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Abstract

For the treatment of equilibrated molecular systems in a heat bath we
propose a transition state theory that is based on conformation dynamics.
In general, a set-based discretization of a Markov operator Pτ does not
preserve the Markov property. In this article, we propose a discretiza-
tion method which is based on a Galerkin approach. This discretization
method preserves the Markov property of the operator and can be in-
terpreted as a decomposition of the state space into (fuzzy) sets. The
conformation-based transition state theory presented here can be seen as
a first step in conformation dynamics towards the computation of essen-
tial dynamical properties of molecular systems without time-consuming
molecular dynamics simulations.
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Introduction

In this article, we focus on the dynamics of a molecule in an equilibrated heat
bath. The dynamics is assumed to be a time-harmonic Markov process in po-
sition space Ω1. For the theoretical background of such processes2 see [5]. The
equilibrium is assumed to be in detailed balance with a Boltzmann distribution
of states. For Fig. 1 a corresponding simulation in the high-dimensional space Ω

Figure 1: A typical time series in conformation dynamics. The position space
Ω of the investigated molecule can be decomposed into n = 2 dynamically
metastable regions.

has been performed for a small molecule using a hybrid Monte Carlo method [3].
Subsequently, an internal coordinate (a certain dihedral angle) of the molecule
has been selected that indicates conformational changes [1]. For the theory of
conformations defined as metastable states see [12]. The time series analysis of
the selected coordinate in Fig. 1 shows the following: The molecule has n = 2
dynamically metastable states. On the basis of this insight, we are interested
in a finite state approximation of the system, similar to [9]. In this example,
we are interested in a matrix Pc ∈ IRn×n which captures the correct transition
behaviour between the n = 2 metastable states, see also [4, 11]. This article
pursues the following aims:

1. The reduced matrix Pc should be constructed in such a way, that it de-
scribes the full-dimensional dynamics correctly.

2. The matrix Pc should be computed without using a full-dimensional sim-
ulation. This aim is motivated by the fact that in these simulations,
transitions are rare events, which normally leads to insufficient statistics.

The problems related to the first aim will be discussed: A set-based reduction
(indicated in Fig. 1) does not lead to the correct matrix Pc. The second aim

1Ω includes all possible position states of the molecule neglecting translation and rotation.
If the molecule has k atoms, this is a (3k− 6)-dimensional space. Ω is also referred to as state
space. Because from the viewpoint of the Markov process, it is the space of all possible states
of the system.

2In the continuous case, a first-order stochastic differential equation leads to a dynamical
process without memory. It is Markovian.
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needs some approximations. These lead to conformation-based transition state
theory. In contrast to standard transition state theory, the new approach can be
applied to molecular systems with arbitrarily complex potential energy surfaces.
It takes into account entropical effects and is not restricted to a two-state system.
The accuracy of the new theory is related to the approximation properties of
a Galerkin discretization method, i.e. the better the approximation, the better
the results from conformation-based transition state theory. For a historical
overview of standard transition state theory see [7].

Outline. We first focus on the investigation of finite state spaces |Ω| = N . The
derivation of a correct reduced transition matrix Pc is organized as follows: In
Eq. 3 on page 6, an intuitive but incorrect set-based reduction of Markov chains
is used. In Eq. 5 on page 7, the incorrect term (3) is equivalently transformed
into a Galerkin discretization approach, and subsequently, the correct choice of
basis functions for discretization is derived using Robust Perron Cluster Analysis
PCCA+. With the special choice of basis functions, Pc in Eq. 5 is the correct
reduced matrix for a finite state space. Based on transition state theory, the
computation of the correct reduced matrix Pc in infinite state spaces Ω is derived
in Eq. 12 on page 10. This computation can be based on a spectral analysis of
a rate matrix Q (18) that can be approximated numerically without molecular
dynamics simulations via Monte Carlo quadrature and equations 23 and 26
below.

1 Dimension Reduction of Reversible Markov
Chains

1.1 Two Views on Markov Chains

Transition matrix. Given a sequence of random variables

X0 → X1 → X2 → . . . ,

this sequence is called a Markov chain, if the probability for the next step only
depends on the preceding step, i.e. if it meets the Markov property:

P (Xi = q(i)|Xi−1 = q(i−1) ∧Xi−2 = q(i−2) ∧ . . . ∧X0 = q(0))

= P (Xi = q(i)|Xi−1 = q(i−1)). (1)

If the set Ω of states q ∈ Ω is finite |Ω| = N , then for every pair of states,
there is one conditional probability in Eq. 1. By enumerating the states, these
probabilities are specified in a transition matrix P ∈ IRN×N . P is a stochastic
matrix, i.e. the elements of P are non-negative and the row sums are 1.

Markov chain as a time series realization. Given a transition matrix
P and the Markov property, a time series realization of the Markov chain is
possible. In this time series, state q(i) = a follows a given state q(i+1) = b with
the corresponding probability P (a, b). At each step i of the time series, the
system has one defined state q(i) ∈ {1, . . . , N}.
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Markov chain as a density propagation. A density propagation is based
on an ensemble of states. Given an initial distribution of states v(0) ∈ IRN , ‖v(0)‖1 =
1, the probabilites to reach any of the N states at time-step i are given by a
density vector v(i) ∈ IRN , i ∈ IN, and evolve in time with

v(i+1) = P>v(i).

The two views are based on Marcov chains’ realizations as time series. In the
first case, it is the evolution of a single state in time. In the second case, it is
the evolution of a distribution of states in time.

Reversibility. In the following, we only treat ergodic dynamical systems in
detailed balanced equilibrium. The stationary density π ∈ IRN of such a process
is uniquely defined by the equation

π>P = π>.

Uniqueness can be proven by the theorem of Frobenius-Perron, see [10]. Equi-
librated systems obeying a detailed balance condition are characterized by a
reversible transition matrix P . The unconditional probability for a transition
i → j is equal to the probability for the backward step j → i. Thus, a reversible
Markov chain is defined by the equality

DP = P>D, (2)

where D = diag(π1, . . . , πN ) is a diagonal matrix of the stationary density vector
π.

