M − 1

M∑
m=1

(Im − Ī)2.

We compute a 95-percent confidence interval according to KI = ±z σI/
√
M

with z = 1.96. The sampling is continued until

KI < Ī
√
ε. (8)

If the tolerance is not reached within a maximum number Nmax of sampling
steps, the point (q, p) will be rejected. There are more sophisticated conver-
gence criteria as for example the Gelman-Rubin criterion [5], which is not only
based on information between different sequences but also on within-sequence
information. Its output is a number R > 1 which indicates how much the distri-
butional estimate might improve if the simulations run longer. However, since
the simple test yields satisfactory results, we have not explored this possibility.

3.2.2 Embedded importance sampling

If the integrand is the product of two functions, f(x) = g(x)w(x), where one
of them has a known integral Iw =

∫
Rd w(x) dx and can be used as a weight

function, then the approximation (6) simplifies to

W (ψ)(q, p) ≈ 1
L

1
Iw

L∑
k=1

g(xk),

where the points xk are distributed according to w(x). This approach uses
more information on the integrand, and the numerical experiments show that
it expectedly outperforms the standard approach.
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Figure 2: Gaussian wave packet. The left plot illustrates the convergence be-
havior of the simple Monte Carlo sampling for the observable q1(t = 0). Single
points show the absolute difference to the true value 0.5, while the solid curve
indicates the values of cγq1/

√
N with γq1 =

√
ε/2 ≈ 0.07 and c = 2.2414. The

right plot gives the distribution of relative errors with respect to the exact value
of the Wigner function W for quadrature by importance sampling for N = 500
phase space sampling points.

4 Gaussian wave packet

The Gaussian wave packet gz0 is one of the simplest examples for an initial wave
function. Since its Wigner function is also Gaussian, the initial phase space sam-
pling can be simplified a lot compared to the proposed strategy. Nevertheless,
ignoring the analytic knowledge on the explicit form of W (gz0), we also study
the performance of the Metropolis approach.

4.1 Approximation

Since W (gz0) is a Gaussian, one can simply generate approximation points by
sampling from a multi-dimensional normal distribution. This is much faster than
Metropolis Monte Carlo because the summation of the displacement vector is
omitted and the acceptance ratio is equal to 1. We refer to this method as simple
Monte Carlo in the following and analyze its performance in combination with
the surface hopping algorithm. Afterwards, we forget about the Gaussian shape
and examine the choice of the displacement ∆ in the Metropolis Monte Carlo
method.

4.1.1 Simple Monte Carlo

We first sample the Gaussian Wigner function by generating points from a
four-dimensional standard normal distribution and multiplying them with the
standard deviation σ =

√
ε/2. Let us briefly verify the convergence rate of

order 1/
√
N for the observable a(q, p) = q1, as it is given by the central limit

theorem for independent identically distributed random variables. In this case,
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Figure 3: Gaussian wave packet. Statistics of P+(tf) for simple Monte Carlo
approximation of the initial distribution. For the left and right plot the values of
the Wigner function are determined analytically and by importance sampling,
respectively. The results are compared for different numbers of sampling points
(N = 100, . . . , 2000), where m = 10 runs of the single switch algorithm are
evaluated for each N . The dashed horizontal line indicates the reference value
0.422 from Strang splitting.

the constant γq1 = σ is the standard deviation of the random variables. Fig-
ure 2(a) plots the values of the difference | 1

N

∑N
k=1 q1,k− 0.5| for ten repetitions

of the sampling with a fixed number of points N ∈ {100, . . . , 2000} as well as the
reference function N 7→ cγq1/

√
N with c = 2.2414. Nearly all values are below

this boundary, which should indeed be satisfied with probability Θ(c) = 0.975
in the limit N →∞.

The next goal is to examine the results from the single switch algorithm for
simple Monte Carlo sampling of the initial distribution. As accuracy criterion,
we take the deviation of the final population P+(tf) from the reference value
0.422 stemming from the Strang splitting scheme. The sampling of the initial
distribution is performed with N = 100, . . . , 2000 different numbers of sampling
points. Then, for each fixed N there are m = 10 runs of the surface hopping
algorithm. The results are illustrated as boxplots in Figure 3(a). The boxes have
lines at the lower quartile, median, and upper quartile values. The dashed lines
extending from each end of a box show the extent of the rest of the data. They
extend out to the most extreme data value within 1.5 times the interquartile
range of the sample. Data values beyond these lines are marked as outliers.
The variances become smaller as N increases. Hence, the results of a single
run become more reliable for larger N . Though the surface hopping algorithm
systematically overestimates the reference value, all the mean values only differ
by two to three percent.

