Skip to main content
Log in

Conservation, evolution, and specificity in cellular control by protein phosphorylation

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The glycolytic control enzyme phosphofructokinase from the parasitic nematodeAscaris lumbricodies is regulated by reversible phosphorylation. The enzyme is phosphorylated by an atypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase whose substrate specificity deviates from that of the mammalian protein kinase. This variation is explained by structural peculiarities on the surface part of the catalytic groove of the protein kinase. Also, the protein phosphatases responsible for the reversal of phosphorylation appear to act specifically in glycolysis and are different from those participating in regulation of glycogenolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berridge, M., Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J.220 (1984) 345–360.

    PubMed  Google Scholar 

  2. Biethinger, M., Hoffmann, R., and Hofer, H. W., Phosphofructokinase from mollusc muscle is activated by phosphorylation. Archs Biochem. Biophys.287 (1991) 263–267.

    Article  Google Scholar 

  3. Bollen, M., and Stalmans, W., The structure, role and regulation of type 1 protein phosphatases. Crit. Rev. Biochem. Mol., Biol.27 (1992) 227–281.

    Google Scholar 

  4. Cohen, P., The structure and regulation of protein phosphatases. A. Rev. Biochem.58 (1989) 453–508.

    Article  Google Scholar 

  5. Cohen, P. T. W., Brewis, N. D., Hughes, V., and Mann, D. J. Protein serine/threonine phosphatases, an expanding family. FEBS Lett.268 (1990) 355–359.

    Article  PubMed  Google Scholar 

  6. Daum, G., Thalhofer, H. P., Harris, B. G., and Hofer, H. W., Reversible activation and inactivation of phosphofructokinase fromAscaris suum by the action of tissue-homologous protein phosphorylating and dephosphorylating enzymes. Biochem. biophys. Res. Commun.139 (1986) 215–221.

    Google Scholar 

  7. Daum, G., Schmid, B., MacKintosh, C., Cohen, P., and Hofer, H. W., Characterization of the major phosphofructokinase-dephosphorylating protein phosphatases fromAscaris suum muscle. Biochim. Biophys. Acta1122 (1992) 23–32.

    PubMed  Google Scholar 

  8. Gibbs, C. S., Knighton, D. R., Sowadski, J. M., Taylor, S. S., and Zoller, M. J., Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J. Biol. Chem.267 (1992) 4806–4814.

    PubMed  Google Scholar 

  9. Debondt, H. L., Rosenblatt, J., Jancarik, J., Hones, H. D., Morgan, D. O., and Kim, S. H., Crystal structure of cyclin-dependent kinase-2. Nature363 (1993) 595–602.

    Article  PubMed  Google Scholar 

  10. Donahue, M. J., Masaracchia, R. A., and Harris, B. G., The role of cAMP-mediated regulation of glycogen metabolism in Levamisole-perfusedAscaris suum muscle. Molecular Pharmacol.A23 (1982) 378–383.

    Google Scholar 

  11. Hanks, S. K., Quinn, A. M., and Hunter, T., The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science241 (1988) 42–52.

    PubMed  Google Scholar 

  12. Harris, B. G., Kaeini, M., and Hofer, H. W., Glycolytic regulation inAscaris suum muscle by phosphofructokinase and protein kinases. Molec. Biochem. Parasitol.3 Suppl. (1982), 139–140.

    Google Scholar 

  13. Hofer, H. W., Allen, B. L., Kaeini, M. R., and Harris, B. G., Phosphofructokinase fromAscaris suum: the effect of phosphorylation on activity near physiological conditions. J. biol. Chem.257 (1982) 3801–3806.

    PubMed  Google Scholar 

  14. Hoffmann, R., Jung, S., and Hofer, H. W., Association of a heat-stable inhibitor protein with cyclic-3′,5′-AMP-dependent protein kinase from the nematodeAscaris suum. Purification and characterization of the inhibitor. Archs Biochem. Biophys.297 (1992) 296–303.

    Article  Google Scholar 

  15. Hoffmann, R., Jung, S., Ehrmann, M., and Hofer, H. W., TheSaccharomyces cerevisiae gene PPH3 encodes a protein phosphatase with properties different from PPX, PP1 and PP2A. Yeast10 (1994) 567–578.

    Article  PubMed  Google Scholar 

  16. Hubbard, S. R., Wei, L., Elis, L., Hendrickson, W. A., Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, Lond.372 (1994) 746–754.

    Google Scholar 

  17. Jung, S., Hoffmann, R., Rodriguez, P. H., Mutzel, R., and Hofer, H. W., The catalytic subunit of cAMP-dependent protein kinase fromAscaris suum. The cloning and structure of a novel subtype of protein kinase A. Eur. J. Biochem.232 (1995) 111–117.

    Article  PubMed  Google Scholar 

  18. Knighton, D. R., Zheng, J., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M., Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science253 (1991) 407–414.

    PubMed  Google Scholar 

  19. Knighton, D. R., Zheng, J., Ten Eyck, L. G., Xuong, N., Taylor, S. S., and Sowadski, J. M., Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science253 (1991) 414–420.

    PubMed  Google Scholar 

  20. Kulkarni, G., Rao, G. S. J., Srinivasan, N. G., Hofer, H. W., Yuan, P. M., and Harris, B. G.,Ascaris suum PFK. Phosphorylation by protein kinase and sequence of the phosphopeptide. J. biol. Chem.262 (1987) 32–34.

    PubMed  Google Scholar 

  21. Mansour, T. E., Serotonin receptors in parasitic worms. Adv. Parasitol.23 (1984) 1–36.

    PubMed  Google Scholar 

  22. Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R., The mitochondrial genomes of two nematodes,Caenorhabditis elegans andAscaris suum. Genetics130 (1992) 471–498.

    PubMed  Google Scholar 

  23. Rall, T. W., and Sutherland, E. W., Formation of a cyclic adenine ribonucleotide by tissue particles. J. biol. Chem.232 (1958) 1065–1076.

    PubMed  Google Scholar 

  24. Thalhofer, H. P., Daum, G., Harris, G. G., and Hofer, H. W., Identification of two different phosphofructokinase-phosphorylating protein kinases fromAscaris suum muscle. J. biol. Chem.263 (1988) 952–957.

    PubMed  Google Scholar 

  25. Thalhofer, H. P., Starz, W., Daum, G., Wurster, B., Harris, B. G., and Hofer, H. W., Purification and properties of the cyclic 3′,5′-AMP binding protein from the muscle of the nematodeAscaris suum. Archs Biochem. Biophys.271 (1989) 471–478.

    Article  Google Scholar 

  26. Saz, H. J., Energy metabolism of parasitic helminths: adaption to parasitism. Annu. Rev. Physiol.43 (1981) 323–341.

    Article  PubMed  Google Scholar 

  27. Treptau, T., Piram, P., Cook, P. F., Rodriguez, P., Hoffmann, R., Jung, S., Thalhofer, H. P., Harris, B. G., and Hofer, H. W., Comparison of the substrate specificities of cAMP-dependent protein kinase from bovine heart andAscaris suum muscle. Biological Chemistry Hoppe-Seyler377 (1996) 203–209.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, H.W. Conservation, evolution, and specificity in cellular control by protein phosphorylation. Experientia 52, 449–454 (1996). https://doi.org/10.1007/BF01919314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919314

Key words

Navigation