1.2 Non-Markovian Set-Based Reduction

A

B

C

Figure 2: A Markov property which holds for single states (left) can not be
transferred to sets of states (right). The transition probability C → A depends
on whether the system has been in B or in A before it entered C.
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Characteristic functions. The basis for the following considerations is a
Markov chain given by a stochastic matrix P ∈ IRN×N . We are interested
in a dimension reduction of this matrix into a smaller transition matrix Pc ∈
IRn×n, n � N . This reduced transition matrix should capture the transition
probabilities between subsets of Ω. The n subsets of Ω are represented by a
matrix χ ∈ {0, 1}N×n. The element χ(i, j) is 1 if and only if state i belongs to
subset j. Since we are interested in a decomposition of Ω into subsets, χ has
row sum 1. Although χ is a matrix, its columns are referred to as characteristic
functions of the subsets. This name becomes clear as soon as we switch from
discrete to continuous problems in Section 2.1.

Set-based reduction. Intuitively, in order to compute the matrix Pc ∈ IRn×n

of transition probabilities between the subsets defined by χ, we have to re-
strict the unconditional transition probabilities DP to the corresponding sets
via χ>DPχ. The matrix elements of χ>DPχ are the unconditional transition
probabilities between the subsets. In order to get the conditional probabilities,
we have to normalize this matrix, i.e.

Pc = D̃−1χ>DPχ. (3)

In Eq. 3, the matrix D̃ is a diagonal matrix D̃ = diag(πc), where πc = χ>π ∈ IRn

is the reduced stationary density of Pc. For the construction (3) of Pc see also
[13].

Does the matrix Pc represent a Markov chain between the subsets of Ω?
That is, does Pc(i, j) represent the transition probability from set i to set j for
each step of a time series realization of P? The answer is no.

Illustrative counter-example. For an illustrative example of how the Markov
property is violated in this kind of reduction technique see Fig. 2. Assume there
is a set Ω of states (in this example N = 36) and certain transition probabilities
between them which meet the Markov property and reversibility. In Fig. 2, all
non-zero transition probabilities are indicated by lines. Now assume a decompo-
sition of the states into n = 3 sets A,B, and C (Fig. 2, right). Furthermore, some
of the states (indicated by white circles) inside set C form a barrier, i.e. there
is only a low transition probability from the neighboring states to these barrier
states. Clearly, in a realization of the reversible Markov chain, the transition
probability C → A is not independ of the previous time steps. For instance,
the probability for a transition C → A is higher if the last transition between
different sets has been A → C than if it has been B → C.

Role of Pc. Pc is not a Markov chain, it does not represent a successive
transition probability between subsets of Ω in a time series realization because
it has lost the Markov property (1). Nevertheless, Pc is a conditional transition
matrix: In an equilibrated reversible system, a constant fraction of the ensemble
of states undergoes a transition i → j in τ time units. If we relate this fraction
to the fraction of states that started in i, as in Eq. 3, a conditional probability
is defined. Pc is an ensemble-based transition matrix and cannot be used for a
time series realization with a single starting point i ∈ {1, . . . , n}. In the next
section, it will be shown how a correct reduced propagator P>

c for a time series
realization can be defined.
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1.3 Subspace-Based Galerkin Discretization

P>
c as a propagator. In this section, we will focus on the second view on

Markov chains described in Section 1.1. The transition probability matrix P ∈
IRN×N leads to a propagation matrix P> for density vectors v ∈ IRN . In an
iterative propagation of densities v(0), v(1), v(2) . . . via

v(i+1) = P>v(i),

v(i) is a non-negative vector with ‖v(i)‖1 = 1 for all i ∈ IN. Pc ∈ IRn×n gives rise
to a propagator P>

c as well. P>
c propagates reduced densities v

(i)
c ∈ IRn, i ∈ IN.

P> and P>
c lead to the same dynamical behaviour if vc is the restriction of v for

every iteration step, i.e. v
(i)
c = χ>v(i) for all i ∈ IN. This is not the case for P>

c

in (3). A correct reduced propagator P>
c meets the following condition: The

propagation of the densities via P> reduced to the subsets defined by
χ should be equal to the propagation of the reduced densities via P>

c .
We will see that P>

c meets this condition with the correct choice of χ ∈ IRN×n

and a slight change of (3) into (5) below.

Galerkin discretization. In order to explain the above condition, we clarify
the mathematical meaning of (3) and introduce the following expression:

〈u, v〉π := u>Dv. (4)

Equation 4 defines a weighted scalar product. Reversibility of P in Eq. 2 in
terms of this scalar product is equivalent to π-self-adjointness of P , see [11, 13].
A short calculation for the expressions in Eq. 3 yields

D̃ = 〈χ, χ〉π, χ>DPχ = 〈χ, Pχ〉π,

where we used the fact that χ(i, j) ∈ {0, 1} for all elements of χ. Thus, the
set-based reduction (3) in terms of the scalar product (4) becomes

P>
c = 〈Pχ, χ〉π (〈χ, χ〉π)−1. (5)

Equation 5 and Eq. 3 only differ if there exist elements χ(i, j) 6∈ {0, 1}. Equation
5 is known as the Galerkin discretization of a π-self-adjoint operator P> for a
non-π-orthonormal set of basis vectors given by χ. This discretization method
defines two matrices [6], one matrix I ∈ IRN×n is known as the interpolation
operator

I := 〈·, χ〉π (〈χ, χ〉π)−1 = Dχ (χ>Dχ)−1

and another matrix R ∈ IRn×N with RI = id is known as the restriction operator

R := χ>.

