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ONLINE MULTICOMMODITY ROUTING WITH
TIME WINDOWS

TOBIAS HARKS, STEFAN HEINZ∗, MARC E. PFETSCH,
AND TJARK VREDEVELD

Abstract. We consider a multicommodity routing problem, where de-
mands are released online and have to be routed in a network during
specified time windows. The objective is to minimize a time and load
dependent convex cost function of the aggregate arc flow.

First, we study the fractional routing variant. We present two online
algorithms, called Seq and Seq2. Our first main result states that, for
cost functions defined by polynomial price functions with nonnegative
coefficients and maximum degree d, the competitive ratio of Seq and
Seq2 is at most (d+1)d+1, which is tight. We also present lower bounds
of (0.265 (d+ 1))d+1 for any online algorithm. In the case of a network
with two nodes and parallel arcs, we prove a lower bound of (2− 1

2

√
3)

on the competitive ratio for Seq and Seq2, even for affine linear price
functions. Furthermore, we study resource augmentation, where the
online algorithm has to route less demand than the offline adversary.

Second, we consider unsplittable routings. For this setting, we present
two online algorithms, called U-Seq and U-Seq2. We prove that for
polynomial price functions with nonnegative coefficients and maximum
degree d, the competitive ratio of U-Seq and U-Seq2 is bounded by
O(1.77d dd+1). We present lower bounds of (0.5307 (d + 1))d+1 for any
online algorithm and (d+ 1)d+1 for our algorithms.

Third, we consider a special case of our framework: online load bal-
ancing in the `p-norm. For the fractional and unsplittable variant of this
problem, we show that our online algorithms are p and O(p) competitive,
respectively. Such results where previously known only for scheduling
jobs on restricted (un)related parallel machines.

1. Introduction

In this paper, we consider a multicommodity routing problem, in which sets
of commodities arrive over time and have to be routed in a network. Each
commodity is only alive during a specified time window. We study two
variants: (i) the demand of a commodity can be split along several paths;
(ii) single path (unsplittable) routing. In all cases, once a demand is routed,
no rerouting is allowed. The cost of routing the next small unit of flow on
an arc is determined by a nondecreasing and continuous price function of
the flow that has already been routed on this arc. For a fixed point in time,
the routing cost on an arc is defined by the integral over the arc flow at
that time with respect to its price function. Given a certain time span, the
total routing cost on an arc is obtained by integrating the routing cost over

Date: December 28, 2007.
∗Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin.
1



2 T. HARKS, S. HEINZ, M. E. PFETSCH, AND T. VREDEVELD

time. The goal is to find a routing with minimal cost. Since the demands
arrive over time, both problems (splittable and unsplittable) have a natural
online variant, which we study in this paper. An online algorithm learns
about the existence of a routing request only at its release time, i.e., the
lower limit of its time window. We evaluate the quality of online algorithms
by competitive analysis [24, 21], which has become a standard yardstick for
measuring performance. An algorithm Alg is said to be c-competitive, if for
any instance the cost of the solution produced by Alg is not more than c
times the optimal solution value. The infimum over all such constants c is
the competitive ratio of Alg.

For both variants of the problem, we define two greedy online algorithms,
which we call Seq and Seq2 for the splittable variant and U-Seq and U-
Seq2 for the unsplittable variant. Algorithms Seq and U-Seq greedily com-
pute a routing decision for all commodities released at the same time by min-
imizing the cost associated with these requests. The other two algorithms
Seq2 and U-Seq2 consider the commodities released at the same time one
by one, computing a minimum cost routing for each individual commod-
ity. We investigate cases in which Seq (U-Seq) and Seq2 (U-Seq2) are
c-competitive for some constant c.

The problem under investigation arises, for instance, in an inter-domain
Quality of Service (QoS) market, in which multiple service providers of-
fer network resources (capacity) to enable Internet traffic with specific QoS
constraints, see for example Yahaya and Suda [27] and Yahaya, Harks, and
Suda [26]. In such a market, each service provider advertises prices for re-
sources that he wants to sell. Buying providers reserve capacity along paths
to route demand (coming from own customers) from source to destination via
domains of other providers. The routing of a demand along paths is fixed by
establishing a binding contract between the source domain and all domains
along the paths. The price for a unit bandwidth changes dynamically with
the total bandwidth that is currently in use, that is, routing flow of unit size
prompts an update of arc prices. It is assumed that price updates on an
arc are determined by a nondecreasing and continuous price function. Harks
et al. [17, 18] considered the problem without time windows. In practice,
demand requests between service providers come with a lifetime and service
providers may have several demand requests at the same time, which allows
for a coordinated routing of these demands. In this paper, we explicitly
address these issues and generalize the model of Harks et al. [17, 18], see
Section 6 for a comparison.

Another application of our framework is the load balancing problem in
intra-domain networks. In this problem, traffic demands have to be routed
from entry nodes to exit nodes of the domain. A natural goal for a domain
operator is to distribute the load across the network, i.e., minimize the `p-
norm of the vector of the arc loads in the network, see for instance Fortz and
Thorup [14]. Since traffic demands are usually not known beforehand, this
problem has a natural online variant, which we study in this paper.

1.1. Related Work

Yahaya et al. [27, 26] empirically studied the performance of a greedy single-
path routing protocol for a fixed network topology. This problem was first
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Table 1: Lower bounds (LB) and upper bounds (UB) on the competitive ratio of any
deterministic online algorithm and on Seq2 for affine linear price functions and without
time windows as discussed in Harks et al. [18]; here n is the number of commodities.

splittable unsplittable
any alg. Seq, Seq2 any alg. U-Seq, U-Seq2

LB 4
3 max{2n−1

n , 4} 2 3 + 2
√

2

UB – 4n2

(n+1)2
– 3 + 2

√
2

modeled as an online multicommodity flow problem in Harks et al. [17, 18].
They analyzed a greedy online algorithm (which is closely related to Seq2),
and proved that this algorithm is asymptotically 4-competitive for affine
price functions; an overview of the results discussed in [18] is given in Table 1.
Moreover, they showed some general lower bounds on the competitive ratio
of any online algorithm.

In the context of traffic engineering, multicommodity routing problems
have been studied by e.g. Fortz and Thorup [13, 14]. There, the goal is to
route given demand subject to capacity constraints in order to balance the
total load in the network. In this setting, a central planer has full knowledge
of all demands, which is not the case in our approach.

Whenever there is no central planer, routing decisions have to be made
by selfish users. This has been extensively studied using game theoretic con-
cepts, cf. Roughgarden and Tardos [23], Correa, Schulz, and Stier Moses [10],
Altman, Basar, Jimenez, and Shimkin [2], and the references therein. These
works study the efficiency of Nash equilibria. The difference to our model
is the notion of an equilibrium, which allows for rerouting of demands upon
release of a new demand. In our model, once a routing decision has been
made, it remains unchanged. In addition, in this paper, the total cost of a
multicommodity flow is time dependent, that is, the total cost depends on
the time windows of the commodities.

Farzad et al. [12] consider selfish routing problems, where the travel times
of agents on an arc are defined by a priority order, see also the thesis of
Olver [22]. The total cost on an arc is defined as the integral of the arc flow
with respect to given latency functions. They proved tight upper bounds
of (d + 1)d+1 on the price of anarchy for polynomial latency functions with
nonnegative coefficients. For unsplittable flows, they showed a tight upper
bound of 3 + 2

√
2 for affine latencies and an upper bound of O(2d dd+1)

for polynomial latency functions. Their model, however, does not capture
time varying traffic demands. The results of Farzad et al. [12] are tailored
to polynomial latency (price) functions, whereas our results are based on a
general technique, which is also applicable to general continuous and non-
decreasing price functions. Furthermore, our upper bounds for polynomial
price functions in the unsplittable variant improve upon the bounds derived
in [12]. The lower bounds presented in Farzad et al. [12] carry over to lower
bounds for our algorithms.

Harks and Végh [19] study an online version of the selfish routing problem.
Demands are released in an online fashion, and for every released demand a
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Table 2: Known lower bounds (LB) and upper bounds (UB) on the competitive ratio of
any deterministic online algorithm and on Seq2 for polynomial price functions of degree d.

splittable unsplittable
any alg. Seq, Seq2 any alg. U-Seq, U-Seq2

LB (0.265 (d+ 1))d+1 (d+ 1)d+1 (0.5307 (d+ 1))d+1 (d+ 1)d+1

UB – (d+ 1)d+1 – O(1.77d dd+1)

Nash solution is constructed. Their work is restricted to splittable flows and
does not cover time varying demands.

Online load balancing problems on parallel machines can also be seen as
a multicommodity routing problem; see Albers [1] for an overview of online
algorithms and load balancing in particular. In the simplest form, load
balancing can be seen as routing n unsplittable demands from the same
source to the same destination over m parallel links. More sophisticated
topologies are considered in Section 4.4. Awerbuch et al. [4] considered a
greedy online algorithm, where the goal is to minimize the `p-norm of the
aggregated server loads. In particular, they proved an upper bound on the
competitive ratio of 1 +

√
2 for the `2-norm and O(p) for the `p-norm. In

the same context, Avidor et al. [3], Azar et al. [6], Caragiannis et al. [8],
and Suri et al. [25] strengthened the analysis of [4] for special cases (e.g.,
identical machines, integral jobs, temporary jobs). Their setting, however,
is restricted to m parallel arcs and all released jobs have to be assigned to
exactly one machine (arc).

In the context of online routing, Awerbuch et al. [5] present online routing
algorithms that maximize throughput under the assumption that routings
are irrevocable. They present competitive bounds that depend on the num-
ber of nodes in the network.

