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Abstract

The optimal track allocation problem (OPTRA), also known as
the train routing problem or the train timetabling problem, is to find,
in a given railway network, a conflict-free set of train routes of max-
imum value. We propose a novel integer programming formulation
for this problem that is based on additional ‘configuration’ variables.
Its LP-relaxation can be solved in polynomial time. These results
are the theoretical basis for a column generation algorithm to solve
large-scale track allocation problems. Computational results for the
Hanover-Kassel-Fulda area of the German long distance railway net-
work involving up to 570 trains are reported.

1 Introduction

Routing a maximum number of trains in a conflict-free way through a track
network is one of the basic scheduling problems for a railway company. The
problem has received growing attention in the operations research literature
recently, see, e.g., Brännlund et al. [1998], Caprara et al. [2001], Caprara
et al. [2002], Borndörfer et al. [2006], Cacchiani [2007] and Cacchiani et al.
[2008]. All of these articles model the track allocation problem in terms of
a multi-commodity flow of trains in an appropriate time expanded graph,
ruling out conflicts by additional packing constraints.

The main problem with this approach is that the resulting integer pro-
grams become notoriously difficult already for small problem sizes. This is
due to an enormous number of (weak) packing constraints in the model. The
purpose of this article is to propose a new formulation of the ‘extended’ type,
that handles conflicts not in terms of constraints, but in terms of additional
variables. Our formulation has a constant number of rows, is amenable to
standard column generation techniques, and therefore suited for large-scale
computation.
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project Trassenbörse, grant 19M4031A.
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2 The Optimal Track Allocation Problem

The optimal track allocation problem can be formally described in terms
of a digraph D = (V,A). Its nodes represent arrivals and departures of
trains at a set S of stations at discrete times T ⊆ Z, its arcs model runs
of trains between stations. Denote by s(v) ∈ S the station associated with
departure or arrival v ∈ V , and by t(v) ∈ T the time of this event; we
assume t(u) < t(v) for each arc uv ∈ A such that D is acyclic. Denote
by J = {s(u)s(v) : uv ∈ A} the set of all railway tracks. We are further
given a set I of requests to route trains through D. More precisely, train
i ∈ I can be routed on a path through some suitably defined subdigraph
Di = (Vi, Ai) ⊆ D from a starting point si ∈ Vi to a terminal point ti ∈ Vi;
let Pi be the set of all routes for train i ∈ I, and P =

⋃
i∈I Pi the set of

all train routes (taking the disjoint union). We say that an arc uv ∈ A

blocks the underlying track s(u)s(v) during the time interval [t(u), t(v)− 1],
that two arcs a, b ∈ A are in conflict if their respective blocking intervals
overlap, and that two routes p, q ∈ P are in conflict if any of their arcs are
in conflict. A track allocation or timetable is a set of conflict-free routes, at
most one for each train. Given arc weights wa, a ∈ A, the weight of route
p ∈ P is wp =

∑
a∈p wa, and the weight of a track allocation X ⊆ P is

w(X) =
∑

p∈X wp. The optimal track allocation problem (OPTRA) is to
find a track allocation of maximum weight.

We refer the reader to the articles Caprara et al. [2001], Caprara et al.
[2002], and Borndörfer et al. [2006] for discussions how this basic model can
be set up to deal with various technical and operational requirements such as
preferences for departure, arrival, and travel times, train driving dynamics,
single and double tracks, zero-level crossings, station capacities, headways,
dwell and turnover times, routing corridors, correspondences, complemen-
tarities, and synergies between trains etc.

OPTRA is NP-hard Caprara et al. [2002]. It can be seen as a multi-
commodity flow problem with additional packing constraints, which can be
modeled in terms of inequalities Caprara et al. [2001], Caprara et al. [2002],
Borndörfer et al. [2006]. We propose here an alternative formulation that is
based on arc ‘configurations’, i.e., sets of arcs on the same underlying track
that are mutually not in conflict. Formally, let Ast = {uv ∈ A : s(u)s(v) =
st} be the set of all arcs associated with some track st ∈ J ; a configuration
for this track st is a set of arcs q ⊆ Ast that are mutually conflict-free.
Let Qj denote the set of all configuration associated with track j ∈ J , and
Q =

⋃
j∈J Qj the set of all configurations.