Correct propagator P>
c . The condition introduced at the beginning of this

section for a correct reduced propagator P>
c is equivalent to the condition that

for each step of the propagation of a density v ∈ IRN , restriction and propagation
commutes:

RP>v = P>
c Rv. (6)

7



Using (5), the condition (6) is satisfied for special densities v given by

v = Dχa, (7)

with any vector a ∈ IRn. In order to map v to a reduced density vc ∈ IRn

correctly, one has to choose a = (χ>Dχ)−1vc. In this case, v is the interpolation
v = Ivc of vc. Equation 7 is a subspace condition for v. P>

c is the correct reduced
operator if v stays in the subspace defined by (7) during the propagation, i.e. if
P>v ∈ span{Dχ}. This is the case if the rows of χ span an invariant subspace
of P :

P>v = P>Dχa = DPχa = DχAa ∈ span{Dχ},

with A ∈ IRn×n and Pχ = χA.

1.4 Interpretation of Subspaces as Subsets

Problem. In Section 1.3, it has been shown that P>
c is the correct reduced

propagator of P> if it is a Galerkin discretization (5) of P> with a set of basis
vectors χ from an invariant subspace of P . Starting with a density v = Dχa, the
propagators P> and P>

c lead to the same dynamics. Although P is a stochastic
matrix and can be interpreted as a Markov chain, the entries of the correct
reduced propagator Pc may be negative. Furthermore, the set-based definition
of χ as a decomposition of Ω into subsets in Section 1.2 was very intuitive,
whereas in Section 1.3, the interpretation of an invariant subspace χ of P as
a decomposition of Ω into parts is not immediately clear. We now explain
how Robust Perron Cluster Analysis (PCCA+) interprets subspaces as subsets
[2, 13].

Robust Perron Cluster Analysis. For a reversible matrix P , the n-dim-
ensional invariant subspaces χ always have a basis representation in terms of
eigenvectors of P , i.e. χ = XA, with a matrix X ∈ IRN×n of eigenvectors
of P and A ∈ IRn×n. Given the set of dominant eigenvectors X, PCCA+
constructs a regular matrix A in such a way, that χ can be interpreted as
almost characteristic functions of a decomposition of Ω. The entries of χ are
the corresponding membership values, i.e. χ(i, j) ∈ [0, 1] denotes the degree of
membership of state i w.r.t. (fuzzy) set j, see also [14]. χ can be seen as a
decomposition of Ω because via PCCA+, χ is a partition-of-unity

n∑
j=1

χ(i, j) = 1, ∀i = 1, . . . , N.

By perturbation theory, it has been shown that if the Markov chain P has
n metastable parts, the entries of χ are close to 0 or 1, see [2].

Conclusion. In summary, a correct reduced propagator P>
c can be constructed

from P> via a Galerkin discretization method (5). The corresponding set of
basis vectors χ stems from a Robust Perron Cluster Analysis applied to the
dominant eigenvectors X of P . Using this analysis, χ can be seen as a (fuzzy)
decomposition of Ω into metastable regions.
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2 Conformation-Based Transition State Theory
(TST)

2.1 Continuous State Spaces

Construction of P . Section 1 focused on transition matrices P in finite state
spaces Ω. In molecular dynamics, however, the state space Ω is continuous.
This section investigates simulations of molecular motion in a heat bath. In
this case, Ω is the position space of the molecule (relative positions of its atoms,
neglecting rotation and translation of the molecule in space), and the dynamics is
a reversible time-continuous Markov process given by an infinitesimal generator
Q (stochastic motion in equilibrium due to heat bath contact) [4]. Thus, a finite
transition matrix P is not given but has to be constructed as a discretization
of the continuous process. The first step is a time discretization. We compute
transition probabilities for certain time intervals τ > 0. From an abstract point
of view: If we assume the Markov process to be time-harmonic, then this kind
of discretization is, in fact, a computation of a Markov operator Pτ : L2(Ω) →
L2(Ω) from the infinitesimal generator Q : L2(Ω) → L2(Ω) of the process via

Pτ = exp(τ Q). (8)

The corresponding theory is given in [5]. The second step is a discretization of
Ω into N subsets given by characteristic functions Φi : Ω → {0, 1}. This space
discretization leads to a Galerkin discretization of Pτ similar to Eq. 5. The
result is the “transition matrix” P ∈ IRN×N :

P = (〈Φ,Φ〉π)−1 〈Φ,PτΦ〉π, (9)

where π : Ω → IR is the continuous stationary distribution in Ω.

Role of P . Although P in (9) may be a good discretization of Pτ , it is not
the correct Markov chain (cf. the argumentation of Sections 1.1-1.2 for a set-
based dimension reduction of reversible Markov chains again). Therefore, in
this section, we do not hope to get a correct propagator on the basis of P .
Nevertheless, P plays an improtant role in transition state theory. It is used
to approximate eigenfunctions of Pτ in the following way. If X ∈ IRN×n is the
matrix of the n dominant eigenvectors of P , then the dominant eigenfunctions
ξi, . . . , ξn : Ω → IR of Pτ are approximated by

ξ = ΦX, i.e. ξj =
N∑

i=1

X(i, j) Φi, j = 1, . . . , n. (10)

correct reduced propagator P>
c . The functions ξ in (10) can not be in-

terpreted as a decomposition of Ω into parts, but if we apply PCCA+ for the
computation of χ = XA ∈ IRN×n, then the eigenfunctions can be transformed
into membership functions χ1, . . . , χn : Ω → [0, 1] via

χ = ξA, i.e. χj =
n∑

k=1

A(k, j) ξk, j = 1, . . . , n. (11)
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A Galerkin dicretization of Pτ with this non-π-orthonormal set of basis functions
χ1, . . . , χn analogously to Eq. 5 leads to an interpretable and correct reduced
propagator P>

c of Pτ . The corresponding scalar product is

〈u, v〉π =
∫

Ω

u(q) v(q) π(q) dq.

2.2 Approximation of Rate Matrices

In the previous section, it has been shown how the correct reduced propagator
P τ

c can be formulated for a continuous dynamical process: It is the Galerkin
discretization of Pτ with basis functions χ. If we assume the dynamics of a
molecule in a heat bath as a reversible time-harmonic Markov process, then we
can approximate P τ

c via transition state theory without computing terms like
Pτχi in the following way.