1.2. Our results

The contributions of this paper can be summarized as follows.
First, we study a variant, where demands can be split. For this setting,

we investigate the two online algorithms Seq and Seq2 by means of com-
petitive analysis. We show that every upper bound of Seq carries over to
Seq2, and every lower bound of Seq2 carries over to Seq. Since Harks
et al. [17, 18] showed that for general price functions no online algorithm
can be competitive, we consider classes of restricted price functions. Our
main result states that for polynomial price functions with nonnegative co-
efficients and degree d, the competitive ratio of both algorithms is bounded
by (d+ 1)d+1. In particular, we prove an upper bound of 4 for general con-
tinuous, nondecreasing, and concave price functions. Using a construction
presented by Farzad et al. [12], it can be shown that the upper bounds for
our algorithms are tight.

We also present lower bounds of (0.265 (d + 1))d+1 for any online algo-
rithm, matching our upper bound up to a constant factor. If we restrict the
input graph to two nodes connected by parallel arcs, we state a lower bound
of (2 − 1

2

√
3) for Seq and for Seq2, even for affine linear price functions.
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Furthermore, we consider a form of resource augmentation, in which Seq
has less demand to route thus weakening the power of the offline adversary.
When the price functions are polynomials and the adversary has to route
demands which are increased by a factor γ ≥ 1, we present an upper bound
on the competitive ratio for Seq and for Seq2 of (d+1)d+1

(d+1) γ−d .
Second, we study unsplittable routings, where demands must be routed on

a single path. For this setting, we analyze the competitiveness of the online
algorithms U-Seq and U-Seq2. We again show that every upper bound
of U-Seq carries over to U-Seq2 and every lower bound of U-Seq2 carries
over to U-Seq. Our main result states that for polynomial price functions
with nonnegative coefficients and degree d, the competitive ratio of both
algorithms is bounded by O(1.77d dd+1). In particular, we prove an upper
bound of (1 +

√
2)2 for affine linear price functions and an upper bound of

4 + 2
√

3 for continuous, nondecreasing, and concave price functions.
Based on a reduction from online load balancing problems in the context

of scheduling parallel related machines (see Awerbuch et al. [4], Suri, Toth,
and Zhou [25] and Caragiannis et al. [8]), we prove a lower bound on the
competitive ratio of (0.5307 (d+ 1))d+1 for any online algorithm.

Finally, we study online load balancing problem in general networks. Here,
the goal is to route commodities online so as to minimize the `p-norm of
the arc loads. We show that this problem is a special case of our model
and investigate the online algorithms Seq and U-Seq for the splittable and
unsplittable variant in general networks. Our main results in this setting are
upper bounds on the competitive ratio of p and O(p) for Seq and U-Seq,
respectively. To the best of our knowledge, such bounds were previously
known only in the context of scheduling problems, see Awerbuch et al. [4],
Caragiannis et al. [8], and Suri, Toth, and Zhou [25].

An overview of some lower and upper bounds discussed in this paper is
presented in Table 2.

2. Problem Description

We consider the following multicommodity routing problem. Given is a di-
rected networkD = (V,A) and nondecreasing and continuous price functions
pa : R+ → R+ for each arc a ∈ A. Furthermore, a set K = {1, . . . , n} of
commodities is given. Each commodity j ∈ K is specified by a time window
[τ̃j , Tj), where τ̃j is the release time and Tj is the expiring time, and a band-
width request (sj , tj , dj). Here sj , tj ∈ V are the source and destination of
the request, respectively, and dj > 0 corresponds to the required bandwidth
or capacity that needs to be reserved on paths from sj to tj in the graph D
during the time window [τ̃j , Tj). We assume that 0 ≤ τ̃j ≤ Tj for all j ∈ K.

Let the excess flow in a vertex v for a commodity j ∈ K be denoted by

γ(j)
v =


dj if v = sj ,

−dj if v = tj ,

0 otherwise.
(1)
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Then, for commodity j ∈ K, a feasible flow, or routing decision, is a nonneg-
ative vector f (j) ∈ RA+, satisfying,∑

a∈δ+(v)

f (j)
a −

∑
a∈δ−(v)

f (j)
a = γ(j)

v ,

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively.
Note that, we assume that the demand can be split arbitrarily, that is, each
infinitesimal amount of the demand can be routed over its own path from sj
to tj in the network. The routing of the demand for commodity j stays fixed
from the release time τ̃j until the expiring time Tj .

When routing an infinitesimal amount of demand on an arc a ∈ A, which
has total reserved bandwidth, or load, `a, this amount of bandwidth incurs
a marginal cost of pa(`a) per time unit for this arc. The total cost on arc a
is given by the integral of pa over the total flow using a. As the bandwidth
for a commodity only needs to be reserved during the corresponding time
window, the load on an arc varies over time and thus also the costs per arc.
Given a feasible flow f = (f (1), . . . ,f (n)), the cost associated at time t with
arc a is P

j∈L(t) f
(j)
a∫

0

pa(z) dz,

where L(t) = {j ∈ K : τ̃j ≤ t < Tj} is the set of commodities alive at time t.
The total cost of the feasible flow is defined as

C(f) =
∑
a∈A

∞∫
0

P
j∈L(t) f

(j)
a∫

0

pa(z) dz dt.

This expression of the total cost can be achieved by single path routing for
arbitrarily small demands, see Harks et al. [18] for the case without time win-
dows. We call the problem of finding a feasible flow f that minimizes C(f)
the Multicommodity Routing problem with Time Windows (MRTW). Note
that we do not have any capacity restrictions for the arcs.

2.1. Problem Reformulation

Since an online algorithm has to route all requests with the same release
time immediately, one can view the commodities as partitioned into rounds.
This viewpoint yields an equivalent representation of the cost function (see
Lemma 2.1 below) that we develop in the following and is needed for the
description of the online algorithms that we study in this paper.

We define the number of different release times as R := |{τ̃1, . . . , τ̃n}| and
write {τ1, . . . , τR} = {τ̃1, . . . , τ̃n} with 0 ≤ τ1 < τ2 < · · · < τR. The set of
commodities for each round r ∈ R := {1, . . . , R} is denoted by

Kr := {j ∈ K : τ̃j = τr}
with nr := |Kr|. The maximum expiring date of a round r is denoted by
Tr,max := max{Tj : j ∈ Kr}. Every commodity belongs to exactly one
round, that is, K1 ∪ · · · ∪ KR = K, and for two rounds r and r′ (r 6= r′) we
have Kr ∩ Kr′ = ∅.
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For a round r ∈ R and a time point t, let Jr(t) = {j ∈ Kr : τr ≤ t < Tj}
be the set of commodities belonging to round r that are still alive at time t,
and let Ir(t) = {j ∈ J1(t) ∪ · · · ∪ Jr−1(t) : τr ≤ t < Tj} be the set of
commodities that have been released before round r and are still alive at
time t. Note that for t < τr we have Ir(t) = Jr(t) = ∅. The set L(t) of
commodities alive at time t can be rewritten as L(t) = J1(t) ∪ · · · ∪ JR(t).
For notational convenience we define Kr(t) = Ir(t) ∪ Jr(t) as the set of
commodities of rounds 1, . . . , r that are still alive at time t.

Consider a round r ∈ R and a feasible flow f . The total capacity used on
arc a at time t ∈ [τr, Tr,max) due to the requests released before round r is
denoted by

Fa,r(f , t) =
∑

j∈Ir(t)

f (j)
a ,

and by

Ga,r(f , t) =
∑

j∈Jr(t)

f (j)
a

we denote the amount of flow on arc a ∈ A at time t ∈ [τr, Tr,max) due to
the requests of this round.

To each round r ∈ R we associate costs of a feasible routing decision f .
We denote by f r = (f (j) : j ∈ Kr) the flow vectors of round r, and we write
f ra = (f (j)

a : j ∈ Kr) for the vector of all flow values on arc a for round r.
The cost C̃ra(f ra, t; f

1
a, . . . ,f

r−1
a ) associated to round r at time t on arc a ∈ A

is given by

P
j∈Jr(t) f

(j)
a∫

0

pa

( ∑
j∈Ir(t)

f (j)
a + z

)
dz =

Ga,r(f ,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz.

The total cost associated to round r is obtained by integrating the cost on
arc a over the time interval corresponding to r and summing this value for
all arcs:

Cr(f r; f1, . . . ,f r−1) :=
∑
a∈A

Tr,max∫
τr

C̃ra(f ra, t; f
1
a, . . . ,f

r−1
a ) dt.

The relation between the cost associated to the rounds 1, . . . , R and the
total cost of the full routing decision is given in the following lemma.

Lemma 2.1. Let f be a feasible flow. Then the cost of this feasible flow is
equal to the sum of the costs associated to each round, i.e.,

C(f) =
R∑
r=1

Cr(f r; f1, . . . ,f r−1).
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Proof. Consider a feasible routing decision f . Then the corresponding cost
of this flow is

C(f) =
∑
a∈A

∞∫
0

P
j∈L(t)

f
(j)
a∫

0

pa(z) dz dt =
∑
a∈A

∞∫
0

RP
r=1

P
j∈Jr(t)

f
(j)
a∫

0

pa(z) dz dt

=
∑
a∈A

R∑
r=1

∞∫
0

rP
i=1

P
j∈Ji(t)

f
(j)
a∫

r−1P
i=1

P
j∈Ji(t)

f
(j)
a

pa(z) dz dt.