Introducing 0/1-variables xp, p ∈ P , and yq, q ∈ Q, OPTRA can be
stated as the following integer program.
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(PCP) (i) max
∑
p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1, ∀i ∈ I

(iii)
∑

q∈Qj

yq ≤ 1, ∀j ∈ J

(iv)
∑

a∈p∈P

xp −
∑

a∈q∈Q

yq ≤ 0, ∀a ∈ A

(v) xp, yq ≥ 0, ∀p ∈ P, q ∈ Q

(vi) xp, yq ∈ Z, ∀p ∈ P, q ∈ Q.

The objective PCP (i) maximizes the weight of the track allocation. Con-
straints (ii) state that a train can run on at most one route, constraints (iii)
allow at most one configuration for each track. Inequalities (iv) link train
routes and track configurations to guarantee a conflict-free allocation, (v)
and (vi) are the non-negativity and integrality constraints. Note that the
upper bounds xp ≤ 1, p ∈ P , and yq ≤ 1, q ∈ Q, are redundant.

3 Column Generation

Consider the LP-relaxation PLP of PCP, i.e., PLP = PCP (i)–(v); it can
be solved by column generation. In fact, it will turn out that the pricing
problems for both the route and the configuration variables can be solved in
polynomial time by computing longest paths in appropriate acyclic graphs.
To see this, consider the dual DLP of PLP.

(DLP) (i) min
∑
j∈J

πj +
∑
i∈I

γi

(ii) γi +
∑

a∈p λa ≥ wp ∀p ∈ Pi, i ∈ I

(iii) πj −
∑

a∈q λa ≥ 0 ∀q ∈ Qj , j ∈ J

(iv) γi, πj , λa ≥ 0 ∀i ∈ I, j ∈ J, a ∈ A.

Here, γi, i ∈ I, πj, j ∈ J , and λa, a ∈ A, are the dual variables associated
with constraints PLP (i), (ii), and (iii), respectively. The pricing problem
for a route p ∈ Pi for train i ∈ I is

∃ p ∈ Pi : γi +
∑

a∈p

λa < wp ⇐⇒
∑

a∈p

(wa − λa) > γi.

This is the same as finding a longest siti-path in Di w.r.t. arc weights
wa − λa; as Di is acyclic, this problem can be solved in polynomial time.

The pricing problem for a configuration q ∈ Qj for track j ∈ J is
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∃ q ∈ Qj : πj −
∑

a∈q

λa < 0 ⇐⇒
∑

a∈q

λa > πj.

Let j = st and consider the construction illustrated in Figure 1. Denote
by Ast = {uv ∈ A : s(u)s(v) = st} the set of arcs that run on track st and
by Lst := {u : uv ∈ Ast} and Rst := {v : uv ∈ Ast} the associated set of
departure and arrival nodes; note that all arcs in Ast go from Lst to Rst. Let
Ast := {vu : t(v) ≤ t(u), v ∈ Rst, u ∈ Lst} be a set of ‘return’ arcs that go in
the opposite direction. It is easy to see that Dst = (Lst ∪ Rst, Ast ∪ Ast) is
bipartite and acyclic, and that LstRst-paths a1, a1, . . . , ak−1, ak in Dst and
configurations a1, . . . , ak in Qst are in 1-1 correspondence. Using arc weights
λa, a ∈ Ast, and 0, a ∈ Ast, pricing configurations in Qst is equivalent to
finding a longest LstRst-path in Dst. As Dst is acyclic, this is polynomial.
It follows

Theorem 3.1 PLP can be solved in polynomial time.

In practice, tailing-off prevents the straightforward solution of PLP to opti-
mality. However, the path lengths maxp∈Pi

∑
a∈p(wa−λa) and maxq∈Qj

∑
a∈q λa

yield the following bound β = β(γ, π, λ).