4.1.2 Metropolis Monte Carlo

Investigating sampling strategies applicable for arbitrary initial distributions,
we repeat the experiments from the previous paragraph with Metropolis Monte
Carlo sampling. We use the algorithm explained in §3.1 with normally dis-
tributed displacement ∆ ∼ σapprN4(0, 1). The starting point of the Markov
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Figure 4: Gaussian wave packet. Distribution of momenta p(0) resulting from
Metropolis Monte Carlo approximation of the Wigner function with different
values of the standard deviation σappr of the random displacement.

Table 1: Gaussian wave packet. Mean acceptance ratios over 10 runs of
Metropolis Monte Carlo sampling with different values of the standard devi-
ation σappr of the random displacement.
σappr 0.01 0.05 0.1 0.2

acceptance ratio 0.9059 0.5258 0.2211 0.0033

chains is always the center z0 = (q0, p0) of the Gaussian W (gz0). In the litera-
ture, see for example [25, 27], more elaborate proposal densities are discussed.
However, in the following experiments the simple normal distribution yields
quite large acceptance ratios.

The standard deviation σappr of the displacement should be comparable to
the one of the distribution to be sampled, which is σ =

√
ε/2. We perform the

algorithm with a fixed number of sampling points N = 1000 and different values
of σappr ∈ {0.1

√
ε, 0.5

√
ε,
√
ε, 2

√
ε}. We repeat each run ten times and analyze

the corresponding mean values. As expected, the mean acceptance ratio, that
is the number of proposed points over the number of accepted points, increases
with smaller displacement, see Table 1. Though a high acceptance ratio is
desirable, small displacements prevent the Markov chain from quickly exploring
the complete distribution. Indeed, Figure 4 illustrates that the distribution of
p(t = 0) is more dense for σappr = 0.01 than for σappr = 0.1. Hence, we use
σappr = 0.5

√
ε throughout the following experiments as a compromise between

acceptance ratio and exploration of sampling space.

4.2 Integration

Standard importance sampling introduces an importance sampling function w
and samples from this distribution. In general, this sampling is performed via
Metropolis Monte Carlo. However, if w is Gaussian, simple Monte Carlo is
faster. Further simplifications are possible if embedded importance sampling
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can be applied. The embedded importance sampling function can be sampled
via Metropolis Monte Carlo or, if it is Gaussian, via simple Monte Carlo. In the
following, we compare these different approaches and use simple Monte Carlo
sampling for the approximation of the Wigner function.

4.2.1 Standard importance sampling

Evaluation of the Wigner function in a point (q, p) requires solving the integral

1
4επ3

e−
1
ε |q−q0|2

∫
R2

cos(x · (p− p0)) e−
ε
4 |x|

2
dx. (9)

There are oscillations with respect to x which are modulated by a Gaussian
envelope. As the distance |p−p0| gets larger the oscillation frequency increases,
which causes severe difficulties in Monte Carlo quadrature. Figure 1(a) shows
the integrand for (q0, p) with p = p0 + (0.3, 0.3). Even though the integral
value is small in this case, the quadrature scheme can yield large errors due to
numerical cancellation. We test two strategies to circumvent these difficulties.
The first method introduces a cut-off for p, meaning that during the sampling of
the Wigner function all points with |p−p0| > tolp are rejected. For the Gaussian
with variance σ =

√
ε/2, the cut-off tolerance is set to tolp = 3

√
ε/2 ≈ 0.21,

which includes 99.9% of the probability density. However, this requires some a
priori knowledge about the distribution function, which is not always accessible.
The second method uses the convergence criterion (8).

We apply importance sampling with Gaussian importance function w as
defined in (7) with µ = 0 and σw =

√
2/ε, according to the variance of the

Gaussian part of the integrand, and draw from w by simple Monte Carlo sam-
pling. We set the number of chains M = 5 and the maximum number of steps
Nmax = 104. A typical distribution of relative errors with respect to the exact
value of the Wigner function is illustrated in Figure 2(b). The relative as well
as the absolute error are centered around zero (mean relative error = 0.0034,
mean absolute error = 0.5642), supporting the expectation that oscillations with
subsequent small integral value pose the main difficulty. If the sampled phase
points are propagated by the single switch algorithm, then the statistics for the
upper level population at time t = tf are worse than before, when the analytic
values of the Wigner function have been used. Figure 3(b) shows the results
for N = 100, . . . , 2000 sampling points and m = 10 surface hopping runs for
each fixed N . The variances are larger, and the mean values differs from the
reference by a few percent only for N ≥ 500.

