Skip to main content
Log in

Naphthalenes as inhibitors of myeloperoxidase: Direct and indirect mechanisms of inhibition

  • Inflammation and Immunomodulation
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

Control of myeloperoxidase (MPO) may be an important consideration in disorders where excessive PMN elastase activity is a significant factor. There are, however, two mechanisms for the apparent regulation of MPO: i) inhibit the enzyme directly, and ii) prevent the ensuing HOCl induced oxidation by using a surrogate reducing agent. Appropriate methodology has been devised to distinguish true MPO inhibitors. With the exception of NaN3, many MPO inhibitors fall into the latter category and do not actually regulate the enzyme. Several potent organic inhibitors have been discovered, which, because of their structural selectivity, appear to associate specifically with a binding site on the enzyme, rather than attaching indiscriminately to a hydrophobic domain. By controlling the enzyme, these compounds protect α-1-PI from MPO induced damage, and could serve better than antioxidants to define the role of MPO in elastase induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-1-PI:

α-1-proteinase inhibitor

BW755C:

3-amino-1-[m-(fluoromethyl)-phenyl]-2-pyrazolize

CTAB:

cetyltrimethyl ammonium bromide

HLE:

human leukocyte elastase

MPO:

myeloperoxidase

References

  1. A. Janoff and H. Carp,Possible mechanisms of emphysema in smokers: cigarette smoke condensate suppresses protease inhibition in vitro. Am. Rev. Resp. Dis.116, 65–72 (1977).

    PubMed  Google Scholar 

  2. L. Ekerot and K. Ohlsson,Interactions of granulocyte proteases with inhibitors in rheumatoid arthritis. Adv. Exp. Med. Biol.167, 335–344 (1984).

    PubMed  Google Scholar 

  3. J. R. Carlo, J. K. Spitznagel, E. J. Studer, D. H. Conrad and S. Ruddy,Cleavage of membrane bound C 3bi,an intermediate in the third component of complement, to C 3c-and C 3d-like fragments by crude leukocyte lysosomal lysates and purfied leukocyte elastase. Immunology44, 381–391 (1981).

    PubMed  Google Scholar 

  4. N. R. Matheson, P. S. Wong, M. Schuyler and J. Travis,Interaction of human alpha-1-proteinase inhibitor with neutrophil myeloperoxidase. Biochemistry20, 331–336 (1981).

    Article  PubMed  Google Scholar 

  5. J. O. Jeppsson, C. B. Laurell and M. K. Fagerhol,Properties of isolated human alpha-1-antitrypsins of Pi types M, S and Z. Eur. J. Biochem.83, 143–153 (1978).

    Article  PubMed  Google Scholar 

  6. J. Travis and G. S. Salvesen,Human plasma proteinase inhibitors. Ann. Rev. Biochem.52, 655–709 (1983).

    Article  PubMed  Google Scholar 

  7. N. R. Matheson, P. S. Wong and J. Travis,Enzymic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem. Biophys. Res. Commun.88, 402–409 (1979).

    Article  PubMed  Google Scholar 

  8. R. A. Clark, P. J. Stone, A. El Hag, J. D. Calore and C. Franzblau,Myeloperoxidase-catalyzed inactivation of alpha-1-protease inhibitor by human neutrophils. J. Biol. Chem.256, 3348–3353 (1981).

    PubMed  Google Scholar 

  9. S. J. Weiss and S. Regiani,Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J. Clin. Invest.73, 1297–1303 (1984).

    PubMed  Google Scholar 

  10. M. C. Zaslow, R. A. Clark, P. J. Stone, J. Calore, G. L. Snider and C. Franzblau,Myeloperoxidase-induced inactivation of alpha-1-antiprotease in hamsters. J. Lab. Clin Med.105, 178–184 (1985).

    PubMed  Google Scholar 

  11. A. Van Zyl, S. Lubbe, A. Potgieter, and J. Van Zyl,The influence of non-steroidal anti-inflammatory and antithyroid agents on myeloperoxidase-catalysed activities of human leucocytes. S. Afr. Med. J.55, 1082–1087 (1979).

    PubMed  Google Scholar 

  12. C. N. Theron, S. Lubbe and A. Van Zyl,Inhibitory effects of non-steroidal anti-inflammatory drugs on human myeloperoxidase. S. Afr. Med. J.56, 670–675 (1979).