Infinitesimal generator of P>
c . TST is a heuristical approach to the com-

putation of transition rates between molecular conformations without dynamics
simulations. In this section, we make an approximative assumption. We as-
sume that ξi in Eq. 10 is an eigenfunction of Pτ with eigenvalue λi ≈ 1. Via
(8), ξi is an eigenfunction of Q with eigenvalue θi and λi = exp(τ θi). Using this
assumption, Eq. 11, and π-orthonormality of the set of eigenfunctions ξ, we get

P>
c = 〈Pτχ, χ〉π (〈χ, χ〉π)−1

= 〈PτξA, ξA〉π (〈ξA, ξA〉π)−1

= 〈ξΛA, ξA〉π (〈ξA, ξA〉π)−1

= A>Λ〈ξ, ξ〉πA (A>〈ξ, ξ〉πA)−1

= A>ΛA (A>A)−1 = A>ΛA−>, (12)

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of dominant eigenvalues of
Pτ . Equation 12 proves the existence of an infinitesimal generator Q>

c of P>
c ,

because P>
c = exp(τQ>

c ) with

Q>
c = A>ΘA−>,

and Θ = diag(θ1, . . . , θn). In other words, if we know the infinitesimal generator
Q, its dominant eigenspectrum, and the transformation matrix A from PCCA+,
we can compute the reduced propagator P>

c (for arbitrary time intervals τ) and
its infinitesimal generator Q>

c . Note that for this approach, it is not important
that Φi is a characteristic function. It is important that Φ is a sufficient basis
for the approximation of the dominant eigenfunctions ξ of Pτ . This fact will be
discussed in Section 2.3 below.

Rate matrix. Instead of computing the matrix P , we will construct the dis-
cretization Q ∈ IRN×N of Q with the set of basis functions Φ. Via QX = XΘ,
we can derive the important terms (eigenvectors X, Λ = exp(τΘ), and A) for
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(12) from this matrix, as well. It is known from theory [5] that Q is a rate
matrix with the following structure:

Q = R (K − id). (13)

In Eq. 13, R ∈ IRN×N
+ is a diagonal matrix of rate factors r = (r1, . . . , rN )>

and K ∈ IRN×N
+ is a stochastic matrix, denoted as the embedded Markov chain.

The diagonal elements of K are 0. The non-diagonal element K(i, j) denotes
the probability that a process starting in subset Φi in the moment it switches to
another subset it enters Φj and not any other neigboring subset. If one analyzes
molecular dynamics simulations (similar to Fig. 1) for the computation of the
discretized operator Q using a set-based approach, then the probability K(i, j)
is not independent of the past steps because the set-based approach does not
preserve the Markov property. Similar to Pc in Section 1.2, Q is an ensemble-
based rate matrix: If the initial states are distributed according to π, then Q
represents a one-step realization of the whole system. This ensemble-based
viewpoint is the basis for TST.

Embedded Markov chain. The transition probabilities in K are given by
TST in the following way. Since we discuss dynamical systems in equilibrium,
the probability to observe a state on the boundary between Φi and Φj is given
by the weight of this boundary. Formally, the overlap of Φi and Φj has the
characteristic function (Φi · Φj). This function has measure 0 w.r.t. π. For a
non-zero-measurable relaxation of this expression see Section 2.3 below. Having
this relaxation in mind, the probability to observe a state at the boundary
(Φi ·Φj) is proportional to 〈Φi,Φj〉π. Since the dynamical process is reversible,
it will cross the boundary from Φi to Φj with the same probability as vice
versa, i.e. the non-diagonal elements K(i, j) are proportional to 〈Φi,Φj〉π. If
we use the fact that the embedded Markov chain K has row-sum 1, we get the
corresponding normalized matrix as

K(i, j) =


〈Φi,Φj〉π

〈Φi〉π−〈Φi,Φi〉π
, for i 6= j,

0 , for i = j,

(14)

where 〈Φi〉π =
∫
Ω

Φi(q) π(q) dq. Due to the denominator, K is not defined if
Φ1, . . . ,ΦN are characteristic functions of subsets of Ω. This aspect will be
discussed in Section 2.3 below.

Rate factors. Via (14) and (13), Q is known except for the rate factor matrix
R. Note that π is the stationary density of the process, i.e.

0 = π>Q ⇔ 0 = π>R (K − id). (15)

In Eq. 15, the stationary density π is assumed to be known. We are looking for
the unknown rate factors R = diag(r1, . . . , rN ). (15) is equivalent to

r>D (K − id) = 0, (16)

where D(i, i) = πi = 〈Φi〉π. Equation 16 is an eigenproblem for the vector of
rate factors r ∈ IRN . A short calculation shows that the solution is given by

ri = µ
〈Φi〉π − 〈Φi,Φi〉π

〈Φi〉π
(17)
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with an unknown common scalar factor µ > 0. Uniqueness again can be shown
by the Frobenius-Perron theorem [10]. Inserting the solution R into (13) and
(14) leads to the result:

Q(i, j) = µ ·


〈Φi,Φj〉π

〈Φi〉π
, for i 6= j,

〈Φi,Φi〉π

〈Φi〉π
− 1 , for i = j.

(18)

The only missing information is the time scale factor µ. In the next section,
the corresponding algorithmic treatment of this missing information and of the
computation of Q is shown.

2.3 Algorithmic Ideas for Rate Matrix Computation

Computation of Q. The algorithmic details in this section include all ex-
pressions in Eq. 18:

1. Computation of integrals of the form 〈Φi,Φj〉π. From these integrals, we
also get 〈Φi〉π =

∑N
j=1〈Φi,Φj〉π because Φ is a partition of unity.

2. Computation of the time scale factor µ.

These computations are possible because for a closed molecular system with
constant temperature T and known potential energy function V : Ω → IR, the
density function π is given by the Boltzmann distribution

π(q) ∝ exp(−β V (q)) (19)

with inverse temperature β = 1
kBT and Boltzmann constant kB .