Finally, we compare the cut-off and the multiple chain strategy by applying
them to two points (q0, p), whose momentum component is inside and outside
the cut-off range, that is p = p0 + (0.1, 0.1) and p = p0 + (0.3, 0.3). The
importance function w is sampled via Metropolis Monte Carlo with random
displacement chosen from the normal distribution N2(0, σ2) with σ = 1

2σw. In
the first case, the exact value is 137.12. The sampling converges after 4000
steps with mean Ī = 148.71 and confidence bound KI = 14.5. For the second
point, the analytic value of the integral is 1.5 · 10−5. We obtain Ī = −0.5 with
KI = 10.65. The sampling does not converge within the maximum number of
steps, and the second point is rejected according to both strategies.
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4.2.2 Embedded importance sampling

In general, an analytic calculation of the Wigner function is impossible but the
integrand might contain some fast decaying function whose integral is known.
Using that

ε

4π

∫
R2

e−
ε
4 |x|

2
dx = 1,

the integral (9) can be evaluated via Monte Carlo quadrature as

W (gz0)(q, p) ≈
1

Lε2π
e−

1
ε |q−q0|2

L∑
k=1

cos(xk · (p− p0)). (10)

The sampling points {xk}L
k=1 are distributed according to exp(− ε

4 |x|
2), which

represents the 2-dimensional normal distribution N2(0, 2/ε).
Comparing accuracy and complexity of the four different ways of importance

sampling, we calculate the Wigner function at the 2188 grid points of §2.2.1.
The first method uses the importance function w from (7) with µ = 0, σw =√

2/ε and samples it via Metropolis Monte Carlo with random displacement
from the normal distribution N2(0, σ2) with σ = 1

2σw. The second method
replaces Metropolis Monte Carlo by directly drawing from w. The third method
applies formula (10) and generates the quadrature points by Metropolis Monte
Carlo with random displacement from N2(0, σ2). The fourth approach directly
samples from exp(− ε

4 |x|
2).

The results are listed in Table 2. The relative and absolute errors refer to
the quadrature error in the computation of W (gz0)(qk, pk) and are mean values
over all points (qk, pk)2188k=1 . All the relative errors are around one percent, while
the absolute errors improve for simple Monte Carlo. The sampling error is the
deviation from the vector of expectation values in position and momentum z0
measured in the supremum norm. It lies in the permille range. The error of
the final population on the upper level P+(tf) is computed from this single run
of the surface hopping algorithm. It is roughly two percent. Time refers to
the total amount of time to compute the Wigner function for all 2188 points.
It reduces significantly for embedded importance sampling with simple Monte
Carlo. The Monte Carlo steps give the number of quadrature points required
to compute the Wigner function averaged over all grid points (qk, pk). The
acceptance ratio is the mean value over all 2188 importance sampling runs. The
mass ratio is the ratio of the sum of the Wigner function at phase space points,
for which the quadrature achieves the convergence criterion (8), over the sum
of the Wigner function at all grid points.

5 Superposition of Gaussian wave packets

For the superposition of Gaussian wave packets the Wigner function is no longer
positive and has several peaks with disconnected support. In the following, we
examine the performance of the strategies which have been proposed in §3.

5.1 Approximation

The Wigner function consists of the sum of the two phase space Gaussians

W (gzj )(q, p) = (πε)−d exp
(
− 1

ε |(q, p)− zj |2
)
, j = 1, 2



Monte Carlo sampling and surface hopping 23

Table 2: Single Gaussian wave packet. Accuracy and complexity in the compu-
tation of the Wigner function via different importance sampling schemes.

standard import. sampling embedded import. sampling

Metropolis MC Simple MC Metropolis MC Simple MC

relative error 0.012 0.009 0.013 0.009
absolute error 0.473 0.031 0.438 0.153
sampling error 0.0052 0.0004 0.0052 0.0011
P+(tf) error 0.019 0.018 0.021 0.019
time (sec) 7940 6031 3349 1960
MC steps 3163 2351 3118 2370
acceptance ratio 0.76 1 0.76 1
mass ratio 0.88 0.94 0.86 0.95

plus an oscillatory cross term c(q, p) localized around the middle point z+ = 0,

c(q, p) = (πε)−de−|(q,p)|2/ε cos
(

1
ε (q, p) ∧ z−

)
,

which has a Gaussian envelope with the same variance and oscillates with a fre-
quency proportional to the difference z− = (10

√
ε,
√
ε,−2, 0). Consequently, we

choose the random displacement as before, namely from the normal distribution
with standard deviation σappr = 0.5

√
ε. Moreover, an elaborate integration by

parts, see Theorem 7.7.1 in [10], gives a positive constant C > 0 such that for
all smooth compactly supported functions a : R2d → C and all k ∈ N0∣∣∣∣∫

R2d

c(q, p)a(q, p) dq dp
∣∣∣∣ ≤ Cεk

∑
|α|≤k

|z−|α/2−k‖Dαa‖∞.