For t 6∈ [τr, Tr,max), we have Jr(t) = ∅. Hence, the lower and upper bounds
of the inner integral are equal, implying that it evaluates to 0. Therefore,
for round r, we may restrict the time integral to [τr, Tr,max). Furthermore,
using that Ir(t) = J1(t) ∪ . . . ∪ Jr−1(t), we can write

=
∑
a∈A

R∑
r=1

Tr,max∫
τr

P
j∈Kr(t)

f
(j)
a∫

P
j∈Ir(t)

f
(j)
a

pa(z) dz dt

=
R∑
r=1

∑
a∈A

Tr,max∫
τr

Fa,r(f ,t)+Ga,r(f ,t)∫
Fa,r(f ,t)

pa(z) dz dt

=
R∑
r=1

Cr(f r; f1, . . . ,f r−1),

which completes the proof. �

Observe that we can partition the time horizon into intervals on which
the flows are constant: Consider the set of all events E := {τ̃j , Tj : j ∈ K},
and let 0 ≤ τ̂1 < · · · < τ̂|E| be the sorted sequence of all events, i.e., E =
{τ̂1, . . . , τ̂|E|}. Then, the sets Ir(t), Jr(t), and the functions Fa,r(f , t) and
Ga,r(f , t) are constant on the segments [τ̂i, τ̂i+1) (i = 1, . . . , |E| − 1). Hence,

Cr(f r; f1, . . . ,f r−1) =
∑
a∈A

|E|−1∑
i=1

(τ̂i+1 − τ̂i) C̃ra(f ra, τ̂i; f
1
a, . . . ,f

r−1
a ). (2)

This relation allows to replace the time integral by a sum and will be used
several times in this paper.

Remark 2.2. In the following we consider a slightly extended version of
the MRTW model in which the rounds are further refined, i.e., we allow for
R ≥ |{τ̃1, . . . , τ̃n}| rounds with corresponding release times τ1, . . . , τR that
are (weakly) sorted as 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τR, i.e., rounds with equal release
time are now possible. Here, it is understood that the order in which the
rounds arrive, is given by their numbering 1, . . . , R. Hence, only the online
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version of MRTW is affected. In fact, the online algorithms discussed in
this paper naturally work in this generalized model.

This more general model can be approximated by the original model
within arbitrary precision in the following sense. We use a small ε > 0
and for all rounds 1 ≤ r, . . . , r + k ≤ R with

τr−1 < τr = · · · = τr+k < τr+k+1

we use modified release times τ ′r = τr, τr+1 = τr+ε, . . . , τr+k = τr+(k−1)·ε
(for convenience, we set τ0 = −∞ and τR+1 =∞). The usage of ε guarantees
that the rounds are routed sequentially in the order 1, . . . , R. Then for any
feasible flow f the cost of f in the approximated model tends to the cost
of f in the extended model for ε tending to 0 (note that f is feasible for
both models).

Remark 2.3. MRTW as just described generalizes the work of Harks et
al. [17, 18] in two ways. First, in each round more than one commodity
is allowed to be routed. Second, the commodities now come with a given
lifetime. More precisely, the setting of [17, 18] is the special case with nr = 1,
τr = 0 for all rounds r ∈ R, and Tj = 1 for all j ∈ K. In this case, (2)
evaluates to Cr(f r) =

∑
a∈A C̃

r(f ra, 0), and hence the integral over time can
be skipped.

3. Online Algorithms

We study two online algorithms, which we call Seq and Seq2. For commodi-
ties in the same round, Seq greedily computes a routing decision, minimizing
the cost for these demands. More formally, for each round r ∈ R and given
the flows f1, . . . ,f r−1, fixed in the previous rounds, Seq solves the following
mathematical program

min Cr(f r; f1, . . . ,f r−1)

s.t.
∑

a∈δ+(v)

f (j)
a −

∑
a∈δ−(v)

f (j)
a = γ(j)

v , ∀ v ∈ V, j ∈ Kr (3)

f (j)
a ≥ 0 ∀ a ∈ A, j ∈ Kr,

to obtain the routing decision f r = (f (j) : j ∈ Kr). Here γ(j)
v is defined as

in (1).
Note that in this definition of Seq, the rounds do not have to arrive in

chronological order, nor need the commodities of one round have to have the
same release time. For the online problem, however, we of course need these
conditions.

The second algorithm Seq2 behaves in a similar way as Seq. Whereas
Seq routes all commodities in a round at the same time, Seq2 arbitrarily
orders the commodities of a round and routes them sequentially. Formally,
Seq2 constructs a new instance of MRTW with n rounds, each consisting
of a single commodity, and then applies Seq on the new instance. The order
of the commodities can be obtained as in Remark 2.2. Note that Seq2 can
construct the new rounds in an online manner.

Remark 3.1. Due to the fact that the functions pa(·) (a ∈ A) are non-
negative and nondecreasing, the cost functions Cr(·) are convex. As the
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flow-conserving constraints in (3) are linear constraints, the mathematical
program (3) is a convex program and can be solved within arbitrary preci-
sion in polynomial time, see e.g., Grötschel et al. [15].

3.1. Characterization of Seq and Seq2

Since the cost function is convex, we know that any local minimum is also
a global minimum and vice versa. To show that a certain flow is optimal
for Cr, we need to compute the gradient. Straightforward calculations show
that for r ∈ R, j ∈ Kr, and a ∈ A:

∂Cr

∂f
(j)
a

(f r; f1, . . . ,f r−1) =
∫ Tj

τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt.

Here and in the following, we use the vector f of all flows on the right hand
side, although the expression does not depend on the flows of rounds larger
than r.

The necessary and sufficient conditions for the flow of round r to minimize
the cost Cr, given the routing decisions of the previous rounds are as in the
following lemma.

Lemma 3.2 ([11]). Let f1, . . . ,f r−1 be feasible flows for the commodities
of the first r − 1 rounds. Then a feasible flow f r = (f (j) : j ∈ Kr) for
round r ∈ R solves the convex program (3) if and only if for each commodity
j ∈ Kr and any feasible flow x(j) for this commodity, the following inequality
holds ∑

a∈A

[ ∫ Tj

τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt
](
f (j)
a − x(j)

a

)
≤ 0. (4)

Inequality (4) is called a variational inequality and certifies that the feasi-
ble flow f (j) is a local optimum, which is also a global optimum, because Cr
is convex.

An optimal offline flow for MRTW is an optimal solution f? of the fol-
lowing convex optimization problem:

min C(f)

s.t.
∑

a∈δ+(v)

f (j)
a −

∑
a∈δ−(v)

f (j)
a = γ(j)

v , ∀ v ∈ V, j ∈ Kr, r ∈ R

f (j)
a ≥ 0 ∀ a ∈ A, j ∈ Kr, r ∈ R.

As in Remark 3.1, an optimal offline solution can be computed in polyno-
mial time within arbitrary precision.

To shorten notation we use the following convention throughout the paper:
When we speak of a sequence σ = 1, . . . , R of rounds, we refer to the full
specification (dj , sj , tj , τ̃j , Tj) of the commodities j ∈ Kr for r = 1, . . . , R.
For a sequence σ, we denote by Opt(σ) the value of an optimal offline flow,
and for an online algorithm Alg we denote by Alg(σ) the cost C(f) of the
solution f produced by Alg for sequence σ.
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1

2

3

4

Figure 1: Graph construction for the proof of Propositions 3.3.

3.2. Comparison of Online Algorithms Seq and Seq2

Before we investigate the competitiveness of Seq and Seq2, we compare
their relative strengths.

Intuitively, algorithm Seq2 is disadvantaged compared to Seq, since it
does not use all available information of a given round r when determining
the routing. If there is only one round, Seq computes an optimal solution,
and obviously we have that Seq(σ) ≤ Seq2(σ) in this case. This raises the
question whether Seq always outperforms Seq2?

To study this question, we define the concept of domination: We call an al-
gorithm Alg2 dominated by another algorithm Alg1, if we have Alg1(σ) ≤
Alg2(σ) for any sequence σ. With this notation, we can answer the above
question to the negative:

Proposition 3.3. Seq2 is not dominated by Seq.

Proof. Consider the network in Figure 1. We assume that the two arcs leav-
ing node 1 have price function z and the other two arcs have price function 0.
We consider two rounds. The first has two commodities, and the second con-
tains one commodity. All commodities have the same time window of [0, 1).

The first commodity of the first round has a demand of 1 that has to be
routed from node 1 to node 4. There are two possible paths for routing this
demand. Since the cost on both paths are equal, Seq2 splits the demand
equally. The resulting cost is

2
∫ 1

0

∫ 1
2

0
z dz dt = 2

[
1
2z

2
] 1

2

0
= 1

4 .

The second commodity has a demand of 2, which has to be routed from
node 1 to node 3, leaving no routing choice. The cost of Seq2 for this
demand is ∫ 1

0

∫ 2

0

(
1
2 + z

)
dz dt =

[
1
2z + 1

2z
2
]2
0

= 3.

Finally, the demand of the second round has a size of 4 and must be routed
from node 1 to node 2, again leaving no routing choice. Here, the cost of
Seq2 is (1

2 + 1
2 · 4) · 4 = 10. Hence, the total cost for Seq2 is given by

Seq2(σ) = 1
4 + 3 + 10 = 53

4 ; the cost for round 1 is 13
4 .