Sets and fuzzy sets. The algorithmic treatment of the results of Section
2.2 is not only based on characteristic functions Φi of subsets of Ω, because
this kind of decomposition of Ω is not suitable for the computation of integrals.
It is also based on a kind of relaxation of Φi into differentiable membership
functions. Whenever we need sets, this is indicated by a basis function Φ′

i.
Whenever we apply membership functions or fuzzy sets, this is indicated by
Φi with Φ′

i ≈ Φi. In the following, a Voronoi tessellation Φ′ of Ω is intended.
For this kind of decomposition, which is based on nodes q1, . . . , qN ∈ Ω and a
distance measure d : Ω × Ω → IR+, a relaxed counterpart Φ is known which
depends on a relaxation factor α > 0, see [13]:

Φ′
i(q) =

{
1, if d(q, qi) = min

j=1,...,N
d(q, qj),

0, else
,

Φi(q) =
exp(−α d2(q, qi))

N∑
j=1

exp(−α d2(q, qj))
. (20)

For α →∞ there is a point-wise convergence Φ → Φ′.

12



Metropolis Monte Carlo quadrature. Metropolis Monte Carlo methods
can be used to generate a set of points q ∈ Ω distributed according to a density
function which is known except for a normalization constant. In this case, we
use Metropolis Monte Carlo in order to compute the integrals 〈Φi,Φj〉π, i, j =
1, . . . , N . For each of these integrals, we generate a set {q(1)

ij , . . . , q
M(i,j)
ij } ⊂ Ω

of M(i, j) � 0 points distributed according to

exp(−βV (q))Φi(q) Φj(q) > 0. (21)

For Metropolis Monte Carlo we need not perform molecular dynamics simu-
lations. There are more sophisticated sampling strategies in literature. From
each sampling we pick the sampling point q̄ij which maximizes (21) and apply
reweighting strategies similar to that in [15]. This is done in the following way.
With the Dirac delta-function δ : Ω× Ω → IR, the following equation holds:

exp(−β V (q̄ij))Φi(q̄ij) Φj(q̄ij)∫
Ω

exp(−βV (q))Φi(q) Φj(q) dq
=

∫
Ω

δ(q̄ij , q)
exp(−β V (q))Φi(q) Φj(q)∫

Ω
exp(−βV (q))Φi(q) Φj(q) dq

dq.

(22)
The denominator of the left hand side is proportional to the desired integral,
the right hand side is the integral of the δ-function for a distribution of data
according to (21). The right hand side can be approximated via Monte Carlo
quadrature.

1
M(i, j)

M(i,j)∑
k=1

δ(q̄ij , q
(k)
ij ) ≈

∫
Ω

δ(q̄ij , q)
exp(−β V (q))Φi(q) Φj(q)∫

Ω
exp(−βV (q))Φi(q) Φj(q) dq

dq. (23)

On the left side of this expression, we may approximate δ up to an unknown
normalization constant with a characteristic funtion of a small ν-environment
of q̄ij . With this approximation, (23), and (22) we can compute the integrals
via

〈Φi,Φj〉π ∝ I(i, j) =
exp(−β V (q̄ij))Φi(q̄ij) Φj(q̄ij) M(i, j)

Uν(q̄ij)
, (24)

where Uν(q̄ij) is the number of sampling points inside a small ν-environment of
q̄ij . In order to get the correct scaling for the integral 〈Φi,Φj〉π, the matrix I =
(I(i, j))i,j in equation (24) is normalized, such that the sum of its elements is 1.
Note, that (24) converges against the correct integral if ν → 0 and M(i, j) →∞.
In practise we need more and more sampling points if ν decreases in order to
achieve a statistically relevant ratio M(i, j)/Uν(q̄ij).

Time scale factor. If we are not interested in the correct scaling of Q, we do
not need any dynamics simulations at this point. Note that it is not necessary to
compute µ for the identification of invariant parts of Ω, because the eigenvector
data X does not depend on µ. In order to compute the correct time scale factor
µ, if it is needed, we have to include dynamics simulations, but only for a very
restricted part of Ω given by a basis function Φ′

k. Assume an initial molecular
state in set Φ′

k. The time Tk that is spent before the state leaves Φ′
k via heat

bath dynamics is called exit time [5]. The probability P [Tk > t] that Tk is
greater than a certain time t > 0 is given by

P [Tk > t] = exp(−Q(k, k) t). (25)
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From this information, we can compute the unknown scalar factor via heat bath
simulation starting in an arbitrary initial set Φ′

k of states. The time t1/2, for
which the probability is P [Tk > t1/2] = 0.5, is called half-value time. Note
that Q is an ensemble-based rate matrix, i.e. we start a large number L � 0 of
simulations with initial-state distribution of π restricted to Φ′

k. We stop each
single simulation when it leaves Φ′

k. In this case, t1/2 is the time when the
L/2-th simulation stops. Using (25) and (18), µ can be approximated as

µ =
ln(2)
t1/2

· 〈Φk〉π
〈Φk〉π − 〈Φk,Φk〉π

. (26)

Correct reduced propagator via TST. After computation of the rate ma-
trix Q for a given set (20) of basis functions Φ via (18) and Monte Carlo quadra-
ture (24), the eigenvalue problem QX = µXΘ is solved for the n dominant
eigenvalues (θi ≈ 0) of Q. For the corresponding eigenvectors X, we apply
PCCA+ in order to get the transformation matrix A. The correct reduced
propagator has the form (12) with Λ = exp(τµΘ). The corresponding domain
decomposition χ is given by χ = ΦXA, see (10) and (11). If it is important to
know the correct scaling factor µ, one can apply (26) after local simulation of
the half-value time t1/2 of one given set Φ′

k.

Parameter selection. For the choice of the nodes q1, . . . , qn of the basis
functions and for the choice of α > 0, note that the space discretization should
be fine enough, so that ξ approximates eigenfunctions of Pτ well. α > 0 has
to be large enough, so that Φi ≈ Φ′

i, but also small enough to sample (21) via
Metropolis Monte Carlo correctly.