    PubMed  Google Scholar 

  13. N. R. Matheson,The effect of antiarthritic drugs and related compounds on the human neutrophil myeloperoxidase system. Biochem. Biophys. Res. Commun.108, 259–265 (1982).

    Article  PubMed  Google Scholar 

  14. G. Pekoe, K. Van Dyke, H. Mengoli, D. Peden and D. English,Comparison of the effects of antioxidant nonsteroidal anti-inflammatory drugs against myeloperoxidase and hypochlorous acid luminol-enhanced chemiluminescence. Agent and Actions,12, 232–238 (1982).

    Google Scholar 

  15. R. A. Cuperus, A. O. Muijsers and R. Wever,The effect of d-penicillamine on human myeloperoxidase, a mechanism for the efficacy of the drug in rheumatoid arthritis. Biochim. Biophys. Acta749, 18–23 (1983).

    PubMed  Google Scholar 

  16. C. C. Winterbourn,Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxidechloride, and similarity of the oxidant to hypochlorite. Biochem. Biophys. Acta840, 204–210 (1985).

    PubMed  Google Scholar 

  17. A. V. Zakharychev, D. R. Lagidze and S. N. Ananchenko,Condensation of vinylcyclenols with cyclic 1,3-diketones. Tet. Lett.9, 803–806 (1967).

    Article  Google Scholar 

  18. E. Buchta and H. Bayer,Synthesis of 6-methoxy-1-vinyl-3,4-dihydronaphthalene and the bromination of 6-methoxy-1-ethylnaphthalene. Ann.580, 116–124 (1953).

    Google Scholar 

  19. M. Fetizon and J. Delobelle,Sur deux phenanthrones intermediaires de la synthese de quelque diterpens. Compt. Rend.245, 850–852 (1957).

    Google Scholar 

  20. W. Nagata and T. Terasawa,Totalsynthetische Untersuchungen an steroiden II. Synthase des 6-methoxy-3,4-dihydro-2(1H)-naphthalinons. Chem. Pharm. Bull. Jap.9, 267–275 (1961).

    Google Scholar 

  21. G. Haberland,Experiments on the synthesis of natural sterols. Ring closure possibilities of differently hydrogenated naphthylbutyric acids and a convenient way to obtain 7-methoxy-1-keto-1,2,3,4-tetrahydriphenanthrone. Ber.69, 1380–1386 (1936).

    Google Scholar 

  22. E. Buchta, S. Maier und H. Bayer,Die Synthese weiterer in 2-Stellung substituierter 6-methoxy-tetralon-(1)-derivate und von β-[6-methoxy-3,4-dihydro-naphthyl-(1)] und β-[6-methoxy-naphthyl-(1)]-athylalkohol. Ann.576, 7–19 (1952).

    Google Scholar 

  23. J. Jacques,Sur la deshydratation de certains alcoyl-1 tetralols-1 et sur la dismutation des dialines qui en derivent. Compt. Rend.237, 1252–1254 (1953).

    Google Scholar 

  24. V. C. E. Burnop, G. H. Elliot and R. P. Linstead,Fused carbon rings, part XIX. Experiments on the synthesis of tetracyclic compounds of the sexual hormone type. J. Chem. Soc. 727–735 (1940).

  25. P. P. Bradley, D. A. Priebat, R. D. Christensen and G. Rothstein,Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol.78, 206–209 (1982).

    Article  PubMed  Google Scholar 

  26. B. M. Ashe and M. Zimmerman,Specific inhibition of human granulocyte elastase by cis-unsaturated fatty acids and activation by the corresponding alcohols. Biochem. Biophys. Res. Commun.75, 194–199 (1977).

    Article  PubMed  Google Scholar 

  27. B. M. Ashe, R. C. Clark, H. Jones and M. Zimmerman,Inhibition of elastase and other serine proteases by heterocyclic acylating agents. J. Biol. Chem.255, 9848–9851 (1980).

    PubMed  Google Scholar 

  28. A. Hulanicki and S. Glab,Redox indicators. Characteristics and applications. Pure Appl. Chem.50, 465–498 (1978).

    Google Scholar 

  29. M. Chaffman, R. N. Brogden, R. C. Heel, T. M. Speight and G. S. Avery,Auranofin. A preliminary review of its pharmacological properties and therapeutic use in rheumatoid arthritis. Drugs27, 378–424 (1984).