In contrast, Seq coordinates the routings of the first round in order to
minimize the cost. An optimal routing for the two commodities of the first
round is to route the first entirely along the lower path (1, 2, 4) and the
second on arc (1, 3). This incurs a cost of 1

2 + 1
2 · 2 · 2 = 5

2 , which is indeed
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smaller than the cost of Seq2 for this round. For the second round there is
no routing choice, and the cost of Seq for this round is (1 + 1

2 · 4) · 4 = 12.
Therefore, the total cost of Seq is 5

2 + 12 = 29
2 , which is larger than the cost

of 53
4 obtained by Seq2. �

The close relationship between Seq and Seq2 is expressed by the following
proposition, which is immediate from the definition of Seq2.

Proposition 3.4. For every instance σ, there exists a sequence σ′ such that

Seq(σ′) = Seq2(σ) and Opt(σ′) = Opt(σ).

Corollary 3.5.
(1) Each lower bound on the competitive ratio for Seq2 is also a lower bound

on the competitive ratio for Seq.
(2) Each upper bound on the competitive ratio for Seq is also an upper

bound on the competitive ratio for Seq2.

Concluding, Seq and Seq2 do not dominate each other, and if Seq is
c-competitive then Seq2 is c-competitive as well. See also the discussion in
the conclusions.

4. Competitive Analysis

In Harks et al. [17, 18] it is shown that there exists no competitive determin-
istic algorithm if the price functions are arbitrary; the used price functions
are monomials with a degree tending towards infinity. However, when de-
grees of the polynomials are bounded, we we derive in the bounded upper
bounds on the competitive ratio.

4.1. A General Upper Bound

In this section, we derive a quite general upper bound on the competitive
ratio of the online algorithms Seq and Seq2. In the next section we apply
this result to polynomials with a given fixed degree.

The general bound is obtained by using the variational inequality in
Lemma 3.2 and bounding arc-wise the cost of a flow produced by Seq with
respect to the optimal flow. Then the maximum of these bounds over all
arcs is a bound on the competitive ratio. Similar techniques have previously
been applied to bounding the price of anarchy in selfish routing problems,
see Roughgarden [23] and Correa, Schulz, and Stier-Moses [10]. The bounds
on arcs a ∈ A depend on their price functions pa(·). We will use the following
values for each a ∈ A and λ ≥ 1:

δ(pa) := sup
x≥0


pa(x)x∫ x

0 pa(z) dz
if
∫ x

0 pa(z) dz > 0

0 otherwise.
(5)

ω(pa;λ) := sup
x,f≥0


(
pa(f)− λ pa(x)

)
x

pa(f) f
if pa(f) f > 0

0 if pa(f) f = 0.
(6)
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0

pa(·)

0

λ pa(x)

pa(x)

pa(f)

x f

Figure 2: Illustration of the value ω(pa;λ) in (6) with 1 < λ < pa(f)
pa(x)

. The gray-shaded
area corresponds to the numerator of ω(pa;λ) and the whole area to the denominator.

Figure 2 gives an illustration of ω(pa;λ). For a class C of nondecreasing
and continuous price functions, we further define

δ(C) := sup
pa∈C

δ(pa) and ω(C;λ) := sup
pa∈C

ω(pa;λ).

The generalized value ω(C;λ) was first introduced by Harks [16] for investi-
gating selfish routing problems involving atomic players. In the same context,
a similar value β(C), with β(C) = ω(C; 1), was defined in Correa, Schulz, and
Stier-Moses [10]. Furthermore, Roughgarden [23] presented the so-called
anarchy value α(C), with α(C) =

(
1− ω(C; 1)

)−1.
We define the feasible scaling set for C as

Λ(C) := {λ ≥ 1 : 1− δ(C)ω(C;λ) > 0}.

Theorem 4.1. If Λ(C) 6= ∅, then the online algorithms Seq and Seq2 are
c-competitive, for

c = inf
λ∈Λ(C)

[
λ δ(C)

1− δ(C)ω(C;λ)

]
.

Proof. Let f be the flow constructed by Seq and x be an arbitrary feasible
flow. We want to bound the cost C(f) with respect to C(x). To this
end, we obtain the following sequence of inequalities. We start by applying
Lemma 2.1.

C(f) =
R∑
r=1

∑
a∈A

Tr,max∫
τr

Ga,r(f ,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz dt.

Because the price functions are nondecreasing and nonnegative, we have:

≤
R∑
r=1

∑
a∈A

Tr,max∫
τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
Ga,r(f , t) dt

=
R∑
r=1

∑
a∈A

|E|−1∑
i=1

∫ τ̂i+1

τ̂i

pa
(
Fa,r(f , t) +Ga,r(f , t)

)( ∑
j∈Jr(t)

f (j)
a

)
dt,
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where we used a decomposition similar to (2) and the definition of Ga,r(f , t).
Because Jr(t) is constant on each piece, we can reorder terms:

=
R∑
r=1

∑
a∈A

|E|−1∑
i=1

∑
j∈Jr(τ̂i)

f (j)
a

∫ τ̂i+1

τ̂i

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt.

We now use the definition of Jr(t) and undo the decomposition into time
segments, to get:

=
R∑
r=1

∑
a∈A

∑
j∈Kr

f (j)
a

∫ Tj

τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt.

Using Lemma 3.2 yields:

≤
R∑
r=1

∑
a∈A

∑
j∈Kr

x(j)
a

∫ Tj

τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt.

Arguing in the reverse way as above (by using the definition of Jr(t)), we
can move x(j)

a into the integral:

=
R∑
r=1

∑
a∈A

Tr,max∫
τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

) ( ∑
j∈Jr(t)

x(j)
a

)
dt.

We now use the definitions of Fa,r(f , t) and Ga,r(f , t) and extend the bounds
of the integral (we use that each pa is nonnegative):

≤
R∑
r=1

∑
a∈A

∫ ∞
0

pa

( ∑
`∈Kr(t)

f `a

)( ∑
j∈Jr(t)

x(j)
a

)
dt.

As Jr(t),Kr(t) ⊆ L(t) and pa(·) is nonnegative and nondecreasing, we can
bound this by

≤
∑
a∈A

∫ ∞
0

pa

( ∑
j∈L(t)

f (j)
a

)( ∑
j∈L(t)

x(j)
a

)
dt.

For λ ≥ 1, we now “add 0” and obtain:

= λ
∑
a∈A

∫ ∞
0

pa

( ∑
j∈L(t)

x(j)
a

)( ∑
j∈L(t)

x(j)
a

)
dt

+
∑
a∈A

∫ ∞
0

[
pa

( ∑
j∈L(t)

f (j)
a

)
− λ pa

( ∑
j∈L(t)

x(j)
a

)]( ∑
j∈L(t)

x(j)
a

)
dt.

For fixed a ∈ A and t we use

f =
∑
j∈L(t)

f (j)
a and x =

∑
j∈L(t)

x(j)
a
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in the definition of δ(pa) and ω(pa;λ) to get:

≤ λ
∑
a∈A

δ(pa)
∫ ∞

0

P
j∈L(t) x

(j)
a∫

0

pa(z) dz dt

+
∑
a∈A

ω(pa;λ)
∫ ∞

0
pa

( ∑
j∈L(t)

f (j)
a

)( ∑
j∈L(t)

f (j)
a

)
dt.

The bound involving ω(pa;λ) holds because of the following: If pa(f) = 0
then trivially (pa(f) − λ pa(x))x ≤ 0 and the bound is true. If f = 0, then
(pa(f) − λpa(x)) ≤ 0 since λ ≥ 1 and pa(·) is nondecreasing. The case
pa(f) f > 0 follows from the definition.

Using the definition of δ(C) and applying δ(pa) to the second term yields:

≤ λ δ(C) C(x) +
∑
a∈A

ω(pa;λ) δ(pa)
∫ ∞

0

P
j∈L(t) f

(j)
a∫

0

pa(z) dz dt

≤ λ δ(C) C(x) + δ(C) ω(C;λ) C(f).

Applying this inequality to the optimal offline solution x, rewriting, and
taking the infimum over λ ∈ Λ(C) yields the desired result for Seq. The
result for Seq2 follows from Corollary 3.5 (2). �

4.2. Polynomial Price Functions

To facilitate the result of Theorem 4.1, one needs to bound δ(C) and ω(C;λ).
In this section we consider the class Cd of polynomials with nonnegative
coefficients and degree at most d ∈ N:

Cd := {cd xd + · · ·+ c1 x+ c0 : cs ≥ 0, s = 0, . . . , d}.

Note that polynomials in Cd are nonnegative for nonnegative arguments,
continuous, nondecreasing, and convex.

Theorem 4.2. For price functions in Cd, the online algorithms Seq and
Seq2 are (d+ 1)d+1-competitive.

Before we prove Theorem 4.2, we first derive a bound on the value δ(Cd)
and ω(Cd;λ).

Lemma 4.3. For the class Cd of polynomials with maximal degree d, the
value δ(Cd) is at most d+ 1.

Proof. Let pa(x) = cd x
d + · · · + c1 x + c0 ∈ Cd. We apply the definition of

the value δ(pa):

δ(pa) = sup
x≥0

x
d∑
i=0

ci x
i

d∑
i=0

ci
i+1x

i+1

≤ sup
x≥0

d∑
i=0

ci x
i+1

d∑
i=0

ci
d+1x

i+1

=
1
1
d+1

= d+ 1,

where the inequality follows since ci ≥ 0 and x ≥ 0. �
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s t s v w t

a0 + a1 z + a2 z
2 a0 a1 z a2 z

2

Figure 3: Reduction of polynomials to monomials. By introducing the two nodes v
and w, the arc (s, t) is partitioned into three separate arcs with monomial price functions.