Computational cost. Equation 24 means that N2 samplings have to be per-
formed if N basis functions are selected. But for non-neighboring sets Φ′

i and
Φ′

j and α � 0, the nominator of (24) is negligibly small. The elements of I need
only be computed for neighboring sets in Ω.

3 Illustrating Examples

TST is based on two important assumptions: First, Φ′ is assumed to be a
sufficient set of basis functions for the approximation of eigenfunctions of P
resp. Q. Second, instead of sets Φ′, a relaxation Φ is used for the computation
of overlap integrals in (14). Within these limits, TST is correct. In Section 3.1, it
is shown that standard TST is an extreme simplification of conformation-based
TST, including the simplifications of Section 2.3. In Section 3.2 and Section
3.3, examples are given which cannot be treated with standard TST, but these
examples are accessible to the conformation-based theory. In all of the examples,
we compute the infinitesmal generator Qc instead of the propagator P>

c , but
via P>

c = exp(τ Q>
c ), the propagator can be derived from the infinitesimal

generator.
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A

B

T

Figure 3: State space Ω with two metastable regions A and B and a corre-
sponding transition path. This path crosses the boundary between A and B at
a transition state T .

3.1 Standard TST as a simplification of the conformation-
based approach

Setting. A very simple example for TST is illustrated in Fig. 3. In this
example, the state space Ω consists of two metastable regions A and B, similar to
the situation of the time series in Fig. 1. Once the system is in a state within one
of these regions, it stays inside that region with a high probability. Transitions
between regions are rare events. The two regions of Ω are given in terms of
membership functions Φ′

A and Φ′
B . In Fig. 3, it is also assumed that transitions

only take place by crossing a certain transition state T . The transition state is
a saddle point of the potential energy surface V : Along the indicated reaction
path, T has the maximal potential energy. Inside the boundary between A and
B, the transition state T has the minimal potential engergy value.

Approximation of Qc. Metastability of A and B can be expressed by the
following approximations:

PτΦ′
A ≈ Φ′

A, PτΦ′
B ≈ Φ′

B .

Thus, Φ′
A and Φ′

B are approximations of two dominant eigenfunctions of Pτ

and also of Q. In this case, where N = n = 2, the correct reduced operator
Qc = Q is given by Eq. 18 using these two basis functions:

Qc = µ


− 〈ΦA,ΦB〉π

〈ΦA,ΦA〉π+〈ΦA,ΦB〉π

〈ΦA,ΦB〉π

〈ΦA,ΦA〉π+〈ΦA,ΦB〉π

〈ΦA,ΦB〉π

〈ΦA,ΦB〉π+〈ΦB ,ΦB〉π
− 〈ΦA,ΦB〉π

〈ΦA,ΦB〉π+〈ΦB ,ΦB〉π

 . (27)

Now, we will only focus on the computation of Qc(1, 2). The other elements can
be computed analogously. For the approximation of 〈ΦA,ΦA〉π and 〈ΦA,ΦB〉π,
we use Eq. 23:

• For 〈ΦA,ΦA〉π, it is assumed that there is one deep local minumum qA ∈ Ω
of V inside region A of the state space, see black circle in Fig. 3. Further,
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assume ΦA(qA) = 1, and nearly all sampling points3 are located in a small
environment of qA. Then 〈ΦA,ΦA〉π ∝ exp(−β V (qA)).

• For 〈ΦA,ΦB〉π, it is assumed that there is one transition state qT ∈ Ω of
V inside the boundary AB, see Fig. 3. Furthermore, ΦA(qT ) = ΦB(qT ) =
0.5, and nearly all transitions cross a small environment of qT . Then
〈ΦA,ΦB〉π ∝ 1

4 exp(−β V (qT )).

• The summand 〈ΦA,ΦB〉π in the denominator of (27) can be neglected,
because 1

4 exp(−β V (qT )) � exp(−β V (qA)).

With these assumptions and simplifications, the transition rate A → B is pro-
portional to the Boltzmann expression exp(−β (V (qT ) − V (qA))), where the
difference V (qT )−V (qA) is the potential energy barrier between A and B. This
is equivalent to the result of standard TST. The above simplifications can also
be applied for systems with more than 2 conformations.

Limits of standard TST. In order to derive standard TST from conformation-
based TST, we introduced some assumptions and simplifications which limit the
accuracy of standard TST. It is easy to construct counter-examples for standard
TST: There might be more than one transition state on the boundary between
A and B. A and B might be metastable subsets of Ω but consist of many local
minima and plateaus. In this case, entropical effects play an important role in
the evaluation of 〈ΦA,ΦA〉π and standard TST does not lead to correct results.

3.2 Entropical Transitions

The next example can not be treated with standard TST. In Fig. 4, the exis-
tence of barriers lead to entropical effects. The transition states are not saddle-
points of the potential energy surface beacuse the potential energy function V
is constant. In this artificial example, we investigate the dynamics of a point
in a 2-dimensional box Ω. This box has two chambers A and B, which are
connected by a small passage. Transitions between A and B only take place
through this passage. The state space Ω is discretized into 9× 5 smaller boxes
given by their characteristic functions {Φ′

1, . . . ,Φ
′
45}. Following the ideas of

Section 2.2, the elements of K in (13) can easily be determined. All common
edges of the discretization boxes (exept for the wall between A and B) have
the same statistical weight, because in Ω, the stationary distribution is uniform.
The edges of the discretization boxes located on the wall between A and B have
no weight. Since K is a stochastic matrix, the entries of K are uniquely de-
termined by these considerations. For the computation of the rate factors R in
(13), we apply Eq. 15. The stationary distribution is uniform. All discretization
boxes Φ′

i have the same weight πi = 1/45. Solving the eigenvalue problem (16)
with these constant weights yields R up to an unkown scaling factor µ. After
computation of Q, we are now interested in a 2-dimensional reduction of Q,
i.e. n = 2. First, we will investigate the set-based reduction Q̂c. Then we will
compute the subspace-based reduction Qc.