Thus, averages of the cross term are super-polynomially small with respect to the
semiclassical parameter, which indicates that the cross term might be neglected
without affecting the overall accuracy of the surface hopping algorithm.

During the sampling, jumps between the centers z1 and z2 of the two Gaus-
sians and the middle point z+ are performed, if a random number r uniformly
distributed in [0, 1] is below the jump rate rjump. As expected, the larger jump
rates increase the overall acceptance ratio, see Table 3. However, the final popu-
lation P+(tf) of the surface hopping is rather insensitive to the rate. Figure 5(b)
presents the statistics for three choices of rjump ∈ {0.2, 0.5, 0.8}. For the two
smaller values rjump = 0.2, 0.5 there is more mixing within the components and
consequently no outliers, while for rjump = 0.8 there are three of them. Hence,
we have fixed rjump = 0.2 for the following experiments.

As for the single Gaussian wave packet before, one observes a convergence
rate of order 1/

√
N for the approximation of observables via Monte Carlo sam-

pling, see Figure 5(a). Examining the influence of the initial sampling on the
accuracy of the surface hopping population P+(tf), we have considered differ-
ent numbers of sampling points N = 100, . . . , 3000 and have performed the
hopping algorithm m = 20 times for each fixed number of sampling points.
The results are illustrated in Figure 6(a). With a few hundred sampling points
the mean value already differs from the reference value 0.436 by a few percent.
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Table 3: Superposition of Gaussian wave packets. The acceptance ratio increases
with growing jump rate. The ratios are mean values over 10 runs with 2000
sampling points each.
rjump 0.2 0.5 0.8

acceptance ratio 0.55 0.66 0.75
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(a) Convergence behavior of Monte
Carlo sampling for the observable
q1(0).
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(b) Boxplots for the distribution of
P+(tf) around the exact value 0.436.

Figure 5: Superposition of Gaussian wave packets. The left plot illustrates the
convergence behavior of the sampling for the observable q1(0). Single points
show the absolute difference to the true value 0, while the solid curve indicates
the values of cγq1/

√
N with γq1 = 1 and c = 2.2414. The right plot shows the

final population of the upper level for three different values of the jump rate.
For each jump rate, 10 runs with 2000 points each have been performed.
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(a) Complete distribution.
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Figure 6: Superposition of Gaussian wave packets. Statistics of P+(tf) for
Metropolis Monte Carlo sampling of the complete initial distribution (left hand
side) and without the oscillatory middle peak (right hand side). The results are
for different numbers of sampling points (N = 100, . . . , 3000), where m = 20
runs of the single switch algorithm were evaluated for each N . The dashed
horizontal line indicates the reference value 0.436 from Strang splitting.
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(a) Distribution of errors for the inte-
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Figure 7: Superposition of Gaussian wave packets. The left plot shows the
distribution of relative errors w.r.t. the exact value of the Wigner function for
500 sampling points. The right plot shows the statistics of P+(tf) for initial
Monte Carlo sampling and evaluation of the Wigner function via importance
sampling. The results are compared for different numbers of sampling points
(N = 100, . . . , 2000), where m = 10 runs of the single switch algorithm were
evaluated for each N .

Furthermore, with more points the results improve in the sense of variance re-
duction. Hence, fewer sampling points require several simulations, whereas for
many sampling points fewer simulations are sufficient to obtain reliable results.
A reduction of variance is also achieved by ignoring the oscillatory middle peak
of the initial distribution, see Figure 6(b). This supports the previous predic-
tion that the cross term can be neglected because its contribution to integration
errors is much more significant than its portion w.r.t. the phase space density.

5.2 Integration

Now, we also compute the Wigner function via importance sampling. The two
integrals defining the Wigner functions W (gz1) and W (gz2) have already been
dealt with in the previous section §4.2. The integrals occurring for the oscillatory
cross term c(q, p) ∫

R2
cos(x · (p− p+)) e−

1
2 x·q− e−

ε
4 |x|

2
dx

are only slightly different due to the additional term e−
1
2 x·q− . We apply standard

importance sampling with a Gaussian proposal distribution w of mean µ = 0
and standard deviation σw =

√
2/ε, where the quadrature points are directly

drawn from w. For each phase space point (q, p) we use M = 5 different chains
of maximal length Nmax = 104.