We now observe that the cost function C(f) is linear in each of the price
functions pa(·). We can therefore reduce the analysis to monomial price func-
tions. For this we subdivide each arc a into d arcs a1, . . . , ad with monomial
price functions pas(x) = cs x

s for any s = 1, . . . , d, see Figure 3.
The following lemma can also be found in Harks [16]. We present a proof

for completeness.

Lemma 4.4. For the class C of monomials cs xs of degree s ∈ {1, . . . , d}
with cs ≥ 0 and for λ ≥ 1, we have

ω(C;λ) ≤ max
0≤µ

(
µ− λµd+1

)
.

Proof. For pa(·) ∈ C, we can assume that pa(f) f > 0, since otherwise
ω(C;λ) = 0 and the claim is trivially true. By definition, we have

ω(pa;λ) = sup
x,f≥0

(
pa(f)− λ pa(x)

)
x

pa(f) f
.

Defining µ := x
f (recall that f > 0), we obtain

ω(pa;λ) = sup
0≤µ

(
pa(f)− λ pa(µ f)

)
µ f

pa(f) f
.

Consider the monomial price function pa(x) = cs x
s of degree s ∈ {1, . . . , d}.

To bound the value ω(pa;λ) from above, we have to compute:

ω(pa;λ) = sup
0≤µ

(cs fs − λ cs µs fs)µ f
cs f s+1

= max
0≤µ

(
µ− λµs+1

)
. (7)

Because of the assumption λ ≥ 1, the maximum is attained at a point with
µ ≤ 1. It follows that

max
0≤µ

(
µ− λµs+1

)
≤ max

0≤µ

(
µ− λµd+1

)
.

This shows the claim. �

For polynomials in Cd and an appropriate choice of λ, we can prove the
following bound on ω(Cd;λ).

Proposition 4.5. For λ := (d+ 1)(d−1) ≥ 1, we have ω(Cd;λ) ≤ d
(d+1)2

.

Proof. Using Lemma 4.4 we get

ω(Cd;λ) ≤ max
0≤µ

(
µ− λµd+1

)
= max

0≤µ

(
µ− (d+ 1)(d−1) µd+1

)
.

The unique solution turns out to be µ? = 1
d+1 . Evaluating the objective

leads to:

ω(Cd;λ) ≤ 1
d+ 1

− (d+ 1)(d−1)
( 1
d+ 1

)d+1
=

d

(d+ 1)2
.
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This proves the claim. �

With these prerequisites we can prove Theorem 4.2.

Proof of Theorem 4.2. Let the flow f be produced by the online algorithm
Seq and let x be an arbitrary feasible flow for the given instance. We define
λ := (d+ 1)(d−1) and apply Proposition 4.5, which yields ω(Cd;λ) ≤ d

(d+1)2
.

In order to apply Theorem 4.1, we have to verify that λ ∈ Λ(Cd). What
remains to be shown is that

1− (d+ 1)
d

(d+ 1)2
> 0

holds, where δ(Cd) ≤ d + 1 by Lemma 4.3. This inequality is equivalent to
1
d+1 > 0, which is trivially true. Applying Theorem 4.1 yields

C(f) ≤ (d+ 1)(d−1) (d+ 1)(
1− (d+ 1) d

(d+1)2

) C(x) = (d+ 1)d+1C(x).

Taking x as the optimal offline solution proves the claim. By Corollary 3.5 (2)
the result for Seq2 follows as well. �

Corollary 4.6. For affine linear price functions pa(·) with nonnegative co-
efficients, i.e., pa(·) ∈ C1, Seq and Seq2 are 4-competitive.

For affine linear price functions, Harks et al. [18] proved that Seq is
(4n2)/(1 + n)2-competitive when there are no time windows and there is
only one commodity per round. The analysis, however, is tailored to affine
linear price functions and does not provide bounds for higher degree poly-
nomials. We do not know whether this result can be generalized to improve
the bound of Corollary 4.6 (made commodity dependent).

Corollary 4.7. For concave price functions, the competitive ratio of Seq
and Seq2 is bounded by 4.

Proof. The statement follows from a geometrical argument similar to Correa
et al. [9], see Figure 2 for an illustration. The worst case ratio between the
two areas in the figure occurs exactly in the case in which the price function
is linear. �

4.3. Resource Augmentation

As noted above, in general, no online algorithm is competitive if the set
of allowable price functions is not restricted. This may be a sign that the
adversary (offline optimum) is too powerful. To limit the power of the ad-
versary, we can give her the disadvantage that she has to route a demand
that is increased by a factor γ ≥ 1. This can be viewed as a way of resource
augmentation, see e.g., Kalyanasundaram and Pruhs [20] or Roughgarden
and Tardos [23].

Before we state an upper bound in this context, we generalize the definition
of Λ(C) as follows.

Λ(C; γ) := {λ ≥ 1 : γ − δ(C)ω(C;λ) > 0}.
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Theorem 4.8. Let the price functions on the arcs be from a class of non-
decreasing and continuous functions C, for which Λ(C; γ) 6= ∅, and suppose
that the adversary Adv needs to route a demand increased by a factor γ ≥ 1.
Then for any request sequence σ, we have that Seq(σ) ≤ c ·Adv(σ), where

c = inf
λ∈Λ(C;γ)

[
λ δ(C)

γ − δ(C)ω(C;λ)

]
.

Proof. Let x be the optimal flow with respect to γ. Using Lemma 3.2 we
obtain for commodity j:∑

a∈A

[ ∫ Tj

τr

pa
(
Fa,r(f , t) +Ga,r(f , t)

)
dt
](
f (j)
a −

x
(j)
a

γ

)
≤ 0,

since x
(j)
a
γ is a feasible flow for commodity j. Following the proof of Theo-

rem 4.1, we get:

γ C(f) ≤ λ δ(C) C(xstar) + δ(C) ω(C;λ) C(f).

Rewriting proves the claim. �

If we restrict the set of allowable price functions to polynomials in Cd, we
can show the following:

Corollary 4.9. Let the price functions on the arcs be in Cd, and suppose
that the adversary Adv needs to route a factor γ ≥ 1 as much demand per
request than the online algorithm Seq. Then, for any request sequence σ, we
have that

Seq(σ) ≤ (d+ 1)d+1

(d+ 1) γ − d
Adv(σ).

Proof. Defining λ := (d + 1)d−1 and applying Lemma 4.5, Lemma 4.3, and
Theorem 4.8 we get:

γ C(f) ≤ (d+ 1)d C(x) +
d

d+ 1
C(f).

Rewriting proves the claim. �

Note that for γ = (d+1)d+ d
d+1 we have Seq(σ) ≤ Adv(σ). In particular,

this implies that for affine linear price functions, the cost of Seq for a given
sequence σ does not exceed the cost of Adv with respect to γ = 2.5.

Using Corollary 3.5 (2), the statement of Theorem 4.8 and Corollary 4.9
hold for Seq2 as well.

4.4. Relation to the Load Balancing Problem

In the following, we will obtain lower bounds for the online MRTW by
transfering lower bounds for the online load balancing problem (OLB). In
this scheduling problem, jobs arrive in an online fashion and have to be
scheduled on machines in order to minimize the `d-Norm of the vector of the
server loads. Each job can only be scheduled on a given subset of permissible
machines. It turns out that our setting generalizes the special case of related
(parallel) machines: each job induces work of wj when it is scheduled on
any permissable machine. This problem has received much attention, see
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perm.
jobs machines

1 1, 2
2 2
3 3, 4

s1

s2

s3

u1

u2

u3

u4

t

Figure 4: Example of the graph construction of Section 4.4.

Awerbuch et al. [4], Caragiannis et al. [8], and Suri et al. [25]. In the following
we will describe the relation between this problem and our setting.

Given are J independent jobs, each of which needs to be scheduled on one
ofM parallel machines. The jobs are released in an online manner, such that
job j arrives before job j+1, for j = 1, . . . , J−1. Each job j can be scheduled
on a subset of permissible machines on which it induces work wj . That is,
each job j induces work of wij ∈ {wj ,∞} on machine i ∈ {1, . . . ,M}. Each
machine i has speed qi and the load `i of machine i is the sum of weights wj
of jobs assigned to it divided by its speed qi.

A schedule is determined by a matrix S = (Sij) with Sij ∈ [0, wj ], for
i ∈ {1, . . . ,M}, j ∈ {1, . . . , J}. A schedule is feasible if

M∑
i=1

Sij = wj ,

and Sij = 0 if wij = ∞. For the unsplittable variant it is required that
Sij ∈ {0, wij}. The cost of a schedule S is defined as

L(S) :=
( M∑
i=1

`di
)1/d =

( M∑
i=1

( 1
qi

J∑
j=1

Sij
)d)1/d

,

for d ∈ N, which is the the `d-norm of the server loads. We call the tuple
σ = (M, q, J,w, d) an instance of OLB.

Suppose we are given an instance σ for OLB. Then we construct an equiv-
alent instance G(σ) (consisting of a directed graph D with commodities and
price functions) for MRTW. The graph D contains nodes sj for each job j.
Furthermore, for each machine i it contains nodes ui and one additional
node t. There are arcs (ui, t) for all machines i. For each job j, the set of
permissible machines define a set of arcs Aj := {(sj , ui) : wij 6= ∞}. We
define A := A1 ∪ · · · ∪ AJ . See Figure 4 for an example. For every arc
a = (ui, t) the price function is pa(x) = d · (x/qi)d−1. All remaining arcs
have constant price functions 0.