3Distributed according to (21).
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BA

Figure 4: The state space Ω is a box with two “chambers” A and B (thick lines).
These chambers are connected by a small passage. For the computations, the
space Ω is discretized into 45 small congruent boxes (thin lines). Chamber A
has twice the volume of chamber B.

Set-based reduction. Analogously to P in (3) and (5), the dimension of Q
can be reduced to n = 2. For characteristic basis functions χ̂A, χ̂B : Ω → {0, 1}
representing the two chambers of Ω, the Galerkin based approach (5) and the
“intuitive” approach (3) are equivalent. Up to an unknown scaling factor µ, the
set-based transition rate matrix Q̂c is

Q̂c =
(
−0.5 0.5
1.0 −1.0

)
. (28)

Due to the set-based dimension reduction, (28) is an ensemble-based transition
rate matrix. The result (28) can also be justified theoretically. In a detailed
balanced equilibrium, always the same fraction of states crosses the passage from
A to B as the fraction of states going from B to A. Divided by the volumes of
A and B, the reaction rate A → B is half the reaction rate B → A. However,
Q̂c cannot be used for a time series realization (cf. Section 1.2). For a single
state q ∈ Ω, transition rates from A to B are not independ of the position of q
inside chamber A.

Subspace-based reduction. In the subspace-based approach, we have mem-
bership functions χA, χB : Ω → [0, 1] instead of sets. The membership func-
tions can be computed by PCCA+, see Fig. 5. Using the subspace-based ap-
proach, the position of q ∈ Ω inside A determines the degree of membership
χA(q) ∈ [0, 1] with respect to A. In this case, the above theory has shown that
there exists a transition rate matrix Qc which is valid for a time series realiza-
tion. The Galerkin discretization of Q with the membership functions of Fig. 5
is

Qc =
(
−0.2800 0.2800
0.4481 −0.4481

)
. (29)

Again, this result has a theoretical justification. The ratio of Qc(1, 2) and
Qc(2, 1) is equal to the ratio πc(B)/πc(A) of the weights πc(A) = 〈χA〉π and
πc(B) = 〈χB〉π. In a two-dimensional example (this is also true for the example
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Figure 5: The two membership functions χA (left) and χB (right) approximated
via PCCA+ using the discretization of Fig. 4. High membership values are
colored red, low membership values are colored blue. The weights of the two
conformations are πc(A) = 0.6154 and πc(B) = 0.3846.

in Fig. 3), the ratio of Qc(1, 2) and Qc(2, 1) is always determined by the weights
of the conformations. Moreover, since Qc(1, 1) = −Qc(1, 2) and Qc(2, 2) =
−Qc(2, 1) in the two-dimensional case, Qc is completely determined up to a
scaling factor by the weights of the conformations.

3.3 Three conformations

Let us now look at a 2-dimensional potential energy function V : IR2 → IR with
three local minima:

V (x, y) = 3 exp
(
− x2 − (y − 1

3
)2

)
− 3 exp

(
− x2 − (y − 5

3
)2

)
−5 exp(−(x− 1)2 − y2)− 5 exp(−(x + 1)2 − y2)

+0.2 x4 + 0.2 (y − 1
3
)4. (30)

This potential energy function has also been investigated in [8]. The x-symmetric
function (30) is shown in Fig. 6. We want to investigate the transitions between
the two deeper minima of V . Transitions can either directly cross the barrier
between these two minima, or they visit the plateau at the top in Fig. 6.

Choice of parameters. In order to discretize Ω sufficiently, a regular grid
of 21 × 16 nodes is used for the Voronoi tessellation and its relaxation (20)
with α = 10. Two different temperatures are investigated with β(1) = 1.67
(“high temperature”) and β(2) = 3.34 (“low temperature”). The Q-matrix is
computed for these two temperatures via (24) and (18) using the approach
M(i, j) = Uν(qij) of Section 3.1.

Membership functions. After computation of the Q-matrix, the eigenvalue
problem is solved, and PCCA+ is applied in order to extract membership func-
tions χ of the three conformations. The membership functions are different
for the two temperatures. In the high-temperature case, the membership func-
tions are smoother than the membership functions of the low-temperature case.
The high-temperature membership functions are shown in Fig. 7. On the ba-
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Figure 6: Potential energy function with three local minima, two deeper ones
(left and right) and a connecting plateau (top).

sis of the membership functions χ of the conformations, the reduced transition
rate matrices Q

(1)
c and Q

(2)
c can be computed for the two temperatures. The

first conformation is the connecting plateau, the second conformation is the left
minimum, and the third conformation is the right minimum in Fig. 6.

High temperature. The reduced stationary density for the case β(1) = 1.67
is

π(1)
c =

0.053
0.478
0.469

 . (31)

The population of the first conformation (connecting plateau) is very small
compared to the population of the other conformations. The transition rates
from the connecting plateau to any of the deeper minima are about ten times
higher than the transition rates of the reverse “reactions”:

Q(1)
c =

−0.008799 0.004390 0.004409
0.000491 −0.000750 0.000259
0.000490 0.000271 −0.000761

 . (32)

The entries of Q
(1)
c reflect the symmetry of the potential energy function. Q

(1)
c

can be used for a time series simulation. The starting vector for our simulation
is v(0) = (0, 1, 0)> (the left minimum). In Fig. 8, the results of this simulation
are shown. The population of conformation 3 goes up, whereas the population
of conformation 2 is reduced. One can also see that there is some occupancy in
conformation 1 long before the equilibrium state is reached. This means that a
non-negligible fraction of transitions crosses the connecting plateau. Because of
the unknown scaling factor µ, the x-axis in Fig. 8 has no unit.

19



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Figure 7: The membership functions χ of the three conformations. Exemplified
for β = 1.67. The conformations are more “crisp” for higher β-values.