There are the same two regimes observed for the single Gaussian wave packet.
If the distance of (q, p) to the middle center z+ = 0 is sufficiently large, then the
integrand is dominated by oscillations, and the point is rejected if the conver-
gence criterion (8) is not met. If (q, p) is close enough to z+, then the integrand
is a regular function with bell-shaped envelope, and the quadrature achieves
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Table 4: Superposition of Gaussian wave packets. Final level population for
different values of ε, different phase space representations (Wigner or Husimi),
and different sampling strategies (grid based or MCMC). The reference value
is calculated with a highly resolved Strang splitting. The particle numbers
from the grid based sampling are given in parentheses, while the Monte Carlo
sampling always uses 5000 points.
ε 10−1 10−2 10−3 5 · 10−4

1. reference value 0.37798 0.43565 0.52582 0.54363

2. Husimi (grid) 0.5095 0.5371 0.6037 0.6149
(4754) (6170) (5548) (5394)

3. Wigner (coarse grid) 0.3372 0.4054 0.5299 0.5079
(5108) (5024) (2920) (4811)

4. Wigner (fine grid) 0.3856 0.4397 0.5268 0.4613
(31163) (55799) (6302) (11743)

5. Husimi (MCMC) 0.5031 0.5379 0.6221 0.6396
6. Wigner (MCMC) 0.3963 0.4385 0.5692 0.5956
7. Wigner (MCMC, no middle part) 0.3876 0.4375 0.5404 0.5585

the expected accuracy. Indeed, for 500 phase points the quadrature produces
a mean relative and mean absolute error with respect to the exact value of the
Wigner function, which is of size 0.0053 and 0.1558, respectively. The mean
chain length to achieve convergence is 1494, and the mean acceptance ratio for
phase space points is 0.9. Figure 7(a) illustrates the corresponding distribution
of relative errors, which again are largest for small values of the Wigner function.

Also the results of the single switch algorithm have the same tendencies as
before. Sampling the initial Wigner function with different numbers of sampling
points N = 100, . . . , 2000 and computing the function value via importance
sampling, Figure 7(b) shows larger variances than for the experiments with
analytic function values, but also the expected variance reduction for a growing
number of initial phase space points.

5.3 Approximation of the Husimi function

Now we explore the performance of the single switch algorithm, when the Wigner
function of the initial wave function is replaced by the Husimi function. While
the semiclassical parameter is set to ε ∈ {0.0005, 0.001, 0.01, 0.1}, the two differ-
ent phase functions are sampled in a grid based way or by the previous Monte
Carlo method. As for the Wigner function, the Metropolis Monte Carlo sam-
pling of the Husimi function is rather insensitive to the variance of the random
displacement, and we fix for both functions σappr = 0.5

√
ε.

Let us first consider the grid based results, see Table 4, lines two to four.
For the Husimi function, the number of grid points and hence the number of
particles is increased until the final population P+(tf) converges up to an error
of roughly one percent. Such behavior already occurs for moderate particle
numbers around N = 5000. For the Wigner function, the same grids do not
yield convergence, and one has to refine significantly. For small semiclassical
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Figure 8: Superposition of Gaussian wave packets. The semilogarithmic plot
shows the error in the final level population P+(tf) for the Husimi and Wigner
function with varying value of ε. The first three curves are based on grid based
sampling, while the last three ones result from MCMC sampling.

parameter ε = 0.0005 convergence is not obtained, since a reasonably sized
uniform grid cannot resolve the rapid oscillations of the middle peak. However,
the population errors for the converged sampling of the Wigner function are
roughly three times smaller than those for the Husimi function, see also Figure 8.
This difference can be explained by the better asymptotic properties of the
Wigner function with respect to classical transport. As discussed in section §1.2,
the Egorov theorem for scalar Schrödinger equations gives an approximation
error of order ε2 for the Wigner function, whereas the Husimi function only
yields an error of order ε. The rougher approximation of the single switch
algorithm does not bury this difference.

The Monte Carlo results all use N = 5000 sampling points and are the mean
values of ten different runs, see Table 4, lines five to seven. The outcome for
the Husimi function changes only slightly. The results are a bit better for larger
semiclassical parameters and worse for small values. The Monte Carlo sampled
Wigner function without oscillatory middle peak achieves the smallest error,
which differs from those for the Husimi function by roughly a factor three.

6 Excited harmonic oscillator state

The Wigner function of the excited harmonic oscillator state e is a Gaussian of
variance ε/2 multiplied with an even quadratic polynomial attaining negative
values for small momenta,

W (e)(q, p) =
4 e−

1
ε |(q−q0,p)|2

ε4π2
(11)( ∏

j=1,2

(qj − q0,j)2 +
∑

(j,k)=(1,2),(2,1)

(qj − q0,j)2(p2
k − ε

2 ) +
∏

j=1,2

(p2
j − ε

2 )
)
.
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Figure 9: Excited oscillator state. The left plot illustrates the convergence
behavior of Monte Carlo sampling for the observable q1(0), when the analytic
expression of the Wigner function W is used. Single points show the absolute
difference to the true value 0.5, while the solid curve indicates the values of
cγq1/

√
N with γq1 = 1 and c = 2.2414. The right plot shows the distribution of

relative errors w.r.t. the exact value of W for 500 sampling points.