We define a sequence of rounds σ′ = 1, . . . , J , where each round j contains
one commodity with demand wj that has to be routed from sj to t. We do
not consider time windows, i.e., we set τ̃j = 0, Tj = 1, see Remarks 2.2
and 2.3. This completes the specification of the instance G(σ).
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By flow conservation, a feasible flow f for G(σ) is completely determined
by the flow values f ja , a = (sj , ui) ∈ A. We let

Sij(f) :=

{
f ja for a = (sj , ui) ∈ A
0 otherwise

be the schedule S(f) induced by flow f . Conversely, we say that flow f(S)
is induced by the schedule S if f ja(S) := Sij , for (sj , ui) ∈ A, and extended
by flow conservation to the remaining arcs. Note that this transformation
works in an online fashion since it can be done commodity (job) wise. We
obtain the following straightforward observation.

Lemma 4.10. Let σ be an instance for OLB. Then, every feasible schedule S
for σ induces a feasible flow f(S) for G(σ), and every feasible flow f for G(σ)
induces a feasible schedule S(f) for σ.

The relation of the corresponding objective function values is as follows.

Lemma 4.11. Let σ be an instance for OLB. Then, every feasible schedule S
for σ and feasible flow f for G(σ) satisfy

L(S) = C(f(S))1/d and C(f) = L(S(f))d.

Proof. Let S be any feasible schedule for σ with cost L(S). The cost of
flow f(S) evaluates as follows:

C(f(S)) =
M∑
i=1

∫ PJ
j=1 f

j
(ui,t)

0
d · (z/qi)d−1 dz

=
M∑
i=1

∫ PJ
j=1 f

j
(sj ,ui)

0
d · (z/qi)d−1 dz

=
M∑
i=1

∫ PJ
j=1 Sij

0
d · (z/qi)d−1 dz

=
M∑
i=1

( 1
qi

J∑
j=1

Sij
)d = L(S)d.

The reverse direction follows similarly. �

Corollary 4.12. Let σ be an instance for OLB. Then, every optimal solu-
tion S? for σ induces an optimal solution f(S?) for G(σ). Conversely, every
optimal solution f? for G(σ) induces an optimal solution S(f?(S)) for σ.

Proof. Let S? be an optimal schedule for σ. By Lemma 4.11, we know
that S? induces a feasible flow f(S?) with L(S?) = C(f(S?))1/d. Assume
f(S?) is not optimal for G(σ). Then, there exists a feasible flow x with
C(x) < C(f(S?)). Then, x induces a feasible schedule S(x) with cost
L(S(x)) = C(x)1/d < C(f(S?))1/d = L(S?), contradicting the optimality
of S?. The reverse direction follows similarly. �

For polynomial price functions, we obtain:
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Lemma 4.13. If Alg is a c-competitive deterministic online algorithm for
the online MRTW with price functions in Cd−1, then there exist a c1/d-
competitive deterministic online algorithm Alg′ for OLB.

Proof. Suppose Alg is a c-competitive deterministic online algorithm for
MRTW with price functions in Cd−1. Then, for any given instance σ of
OLB we construct the instance G(σ), which has price functions in Cd−1.
Let f be the flow computed by Alg on G(σ). Algorithm Alg′ is the deter-
ministic online algorithm that returns the induced schedule S(f) for σ. By
Lemma 4.11, it follows that L(S(f)) = C(f)1/d. Combining Corollary 4.12
and Lemma 4.11 we know that L(S?) = C(f?)1/d for optimal solutions S?
of σ and f? of G(σ). By assumption we have that C(f) ≤ c ·C(f?). Thus, it
follows that L(S(f)) ≤ c1/d ·L(S?). Since the input instance σ was arbitrary,
the claim is proven. �

Theorem 4.14. A lower bound c for the competitive ratio of any determin-
istic online algorithm for OLB with `d-norm carries over to a lower bound
of cd for the competitive ratio of any deterministic online algorithm for the
online MRTW with price functions in Cd−1.

Proof. Let c be a lower bound for the competitive ratio of any deterministic
online algorithm for OLB. Assume there exist a ĉ-competitive deterministic
online algorithm for the online MRTW with ĉ < cd. Then, Lemma 4.13
implies that we can construct an online algorithm Alg′, which is ĉ1/d-
competitive for OLB. Monotonicity of the d-th root implies ĉ1/d < c contra-
dicting the first statement. �

We now generalize the above setting in two ways. First, we can easily in-
clude time windows. Second, we can consider online load balancing problems
in the `d-norm for general networks. Hence, the cost of a flow f (generalized
schedule) is

L(f) :=
[∑
a∈A

∫ ∞
0

( ∑
j∈L(t)

f (j)
a

)d
dt
]1/d

.

Corollary 4.15. For the online load balancing problem in general networks,
time windows, and the `d-norm, Seq and Seq2 are d-competitive. Further-
more, there exist an instance σ with Seq2(σ) ≥ d ·Opt(σ).

Proof. Using Theorem 4.1 for price functions in Cd−1, we get

L(f)d =
∑
a∈A

∫ ∞
0

∫ P
j∈L(t) f

(j)
a

0
d · zd−1 dz dt = C(f) ≤ ddC(x) = dd L(x)d.

A lower bound can be constructed based on a construction in Farzad et
al. [12], see Theorem 4.18 below. �

4.5. Lower Bounds on the Competitive Ratio

Before we give lower bounds on the competitive ratio of the online algo-
rithms Seq and Seq2, we present a general lower bound for all online al-
gorithms. We again consider the class of nonnegative and nondecreasing
polynomial price functions Cd for d ∈ N and use an instance of the OLB to
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derive a lower bound (see Theorem 4.14). The construction of this bound is
based on ideas of Awerbuch et al. [4]. The work in [4], however, only deals
with unsplittable jobs, whereas the following bound holds for the splittable
case.

Theorem 4.16. For price functions in Cd, the competitive ratio of any deter-
ministic online algorithm for the online MRTW is at least (0.265 (d+1))d+1.

Proof. Let Alg be a deterministic online algorithm for the OLB. We are
given M = 2k parallel machines and construct the input sequence σ of jobs
depending on the decisions of the online algorithm. The machines will be
either labeled as active or inactive at each step of the sequence. Initially all
machines are active.

There are k rounds. In each round, the active machines are grouped into
pairs. For each pair of machines (i, i′), the sequence σ contains a job j of
weight wj = 1, whose permissible machines are i and i′. Assume that Alg
produces a schedule S by placing α ∈ [0, 1] units on machine i and 1 − α
on machine i′. The sequence is constructed in such a way that for every
job the machine with the smaller fraction is labeled inactive (ties are broken
arbitrarily). For bounding the cost of Alg from below we can assume α = 1

2 .
In each new round only half of the machines of the previous round are

active. We construct a schedule S? by placing a job entirely on the machine
that becomes inactive after the corresponding round. The cost with respect
to the `d-norm of S? is

L(S?)d = 2k−1 + 2k−2 + · · ·+ 2 + 1 = 2k − 1.

The cost of the schedule S of Alg is given by

L(S)d =
k∑
i=1

( i
2

)d
2k−i.

The ratio of the cost of S and S? is bounded from below by

L(S)d

L(S?)d
=
∑k

i=1( i2)d 2k−i

2k − 1
≥
(

log2(e) d
2 e

)d
≥ (0.265 · d)d.

As Theorem 4.14 considers price functions in Cd−1, we can replace d by d+1,
obtaining the desired result. �

Remark 4.17. For d = 1, Harks et al. [17, 18] proved a lower bound of 4
3

for any deterministic online algorithm, which in this case is better than the
above bound.

Theorem 4.18. The online algorithms Seq and Seq2 have a competitive
ratio of at least (d + 1)d+1, even without time windows and only one com-
modity per round.

Proof. Farzad et al. [12] presented an example that, when translated to the
online MRTW (without time windows and only one commodity per round),
provides the lower bound. �

The networks used in the proofs of the previous theorems have the prop-
erty that the commodities have different sources and destinations. In Harks
et al. [17, 18], it is shown that Seq (or Seq2) compute an optimal routing for
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1 2

a1

a2

Figure 5: Graph construction for the proof of Proposition 4.19.

networks consisting of two nodes connected by parallel arcs, time windows
of size [0, 1], and arbitrary nondecreasing price functions. This raises the
question whether Seq (or Seq2) returns an optimal solution for parallel arcs
and arbitrary time windows. The following theorem shows that this is not
true.

Theorem 4.19. If the input graph consists of two nodes connected by parallel
arcs, Seq and Seq2 cannot be better than (2 − 1

2

√
3)-competitive, even for

affine linear price functions.

Proof. Consider the network depicted in Figure 5. Each commodity has
node 1 as source and node 2 as destination. Further, arc a1 has a constant
price function of pa1(z) = 1 and a2 a linear price function of pa2(z) = z.

The request sequence consists of two rounds. The first round contains
one commodity with demand 1 and time window [0, 1). The second round
contains one commodity with demand 1 and time window [0, T ), for T =
1 +
√

3.
The cost for routing the first commodity completely over arc a1 is 1 and

over arc a2 it is 1
2 . Therefore, Seq2 assigns the demand of the first commodity

completely to arc a2.
Suppose we route an amount of α ∈ [0, 1] of the demand of the second

commodity on arc a2 and 1 − α over arc a1. Then the total cost for the
second commodity is∫ T

0

∫ 1−α

0
dz dt+

∫ 1

0

∫ α

0
(1+z) dz dt+

∫ T

1

∫ α

0
z dz dt = 1

2 Tα
2−(T−1)α+T.

(8)
By definition, Seq (and Seq2) computes a feasible flow for the second com-
modity that minimizes (8). That is, it sends a flow of α = T−1

T on arc a2

and the rest over arc a1. The total cost for this solution is

1
2

+
(T − 1)2

2T
− (T − 1)2

T
+ T =

1
2
T +

3
2
− 1

2T
.