    PubMed  Google Scholar 

  30. R. K. Root,Genetic disorders of granulocyte function: what they tell us about normal mechanisms. Adv. Exp. Med. Biol.162, 51–59 (1983).

    PubMed  Google Scholar 

  31. M. F. Parry, R. K. Root, J. A. Metcalf, K. K. Delaney, L. S. Kaplow and W. J. Richar,Myeloperoxidase deficiency: prevalence and clinical significance. Ann. Intern. Med.95, 293–301 (1981).

    PubMed  Google Scholar 

  32. R. Cramer, M. R. Soranzo, P. Dri, G. D. Rotini, M. Bramezza, S. Cirielle and P. Patriarca,Incidence of myeloperoxidase deficiency in an area of nothern Italy: histochemical, biochemical and functional studies. Br. J. Hematol.51, 81–87 (1982).

    Google Scholar 

  33. R. I. Lehrer and M. J. Cline,Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Clin. Invest.48, 1478–1488 (1969).

    PubMed  Google Scholar 

  34. P. Cech, H. Stalder, J. J. Widmann, A. Rohner and P. A. Miescher,Leukocyte myeloperoxidase deficiency and diabetes mellitus associated with Candida albicans liver abscess. Am. J. Med.66, 149–153 (1979).

    Article  PubMed  Google Scholar 

  35. E. L. Mills and P. G. Quie,Congenital disorders of the function of polymorphonuclear neutrophils. Rev. Inf. Dis.2, 505–517 (1980).

    Google Scholar 

  36. C. D. Wright and R. D. Nelson,Candidacidal activity of myeloperoxidase: therapeutic influence of the enzyme in vivo. Infect. Immun.47, 363–365 (1985).

    PubMed  Google Scholar 

  37. P. C. Andrews and N. I. Krinsky,A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions and protons. J. Biol. Chem.257, 13240–13245 (1982).

    PubMed  Google Scholar 

  38. J. M. Zgliczynski, T. Stelmaszynska, W. Ostrowski, J. Naskalski and J. Sznajd,Myeloperoxidase in human leukaemic leukocytes. Oxidation of amino acids in the presence of hydrogen peroxide. Eur. J. Biochem.4, 540–547 (1968).

    Article  PubMed  Google Scholar 

  39. J. W. Naskalski,Myeloperoxidase inactivation in the course of catalysis of chlorination of taurine. Biochem. Biophys. Acta485, 291–300 (1977).

    PubMed  Google Scholar 

  40. T. Yonetani,Cytochrome C peroxidase. Adv. Enzymol.33, 309–335 (1970).

    PubMed  Google Scholar 

  41. G. D. Nordblom, R. E. White and M. J. Coon,Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch. Biochem. Biophys.175, 524–533 (1976).

    Article  PubMed  Google Scholar 

  42. R. W. Egan, J. Paxton and F. A. Kuehl Jr.,Mechanism for irreversible self-deactivation of prostaglandin synthetase. J. Biol. Chem.251, 7321–7335 (1976).

    Google Scholar 

  43. D. B. Glass, J. M. Gerrard, D. Townsend, D. W. Carr, J. G. White and N. D. Goldberg,The involvement of prostaglandin endoperoxide formation in the elevation of cyclic GMP levels during platelet aggregation. J. Cyclic Nucleotide Res.3, 37–44 (1977).

    PubMed  Google Scholar 

  44. R. J. Kulmacz and W. E. M. Lands,Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins25, 531–540 (1983).

    Article  PubMed  Google Scholar 

  45. R. W. Egan, P. H. Gale, G. C. Beveridge, L. J. Marnett and F. A. Kuehl Jr.,Direct and indirect involvement of radical scavengers during prostaglandin biosynthesis. InAdvances in Prostaglandin and Thromboxane Research, vol. 6. (Eds. B. Samuelsson, P. W. Ramwell and R. Paoletti) pp. 153–155, Raven Press, New York 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, R.W., Hagmann, W.K. & Gale, P.H. Naphthalenes as inhibitors of myeloperoxidase: Direct and indirect mechanisms of inhibition. Agents and Actions 29, 266–276 (1990). https://doi.org/10.1007/BF01966457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01966457

Keywords

Navigation