At first, we use the analytic expression for the Wigner function and sample from
this distribution via Metropolis Monte Carlo with random displacement

∆ ∼ N4(0, σ2
appr), σappr = 0.5

√
ε.

The error in the computation of the position expectation value in the first
component q1(0) again decreases as 1/

√
N , see Figure 9(a). The results for the

final population on the upper level obtained by the surface hopping algorithm
are illustrated in Figure 10(a). As in the previous examples, the error decreases
down to a few percent, if the number of sampling points is large enough. Hence,
the approximation is not affected by the negative values of the Wigner function.

The integrals for the computation of the Wigner function W (e)(q, p) are∫
R2

cos(x · p)
(
q21 − ε2

4 x
2
1

)(
q22 − ε2

4 x
2
2

)
e−

ε
4 |x|

2
dx.

Their integrand differs from those for the Gaussian wave packets by a polynomial
term. A typical integrand is illustrated in Figure 1(b). There are oscillations,
but they are moderate as long as the momentum p is small and the magnitude
of W (e)(q, p) large enough. We apply embedded importance sampling with
respect to x 7→ exp(− ε

4 |x|
2) and use simple Monte Carlo to sample from this

proposal function. For each integral, there are M = 5 chains of maximal length
Nmax = 104 stopped by the convergence criterion (8). Figure 9(b) shows the
relative errors for 500 phase space points. As for the Gaussian wave packets, the
errors are bounded by 0.2. The mean relative and absolute errors are 0.0011 and
−0.2836, respectively. The mean chain length is 2294, hence somewhat larger
than the length 1494 obtained in the Gaussian case. The mean acceptance ratio
is about 0.7 and smaller than the previously observed 0.9. In clear contrast to
the Gaussian wave packets, there is no direct relationship between the errors
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Figure 10: Excited oscillator state. Statistics of P+(tf) for Metropolis Monte
Carlo sampling of the initial distribution with analytic evaluation and Monte
Carlo computation of the Wigner function. The results are compared for differ-
ent numbers of sampling points (N = 100, . . . , 2000), where m = 10 runs of the
single switch algorithm were evaluated for each N . The dashed horizontal line
indicates the reference value 0.571 from Strang splitting.

and the magnitude of the Wigner function, since the polynomial factor of the
integrand causes a modulation of the envelope function, which in turn prolongs
the mixing time of the Markov chain and generates errors dominating those due
to high frequency oscillations. However, as before, the results for the upper level
population obtained by a subsequent surface hopping nicely converge for larger
particle numbers; see Figure 10(b).

Conclusion

We have addressed the Monte Carlo sampling of Wigner functions, as it arises
in the context of particle methods for Schrödinger equations in the semiclassical
regime. The sampling poses an approximation and a quadrature problem. For
both we have considered a Monte Carlo approach, motivated by the following
observations. Quantum molecular dynamics is typically formulated on high-
dimensional configuration spaces. The potential of Schrödinger equations for
nuclear propagation is mostly determined with coarse resolution, since its value
for each nuclear configuration is based on the solution of a high-dimensional
electronic structure problem. Moreover, also particle methods for Wigner func-
tions in the spirit of an Egorov theorem are asymptotic approximations with
rather coarse accuracy as well.

For the approximation problem we have proposed and tested an adaption
of the Metropolis Monte Carlo algorithm to real-valued functions with discon-
nected support. The algorithm requires a priori physical knowledge on the
functional support of the Wigner function, in the sense that phase space points,
which specify the different components, are used as an input. The method
enforces random jumps between the regions, within which the same local pro-
posal steps generate the chain. While the construction of jump proposal steps
with high acceptance ratio is a challenging task in classical molecular dynamics
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simulations, the similarities between the jump regions ensured the success of
this approach in our examples. In the numerical experiments we have observed
convergence of computed observables with an error of order 1/

√
N , where N is

the number of sampling points, as it is implied by the central limit theorem for
ergodic Markov chains.

For the integration problem, which arises when evaluating the Wigner func-
tion, we have tested the performance of importance sampling with Gaussian
weight function. For certain phase space points, the quadrature problem is ill-
conditioned due to a highly oscillatory integrand. For the considered test cases,
however, these points are characterized by small values of the Wigner function
and can thus be neglected. The proposed simple convergence criterion, which is
based on the variance between different sampling chains, is able to detect such
points.

We have demonstrated in three sets of numerical experiments that the pro-
posed Monte Carlo approach to the sampling of Wigner functions yields surface
hopping results, which reach an accuracy comparable to the one obtained by a
converged grid-based sampling with analytic evaluation of the Wigner function.
We have also considered the Husimi function as an alternative phase space repre-
sentation, since it is non-negative and less oscillatory. However, the subsequent
surface hopping results are systematically less accurate than for the Wigner
function, which can be explained by the different order of approximation error
in the Egorov theorem for scalar Schrödinger equations.