On the other hand, if we route the first commodity completely over a1

and the second commodity fully over a2, we obtain a solution with cost∫ 1

0

∫ 1

0
dz dt+

∫ T

0

∫ 1

0
z dz dt = 1 + 1

2 T.

Hence, the competitive ratio cannot be better than
T
2 + 3

2 −
1

2T
T
2 + 1

= 2− 1
2

√
3,

for T = 1 +
√

3, which concludes the proof. �
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The above theorem shows that the introduction of time windows has an
effect on the performance of the online algorithms Seq and Seq2.

5. Unsplittable Routings

In this section, we study the unsplittable MRTW: the variant of MRTW
in which the demand of each commodity has to be routed along a single
path. For this variant, it will turn out that the obtained bounds are larger
than those for the splittable version. Furthermore, whereas in the splittable
version the solutions to the offline problem and Seq can be computed in
polynomial time (within arbitrary precision), this is not true for the corre-
sponding unsplittable counterparts unless P = NP.

In the following, we study the unsplittable versions of Seq and Seq2,
which we call U-Seq and U-Seq2, respectively. For each round, U-Seq
greedily computes an unsplittable routing, minimizing the cost for the cor-
responding demands. More formally, for each round r ∈ R and given
unsplittable flows f1, . . . ,f r−1 of the previous rounds, U-Seq minimizes
Cr(f r; f1, . . . ,f r−1) to obtain the unsplittable flow f r.

The online algorithm U-Seq2 routes the demands of a round one by one
along the cheapest path with respect to all previously routed demands.

Remark 5.1. As shown in Harks et al. [17], the offline problem of MRTW
is NP-hard, even without time windows. It follows that the problem to
minimize Cr(f r), which U-Seq has to solve, is also NP-hard. However, the
online algorithm U-Seq2 has polynomial running time, since it only has to
solve a shortest path problem for every commodity of a given round.

The same argumentation of Corollary 3.5 applies to U-Seq and U-Seq2

and yields:

Corollary 5.2.
(1) Each lower bound on the competitive ratio for U-Seq2 is also a lower

bound on the competitive ratio for U-Seq.
(2) Each upper bound on the competitive ratio for U-Seq is also an upper

bound on the competitive ratio for U-Seq2.

In the following lemma, we express the cost minimization of U-Seq asso-
ciated with every round r, given the routing decisions of the previous rounds.

Lemma 5.3. Let f1, . . . ,f r−1 be feasible flows for the commodities of the
first r − 1 rounds. If a feasible flow f r = (f (j) : j ∈ Kr) for round r is
computed by U-Seq, then the following inequality holds for any other feasible
flow xr = (x(j) : j ∈ Kr) for round r.

∑
a∈A

Tr,max∫
τr

Ga,r(f ,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz dt (9)

≤
∑
a∈A

Tr,max∫
τr

Ga,r(x,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz dt. (10)

Proof. The inequality simply follows from the definition of U-Seq routing
the demands of round r with minimum cost. �
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5.1. Upper Bounds for the Unsplittable MRTW

Using similar techniques as in the proof of Theorem 4.1, we define for a given
price function p(z), λ ≥ 1, and nonnegative values f, x, the following values.

ω̄(pa;λ) := sup
x,f≥0


∫ x

0 pa(f + z) dz − λ pa(x)x
pa(f) f

if pa(f) f > 0

0 if pa(f) f = 0.
(11)

For a class C of nondecreasing price functions, we further define

ω̄(C;λ) := sup
pa∈C

ω̄(pa;λ).

Definition 5.4. For a given class of price functions C, the feasible scaling
set for λ is defined as

Λ(C) = Λ1(C) ∩ Λ2(C),

where
Λ1(C) := {λ ≥ 1 : 1− ω̄(C;λ) > 0}

and

Λ2(C) := {λ ≥ 1 :
∫ x

0
pa(f + z) dz − λ pa(x)x ≤ 0 for all f, x ∈ R+

and pa ∈ C with pa(f) = 0}.

Theorem 5.5. If Λ(C) 6= ∅, the online algorithms U-Seq and U-Seq2 are
c-competitive for the online MRTW, with

c = inf
λ∈Λ(C)

[
λ δ(C)

1− δ(C) ω̄(C;λ)

]
.

Proof. Let f be the flow constructed by U-Seq and x be an arbitrary feasible
flow for the unsplittable MRTW. We want to bound the cost C(f) with
respect to C(x). To this end, we obtain the following sequence of inequalities.
We start by applying Lemma 5.3.

C(f) =
R∑
r=1

∑
a∈A

Tr,max∫
τr

Ga,r(f ,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz dt

≤
R∑
r=1

∑
a∈A

Tr,max∫
τr

Ga,r(x,t)∫
0

pa
(
Fa,r(f , t) + z

)
dz dt.

We now extend the bounds of the integral (we use that each pa is nonnegative
and nondecreasing) and use similar arguments as in the proof of Theorem 4.1
and obtain:

≤
∑
a∈A

∞∫
0

P
j∈L(t) x

(j)
a∫

0

pa
( ∑
j∈L(t)

f (j)
a + z

)
dz dt.
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For λ ≥ 1, we now “add 0” and obtain:

= λ
∑
a∈A

∞∫
0

pa

( ∑
j∈L(t)

x(j)
a

)( ∑
j∈L(t)

x(j)
a

)
dt

+
∑
a∈A

∞∫
0

P
j∈L(t) x

(j)
a∫

0

pa
( ∑
j∈L(t)

f (j)
a + z

)
dz − λ pa

( ∑
j∈L(t)

x(j)
a

)( ∑
j∈L(t)

x(j)
a

)
dt.

For fixed a ∈ A and t we use

f :=
∑
j∈L(t)

f (j)
a and x :=

∑
j∈L(t)

x(j)
a

in the definition of δ(pa) and ω̄(pa;λ) to get:

≤ λ
∑
a∈A

δ(pa)

∞∫
0

P
j∈L(t) x

(j)
a∫

0

pa(z) dz dt

+
∑
a∈A

ω̄(pa;λ)

∞∫
0

pa

( ∑
j∈L(t)

f (j)
a

)( ∑
j∈L(t)

f (j)
a

)
dt.

The bound involving ω̄(pa;λ) holds because of the following: If pa(f) = 0
then it follows that ∫ x

0
pa(f + z) dz − λ pa(x)x ≤ 0,

since λ ∈ Λ2(C). Thus, the bound is true. If f = 0, then∫ x

0
pa(z) dz − λ pa(x)x ≤ 0,

since λ ≥ 1 and pa(·) is nonnegative and nondecreasing. The case pa(f) f > 0
follows from the definition.

Using the definition of δ(C) and applying δ(pa) to the second term yields:

≤ λ δ(C) C(x) +
∑
a∈A

ω̄(pa;λ) δ(pa)

∞∫
0

P
j∈L(t)

f
(j)
a∫

0

pa(z) dz dt

≤ λ δ(C) C(x) + δ(C) ω̄(C;λ) C(f).

Applying this inequality to the optimal offline solution x, rewriting, and
taking the infimum over λ ∈ Λ(C) yields the desired result for U-Seq. By
Corollary 5.2 the result for U-Seq2 follows as well. �

5.2. Polynomial Price Functions

To apply the result of Theorem 5.5, we need to bound ω̄(C;λ). We start
with price functions in C1, i.e., affine linear price functions.

Theorem 5.6. For affine linear price functions in C1, the competitive ratio
of U-Seq and U-Seq2 are bounded from above by 3 + 2

√
2.
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Proof. We are given price functions of the form pa(z) = c1 z+c0, with c1 ≥ 0,
and c0 ≥ 0. For bounding ω̄(C1;λ) from above, we can assume f, x > 0. We
will later determine λ > 1.

We evaluate ω̄(C1;λ) for the constant term c0 and the variable term c1 z
separately, using a splitting argument as in Lemma 4.4. For the constant
part, we have

ω̄(c0;λ) = sup
f,x>0

(1− λ)x
f

.

With the condition λ > 1, the above value is nonpositive. For the variable
part c1 z we get

ω̄(c1 z;λ) = sup
f,x>0

f x+ 1
2 x

2 − λx2

f2
.

Defining µ := x
f (recall that f > 0), we obtain

ω̄(c1 z;λ) = max
µ≥0

(
µ+ 1

2 µ
2 − λµ2

)
.

For λ > 1 this is a strictly concave program with the unique solution µ =
1

2λ−1 . Inserting this solution yields

ω̄(c1 z;λ) ≤ 1
2 (2λ− 1)

.

Thus, using Theorem 5.5 the competitive ratio is bounded from above by

2λ
1− 1

2λ−1

=
2λ (2λ− 1)

2λ− 2
.

Choosing λ = 1 + 1
2

√
2 as the minimizer of this expression, the claim is

proven for U-Seq. Corollary 5.2 yields the result for U-Seq2. �

We need the following lemma for the proof of Theorem 5.8 below.

Lemma 5.7. Let pa be a continuous and nondecreasing price function sat-
isfying pa(c · z) ≥ c · pa(z) for all c ∈ [0, 1]. Then we have ω̄(pa;λ) ≤ 1

4 (λ−1)

for λ > 1.