Lemma 3.2 Let γ, π, λ ≥ 0 be dual variables1 for PLP and v(PLP) the
optimum of PLP. Let ηi := maxp∈Pi

∑
a∈p(wa − λa) − γi, i ∈ I, and θj :=

maxq∈Qj

∑
a∈q λa − πj, j ∈ J . Then:

v(PLP) ≤
∑

i∈I

max{γi + ηi, 0} +
∑

j∈J

max{πj + θj, 0} =: β(γ, π, λ).

Figure 1: Arc configurations on a track. From left to right: train routing
digraph, conflict-free configuration, configuration routing digraph, and LR-
path.

1Note that these will be infeasible during column generation.
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4 Computational Results

We have implemented a column generation algorithm for the PCP along
the lines of the preceding sections. We have used this code to solve three
large-scale railway track allocation problems for the Hannover-Kassel-Fulda
area of the German long-distance railway network involving 146, 250, and
570 trains, see Table 1. The instances are based on a common macroscopic
infrastructure model with 37 stations and 120 tracks, 6 different train types
(ICE, IC, RE, RB, S, ICG), and 4320 headway times, see Figure 2 for an
illustration and Borndörfer et al. [2006] for a more detailed discussion.

Figure 3 illustrates the solution of the LP-relaxation PLP for the two
large scenarios 2 and 3. It can be seen that the upper bound β(γ, π, λ) and
the optimal value v(RPLP ) of the restricted master-LP converge, i.e., we
can indeed solve these LPs close to optimality. This provides a good starting
point to compute high-quality integer solutions using standard rounding
heuristics, see columns IP and gap in Table 1. All computations were made
single-threaded on a Dell Precision 650 PC with 2GB of main memory and
a dual Intel Xeon 3.8 GHz CPU running SUSE Linux 10.1. The reduced
master-LPs were solved with CPLEX 10.0 using the barrier or dual simplex
method, depending on the column generation progress.

CelleCelleCelleCelle

Hannover 

CelleCelle

Hannover Hannover Hannover 

GoettingenGoettingenGoettingenGoettingen

KasselKasselKasselKassel Kassel Kassel

FuldaFulda

Hannover Hannover Hannover Hannover Hannover Hannover Hannover Hannover 
FallerslebenFallersleben

BraunschweigBraunschweigBraunschweigBraunschweig

FallerslebenFallersleben

AltenbekenAltenbeken

GoettingenGoettingenGoettingenGoettingen

FuldaFulda

KasselKasselKasselKassel Kassel Kassel

AltenbekenAltenbeken

KasselKasselKasselKasselKasselKasselKasselKasselKasselKasselKasselKassel

Figure 2: Infrastructure network (left), visualization of an allocation (right).

2
cols is the max. number of columns in main memory during column generation.

5



no |I| rows cols2 iter β v(RPLP ) IP gap time

in % in sec.

1 146 6034 120366 162 93418 93381 93371 0.05 4439

2 250 12461 213218 168 148101 147375 147375 0.75 39406

3 570 11112 250550 148 245278 239772 234538 4.58 59910

Tab. 1: Solving large-scale railway track allocation problems.
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Figure 3: Solving the LP-relaxations of scenario 2 (left) and 3 (right) by
column generation.

References

Borndörfer, Grötschel, Lukac, Mitusch, Schlechte, Schultz & Tanner (2006).
An Auctioning Approach to Railway Slot Allocation. Competition and
Regulation in Network Industries 1(2), 163–196. ZIB Report 05-45.

Brännlund, Lindberg, Nou & Nilsson (1998). Railway Timetabling using
Langangian Relaxation. Transportation Science 32(4), 358–369.

Cacchiani (2007). Models and Algorithms for Combinatorial Optimization
Problems arising in Railway Applications. PhD thesis, DEIS, Bologna.

Cacchiani, Caprara & Toth (2008). A Column Generation Approach to
Train Timetabling on a Corridor4OR . To appear.

Caprara, Fischetti, Guida, Monaci, Sacco & Toth (2001). Solution of Real-
World Train Timetabling Problems. In HICSS 34. IEEE Computer
Society Press.

Caprara, Fischetti & Toth (2002). Modeling and Solving the Train
Timetabling Problem. Operations Research 50(5), 851–861.

6