The presented numerical experiments are low-dimensional, since we have
aimed at a combination of initial Monte Carlo sampling with surface hopping
and its validation against a reliable solution of the underlying Schrödinger sys-
tems. Such a comparison is naturally bound to a few degrees of freedom. High-
dimensional experiments as well as the Monte Carlo integration of oscillatory
functions with stationary points have to be addressed in future work.

A Reference solutions

For evaluating the different initial sampling strategies in combination with the
single switch algorithm, we directly solve the Schrödinger system with a pseudo-
spectral Strang splitting scheme. For this two-dimensional problem a space
discretization based on the fast Fourier transform and an operator splitting with
third order local convergence in time [13] provides accurate reference solutions.
The number of time steps is set to 5000 for all experiments. The length of the
time interval allows the wave function to pass the crossing point once. The final
time is tf = 10

√
ε for the Gaussians and tf = 20

√
ε for the excited harmonic

oscillator state.
Table 5 contains the computational domains, the grid sizes, the final pop-

ulation P+(tf) and the achieved accuracy. The accuracy of the solution refers
to the difference ‖ψ(tf) − ψc(tf)‖L2 of the final reference solution ψ(tf) and a
coarser solution ψc(tf), which is computed with fourth the number of grid points
and half the number of time steps. In section §5.3, we varied the semiclassical
parameter ε to compare Wigner and Husimi functions. The input parameters
as well as the accuracy of the corresponding reference solutions are listed in
Table 6. The achieved errors are all sufficient for the validation of the single
switch algorithm, whose accuracy for the computation of quadratic quantities
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Table 5: Input parameters and results for the reference solution if ε = 0.01.

domain fine grid size P+(tf) accuracy

Gaussian wave packet [−2, 2]× [−1, 1] 1024× 512 0.422 4.7 · 10−7

Superposition [− 3
2 ,

3
2 ]× [− 3

4 ,
3
4 ] 2048× 1024 0.436 1.9 · 10−4

Excited oscillator [−4, 4]× [−2, 2] 2048× 1024 0.571 5.2 · 10−4

Table 6: Input parameters and results for the reference solution in case of the
superposition of two Gaussians in dependence on the semiclassical parameter ε.

ε domain fine grid size P+(tf) accuracy

10−1 [−10, 10]× [−5, 5] 2048× 1024 0.378 1.0 · 10−3

10−2 [− 3
2 ,

3
2 ]× [− 3

4 ,
3
4 ] 2048× 1024 0.436 1.9 · 10−4

10−3 [−1, 1]× [− 1
2 ,

1
2 ] 2048× 1024 0.526 1.6 · 10−7

5 · 10−4 [− 1
2 ,

1
2 ]× [− 1

4 ,
1
4 ] 2048× 1024 0.544 1.0 · 10−7

of the wave function typically varied around three percent.

B Analytical Wigner transformation

For the cross term of the Wigner function W (gz1 + gz2), one solves the integral

W (gz1 , gz2)(q, p) = (2π)−d

∫
Rd

eix·p gz1(q − ε
2x)gz2

(q + ε
2x) dx

= (2π)−d(πε)−d/2∫
Rd

eix·p e−
1
2ε (|q− ε

2 x−q1|2+|q+ ε
2 x−q2|2) e

i
ε (p1·(q− ε

2 x−q1)−p2·(q+ ε
2 x−q2)) dx,

where q1,2 and p1,2 denote the position and momentum component of the phase
space points z1,2 for the rest of the calculation. Rewriting the quadratic part as

|q − ε
2x− q1|2 + |q + ε

2x− q2|2 = |q − q1|2 + |q − q2|2 + ε2

2 |x|
2 + εx · q−,

one has

W (gz1 , gz2)(q, p) = (2π)−d(πε)−d/2 e−
1
2ε |q−q1|2− 1

2ε |q−q2|2

e
i
ε (p1·(q−q1)−p2·(q−q2))

∫
Rd

eix·(p−p++ i
2 q−) e−

ε
4 |x|

2
dx. (12)

One uses the value of the Gaussian integral∫
R

eiywe−αy2
dy =

√
π
α e−w2/(4α), w ∈ C, α > 0

for wj = pj − pj
+ + i

2q
j
− with j = 1, . . . , d and α = ε/4. Since

d∑
j=1

(wj)2 = |p− p+|2 − 1
4 |q−|

2 + i(p− p+) · q−,
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one gets

W (gz1 , gz2)(q, p) = (πε)−d e−
1
2ε |q−q1|2− 1

2ε |q−q2|2 e
i
ε (p1·(q−q1)−p2·(q−q2))

e−
1
ε |p−p+|2e

1
4ε |q−|

2
e−

i
ε (p−p+)·q− .