Proof. In the following, we can assume pa(f) f > 0 and x > 0 for bounding ω̄,
since otherwise the claim is trivially true. We first consider the case in which
f ≥ x. In this case we define µ = x

f ∈ (0, 1]. We obtain

ω̄(pa;λ) = sup
f>0, µ∈(0,1]

∫ µ f
0 pa(f + z) dz − λ pa(µ f)µ f

pa(f) f

≤ sup
f>0, µ∈(0,1]

(
pa((1 + µ) f)− λ pa(µ f)

)
µ f

pa(f) f

≤ sup
f>0, µ∈(0,1]

(
(1 + µ) pa(f)− λµ pa(f)

)
µ f

pa(f) f

= sup
µ∈(0,1]

(
1 + µ− λµ

)
µ.
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Here we have used the assumption on pa, which also implies that pa(cz) ≤
c · pa(z) for all c ≥ 1. The above problem is a concave program with optimal
value 1

4 (λ−1) .

For the case in which f ≤ x, we define µ = f
x ∈ (0, 1]. Then, using similar

arguments we arrive at

ω̄(pa;λ) = sup
x>0, µ∈(0,1]

(
pa((1 + µ)x)− λ pa(x)

)
x

pa(µx)µx
≤ sup

µ>0

1 + µ− λ
µ2

.

This problem is again a concave program with optimal value 1
4 (λ−1) . �

Theorem 5.8. For continuous, nondecreasing, and concave price functions,
the competitive ratios of U-Seq and U-Seq2 are at most 4 + 2

√
3.

Proof. The set of functions satisfying the assumptions of Lemma 5.7 contain
concave functions. Hence, ω̄(C;λ) is bounded from above by 1/(4 (λ − 1)).
Furthermore, it is easy to show that for concave functions δ(C) ≤ 2. Hence,
Theorem 5.5 implies that the competitive ratio is bounded from above by

4λ (λ− 1)
2λ− 3

.

Choosing λ = 1
2(3 +

√
3) as the minimizer of this expression and using

Corollary 5.2, the claim is proven for U-Seq and U-Seq2. �

We now study the case, where the price functions are in Cd. We state the
following useful lemma (see, for instance, Farzad et al. [12]):

Lemma 5.9. For nonnegative numbers x and f , a positive integer d, and
β ∈ (0, 1), we have

(f + x)d ≤ β1−d fd + (1− β)1−d xd.

We derive an upper bound on the competitive ratio of U-Seq by analyzing
the value ω̄(pa;λ) for price functions in Cd.
Theorem 5.10. The competitive ratios of U-Seq and U-Seq2 for price
functions in Cd, d ≥ 2, are at most O((1.77)d dd+1).

Proof. We first bound the value ω̄(pa;λ) for price functions pa ∈ Cd. Using
similar arguments as in the proof of Lemma 4.4, it suffices to bound the
value ω̄(pa;λ) for monomial price functions cd zd, cd ≥ 0 and for x, f > 0.
We start with the definition of ω̄ and apply Lemma 5.9 for some β ∈ (0, 1)
to be determined later.

ω̄(cd zd;λ) = sup
f, x>0

∫ x
0 cd (f + z)d dz − λ cd xd+1

cd fd+1

≤ sup
f, x>0

∫ x
0 β

1−d fd + (1− β)1−d zd dz − λxd+1

fd+1

≤ sup
f,x>0

β1−d fd x− (λ− 1
d+1 (1− β)1−d)xd+1

fd+1
.

Defining µ := x
f (using f > 0), we obtain

ω̄(cd zd;λ) ≤ max
0≤µ

(
β1−dµ− (λ− 1

d+1 (1− β)1−d)µd+1
)
.
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Calculating the maximum leads to:

ω̄(cd zd;λ) ≤ β1−d d

d+ 1

( β1−d(
λ− 1

d+1 (1− β)1−d
)

(d+ 1)

) 1
d
.

We define λ := αd dd and β := 1− 1
αd for some constant α ≥ 1. Then, it

follows that

β1−d =
(

1− 1
αd

)1−d
≤ e

1
α .

Thus, we have

ω̄(cd zd;λ) ≤ e
1
α d

d+ 1

(
e

1
α(

(αd)d − 1
d+1 (αd)d−1

)
(d+ 1)

) 1
d

=
e

1
α d

d+ 1

(
e

1
α

(αd)d
(
1− 1

(d+1)αd

)
(d+ 1)

) 1
d

.

Using (1− 1
(d+1)αd) (d+ 1) ≥ e

1
α for d ≥ 2 and α ≥ 3

2 , we get

ω̄(cd zd;λ) ≤ e
1
α

1
α (d+ 1)

.

In order to apply Theorem 5.5 we have to show that λ ∈ Λ(Cd). First, λ ≥ 1
implies λ ∈ Λ2(Cd). Using δ(Cd) ≤ d + 1 (by Lemma 4.3), it follows that
δ(Cd) ω̄(Cd;λ) ≤ e

1
α

1
α . Thus, the set Λ(Cd) is contained in

{λ = (αd)d : α ≥ 3
2 , e

1
α 1
α < 1}.

Applying Theorem 5.5 yields:

C(f) ≤ inf
{α≥ 3

2
: e

1
α 1
α
<1}

(d+ 1)αd dd

1− e
1
α

1
α

C(x).

If we use α = 1.77, we get an upper bound of O(1.77d dd+1)C(x). �

For the unsplittable variant of the generalized load balancing problem
defined in Section 4.4, we obtain the following result.

Corollary 5.11. For the unsplittable online load balancing problem in gen-
eral networks, time windows, and the `d-norm, U-Seq and U-Seq2 are(

1.77− e
1

1.77
)− 1

d+1 · 1.77 · d = O(d)

competitive.

The proof is similar to the proof of Corollary 4.15. Note that this bound
is the same as the one presented in Awerbuch et al. [4]. There are two
differences, however: On the one hand, our bound holds for general network
topologies. On the other hand, we only generalize the related machine case
(due to flow conservation constraints) and do not cover the unrelated case.
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5.3. Lower Bounds for the Unsplittable MRTW

In this section, we consider lower bounds for the the unsplittable MRTW.

Corollary 5.12. The online algorithms U-Seq and U-Seq2 are at least
(d+ 1)d+1-competitive for price functions in Cd.

Proof. Since one can approximate splittable flows by unsplittable flows with
sufficiently small demands, the lower bounds of Theorem 4.18 carry over. �

Note that there is a gap between the upper bound of Theorem 5.10 and
the above lower bound. For affine linear price functions, however, one can
adapt a construction of Farzad et al. [12] to show that the upper bound of
3 + 2

√
2 (see Theorem 5.6) is tight.

To obtain lower bounds for any deterministic online algorithm, we use the
following result.

Theorem 5.13 (Awerbuch et al. [4]). Any deterministic online algorithm
for the unsplittable OLB under the `d-norm has competitive ratio of at least
0.5307 d.

It can easily be seen that the relations derived in Section 4.4 remain true
for the unsplittable variant of OLB, which yields the following result.

Corollary 5.14. Every deterministic online algorithm for the unsplittable
MRTW with price functions in Cd has a competitive ratio of at least

(0.5307 (d+ 1))d+1.

Recently, Caragiannis [7] improved the lower bounds of Awerbuch et al. [4]
for the more general case of online load balancing problem with unrelated
machines. These lower bounds are equal to the upper bounds presented
in [4, 7]. Caragiannis’s proof, however, strongly relies on the property that
jobs have different weights on different machines. This setting cannot be
incorporated into our model. It is indeed likely that due to flow conserva-
tion constraints for multicommodity flows the two models are conceptually
different in general.

6. Conclusions and Open Questions

Let us briefly discuss the tightness of the results obtained in this paper.
It turns out that for the splittable MRTW, the analysis of Seq and Seq2

is asymptotically (w.r.t. the number of commodities) tight (Theorem 4.2
and 4.18). For the unsplittable MRTW, the analysis for U-Seq and U-
Seq2 is only tight for d ≤ 1 (Theorem 5.10, 5.14, and 5.6). Furthermore,
there is a gap between the lower bound on the competitive ratio for any
deterministic online algorithm and the best upper bounds for both variants.
It is an open question whether any of these bounds can be improved.

As mentioned earlier, the introduction of time windows generalizes the
setting of Harks et al. [17, 18]. We now discuss the structural differences
arising from this generalization. For polynomial price functions and general
networks, we were not able to obtain larger lower bounds for the greedy
online algorithms in the presence of time windows. For the parallel arc case,
however, we proved that Seq does not compute an optimal solution anymore.
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On the other hand, for polynomial price functions we could extend known
upper bounds to this more general case. We conclude that the generalization
to time windows makes a structural difference, but this difference is not
well understood yet. A deeper investigation of this issue seems to be an
interesting problem for the future.

Concerning the generalization to the case of routing more than one com-
modity per round, it turns out that neither Seq nor Seq2 (U-Seq nor U-
Seq2) dominates the other (Corollary 3.5 and 5.2). Furthermore, the com-
petitive ratios of Seq and Seq2 (and U-Seq/U-Seq2) are the same in the
worst case (for the price functions studied in this paper). Thus, it seems
that the power of Seq is in general not increased by the possibility of rout-
ing several commodities simultaneously. There is, however, an algorithmic
difference for the unsplittable MRTW. The subproblems that have to be
solved by U-Seq are NP-hard, while U-Seq2 is polynomially implementable
and thus gives a polynomial time approximation algorithm.

In this paper, we have derived explicit upper bounds on the competitive
ratio for the considered algorithms for price functions that are either polyno-
mials with nonnegative coefficients or concave. This provides a rich class of
functions. Results for other continuous and nondecreasing functions remain
an open issue. For instance, although it seems unlikely, it is still possible that
Seq2 has a better competitive ratio than Seq for price functions different
from the ones studied in this paper.
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