Low temperature. In the low temperature case β(2) = 3.34, the reduced
stationary density,

π(2)
c =

0.002
0.490
0.508

 , (33)

has a lower entry for the first conformation than (31). Furthermore, the transi-
tion rates from the connecting plateau to any of the deeper minima are about
200 times higher than the reverse transition rates:

Q(2)
c =

−0.006903 0.003402 0.003500
0.000016 −0.000025 0.000009
0.000016 0.000009 −0.000025

 . (34)

Since Q
(1)
c and Q

(2)
c are only known up to a scaling factor µ, which may be

different for the two temperatures, the entries of Q
(1)
c and Q

(2)
c can not be

compared directly. It is only ratios of matrix elements that are meaningful.
Q

(2)
c can be used for a kinetics simulation of the transition between the two

deeper minima, see Fig. 9. In the low-temperature case, the connecting plateau
also reaches its equilibrium density very fast. In Fig. 9, the population curve
of conformation 1 can not be distinguished from the x-axis (the popolutaion is
almost zero).

Time series realization. Via Pc = exp(τ Qc), a transition matrix can be
obtained from the infinitesimal generator. For the high-temperature case and
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Figure 8: Time-population-plot of a kinetics simulation of the transition between
the two deeper minima (dashed and dotted curve). The connecting plateau is
populated very early (solid curve).
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Figure 9: Time-population-plot of a kinetics simulation of the transition between
the two deeper minima (dashed and dotted line). The connecting plateau is
almost unoccupied (solid curve is almost constant zero).

τ = 100, the transition matrix is

P (1)
c =

0.4269 0.2861 0.2869
0.0320 0.9360 0.0320
0.0319 0.0331 0.9350

 . (35)

For the low-temperature case with τ = 1000, we get

P (2)
c =

0.0033 0.4912 0.5055
0.0023 0.9818 0.0158
0.0023 0.0153 0.9824

 . (36)

The matrices (35) and (36) can be used for a time series realization because
they are the correct reduced propagators. In fact, Fig. 8 and Fig. 9 have been
created by a plot of one hundred steps of these propagators.
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Defuzzification. We have compared Q
(1)
c and Q

(2)
c in terms of their transition

rates between subsets of Ω. However, in the above examples, we do not have
subsets but membership functions. Membership functions represent fuzzy sets.
One can defuzzify these membership functions by crisp functions χ̂ ∈ {0, 1}N×n,
if we set χ̂i(q) = 1, by setting χj(q) ≤ χi(q) for all j = 1, . . . , n. (32) and (34)
may be good approximations of the correct reduced infinitesimal generator, but
if we want to speak about transitions within Ω, we should compute Qc on the
basis of subsets as well.

Set-based discretization in the high-temperature case. The member-
ship functions in the high-temperature case in (32) are not crisp, i.e. there is a
non-negligible part of Ω, where χ attains values far away from 0 or 1. Thus, the
reduced stationary density for the defuzzified membership functions,

π̂(1)
c =

0.040
0.485
0.475

 , (37)

is different from π
(1)
c in (31). And also the reduced propagator in this case,

Q̂(1)
c =

−0.047117 0.023711 0.023406
0.001951 −0.003660 0.001709
0.001964 0.001744 −0.003708

 , (38)

is not identical to Q
(1)
c in (32). Note that (32) is valid for a time series simulation,

whereas (38) is only an ensemble-based transition rate matrix. It is remarkable
that the rates in (38) are higher than the rates in (32), although Q̂

(1)
c is based on

non-overlapping sets and Q
(1)
c is a propagator between fuzzy sets. The reason is,

that the membership functions χ from PCCA+ are optimal in some sense [13].
PCCA+ aims at maximizing metastability, i.e. minimizing transitions between
the fuzzy sets.

Set-based discretization in the low-temperature case. In the low-temp-
erature case, the membership functions χ from PCCA+ are already almost crisp.
Therefore, the reduced stationary density π̂

(2)
c is almost identical to π

(2)
c in (33):

π̂(2)
c =

0.002
0.490
0.508

 . (39)

The transition rate matrix, however, differs from (34):

Q̂(2)
c =

−0.026999 0.013816 0.013183
0.000057 −0.000097 0.000035
0.000053 0.000034 −0.000087

 . (40)

This is due to the fact that the transition rates depend very sensitively on the
membership values in the transition region between the conformations. Anal-
ogously to the high-temperature case, the transition rates in (40) are higher
than in (34). The reason is that PCCA+ aims at maximizing metastability of
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the conformations. The ratio of the transition rates from and to the connecting
plateau is similar to the subspace-based result (ratios 1/10 and 1/200 for the
two temperatures). The most remarkable difference between the set-based and
the subspace-based discretization method is the following: In the low-tempera-
ture case in (40), the transitions from one of the minima directly to the other
minimum have a much lower rate than the transitions to the connecting plateau.
In contrast to that, in the high temperature case in (38), the transition rates
are almost identical. This statement is true only for the set-based approach. In
the subspace-based approach, the transition rates in (34) and (32) are always
much higher for transitions into the connecting plateau as for the direct tran-
sitions between the minima. Qc may be a good approximation for the correct
infinitesimal generator according to the above theory, but (32) and (34) cannot
be seen as transition rate matrices between sets. The knowledge of χ is essential
for the interpretation and application of the subspace-based Qc.

Conclusion

It has been shown that the correct reduced transition matrix Pc is a Galerkin
discretization of the full-dimenstional Markov operator Pτ , if and only if the set
of discretizing basis functions span an invariant subspace of the operator Pτ .
There is no chance to compute a correct reduced propagator Pc for equilibrated
systems with a purely set-based approach. Only by using PCCA+, there is a
possibility to compute the correct reduced propagator based on “fuzzy” sets,
i.e. on membership functions. If it is possible to compute the integrals in Eq. 18
in an efficient way without time-consuming molecular dynamics simulations,
conformation-based TST is a powerful tool for the investigation of conforma-
tional changes. Note that in section 3.3, only local maximization methods have
been applied.
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