Observing that − 1
2 |q − q1|2 − 1

2 |q − q2|2 + 1
4 |q−|

2 = −|q − q+|2 and

p1 · (q − q1)− p2 · (q − q2)− (p− p+) · q− = ((q, p)− z+) ∧ z− − p+ · q−

one arrives at

W (gz1 , gz2)(q, p) = (πε)−d e−
i
ε p+·q− e−

1
ε |(q,p)−z+|2 e

i
ε ((q,p)−z+)∧z− .

and

c(q, p) = 1
2 (W (gz1 , gz2)(q, p) +W (gz2 , gz1)(q, p))

= (πε)−d e−
1
ε |(q,p)−z+|2 cos

(
1
ε (p+ · q− − ((q, p)− z+) ∧ z−)

)
Finally we compute the Wigner function for the two-dimensional excited oscil-
lator state e(q) for the case q0 = (0, 0). The defining integral

W (e)(q, p) = (επ)−3

∫
R2

eix·p(q21 − ε2

4 x
2
1)(q

2
2 − ε2

4 x
2
2) e−

1
ε |q|

2− ε
4 |x|

2
dx

falls into four parts, whose value can be determined due to∫
R

eiywy2 e−αy2
dy = −

√
π

4 α−5/2(w2 − 2α) e−
w2
4α , w ∈ C, α > 0.

With α = ε
4 and w = pj for j = 1, 2, one obtains∫
R2

eix·p e−
ε
4 |x|

2
dx = 4π

ε e−
1
ε |p|

2
,∫

R2
eix·px2

1 e−
ε
4 |x|

2
dx =

∫
R

eix1p1x2
1 e−

ε
4 x2

1 dx1

∫
R

eix2p2 e−
ε
4 x2

2 dx2,

= −8
√
πε−5/2(p2

1 − ε
2 ) e−

1
ε p2

1

√
4π
ε e−

1
ε p2

2

= − 16π
ε3 (p2

1 − ε
2 ) e−

1
ε |p|

2
,∫

R2
eix·px2

2 e−
ε
4 |x|

2
dx = − 16π

ε3 (p2
2 − ε

2 ) e−
1
ε |p|

2
,∫

R2
eix·px2

1x
2
2 e−

ε
4 |x|

2
dx =

∏
j=1,2

∫
R

eixjpjx2
j e−

ε
4 x2

j dxj

=
∏

j=1,2 − 8
√
πε−5/2(p2

j − ε
2 ) e−

1
ε p2

j

= 64π
ε5 (p2

1 − ε
2 )(p2

2 − ε
2 ) e−

1
ε |p|

2
.

Hence,

W (e)(q, p) =

4 e−
1
ε |(q,p)|2

ε4π2

(
q21q

2
2 + q22(p2

1 − ε
2 ) + q21(p2

2 − ε
2 ) +

∏
j=1,2(p

2
j − ε

2 )
)
.
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C Position densities by density estimation

At some final time t = tf > 0 the single switch algorithm produces two sets of
irregularly spaced points{

(q±k , p
±
k ) ∈ R2d | k = 1, . . . ,M±}

with associated weights w±k , which approximate the value of the Wigner func-
tions W (ψ±(tf)) in these points. A simple approximation in arbitrary phase
space points (q?, p?) can be deduced by kernel density estimation [21]

W (ψ±(tf))(q?, p?) ≈ 1
M±

M±∑
k=1

w±k K((q?, p?)− (qk, pk))

with Gaussian kernel

K : R2d → R, x 7→ (π/c)−d exp(−c|x|2).

Let {p1, . . . , pN} ⊂ Rd be a grid in momentum space with uniform patch size
ω(p1) = . . . = ω(pN ). Then, the position densities in a point q? ∈ Rd are
approximately

|ψ±(tf , q?)|2 =
∫

Rd

W (ψ±(tf))(q?, p) dp

≈ 1
M±

N∑
j=1

M±∑
k=1

w±k K((q?, pj)− (qk, pk))ω(pj).

We use this approach for a visual comparison of the position densities ob-
tained from Strang splitting with the approximation resulting from surface hop-
ping with Monte Carlo quadrature. The obtained plots have been insensitive
with respect to the variation of c in the interval [10, 50]. Choosing c = 20,
Figures 11, 12, and 13, collect the densities for the single Gaussian wave packet,
the superposition of two Gaussians, and the excited oscillator state, respec-
tively. One observes a good agreement between the mean positions, however,
as expected, no pointwise agreement, since the surface hopping approximation
of the Wigner function only holds in a weak sense.
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