Skip to main content
Log in

Multiple scattering of seismic waves in fractured media: Velocity and effective attenuation of the coherent components ofP waves andS waves

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

We show that the multiple scattering by small fractures of seismic waves with wavelengths long compared to the fracture size and fracture spacing is indistinguishable from multiple-scattering effects produced by ‘regular’ porosity, except for an orientation factor due to fracture alignment. The fractures reduce theP-wave andS-wave velocities and produce an effective attenuation of the coherent component of the seismic waves. The attenuation corresponds to 1000/Q of about unity for a Gaussian spectrum of fractures, and it varies with frequencyf asf 3. For a Kolmogorov spectrum of fractures of spectral index ν the attenuation is an order of magnitude or so larger and varies with frequency asf 3-v The precise degree of attenuation depends upon the matrix properties, the fracture porosity, the degree of fracture anisotropy, the type of fluid filling the fractures, and the incidence angle of the wave.

For fracture porosities less than about 15% theP-wave andS-wave velocities are decreased by the order of 5–10% with a lesser dependence on the type of fluid filling the fractures (gas, oil, or brine) and with a dependence on both the degree of anisotropy and the incident angle made by the wave. The tendency of fractures to occur perpendicularly to bedding suggests that the best way to measure seismically fractured rock behavior in situ is by using the travel-time delay and reflection amplitude. As both the offset and the azimuth of receivers vary from a shot, the travel-time delay and reflection amplitude should both show an elliptical pattern of behavior—the travel-time delay in response to the varying seismic speed, and the reflection amplitude in response to angular variations in the multiple scattering. Observations of attenuation at several frequencies should permit (a) determination of the spectrum of fractures (Gaussian versus Kolmogorovian) and (b) determination of the contribution of viscous damping to the effective attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1981),Scattering and attenuation of high-frequency body waves (1–25 Hz) in the lithosphere, Phys. Earth Planet. Int.26, 241–243.

    Google Scholar 

  • Aki, K. (1982),Scattering and attenuation, Bull. Seis. Soc. Am.78, B6, S319–330.

    Google Scholar 

  • Aki, K. andRichards, P. G. (1980),Quantitative Seismology, Theory and Methods. Vol. 1 and 2. Freeman, San Francisco.

    Google Scholar 

  • Banik, N. C., Lerche, I., andShuey, R. S. (1985),Stratigraphic filtering: Pt. I. Derivation of the O'Doherty-Anstey formula, Geophys. 50, 2768–2774.

    Google Scholar 

  • Crampin, S. (1977).A review of the effects of anisotropic layering on the propagation of seismic waves. Geophys. J. Roy. Astr. Soc.49, 9–27.

    Google Scholar 

  • Crampin, S. (1978).Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic. Geophys. J. Roy. Astro. Soc.53, 467–496.

    Google Scholar 

  • Crampin, S., McGonigle, R., andBamford, D. (1980),Estimating crack parameters from observations of P-wave velocity anisotropy. Geophys.45, 345–360.

    Google Scholar 

  • Dainty, A. M. (1981),A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys. Res. Lett.8, 1126–1128.

    Google Scholar 

  • Dainty, A. M. (1984),High frequency acoustic backscattering and seismic attenuation. J. Geophys. Res.89, 3172–3176.

    Google Scholar 

  • Eshelby, J. D. (1957),The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. A,241, 376–396.

    Google Scholar 

  • Flatté, S. M. (1979),Sound Transmission through a Fluctuating Ocean. Cambridge Univ. Press.

  • Frisch, U. (1968), ‘Wave propagation in random media’, inProbabilistic Methods in Applied Mathematics (A. T. Bharucha-Reid, ed.), Prentice-Hall, New Jersey.

    Google Scholar 

  • Hudson, J. A. (1980),Overall properties of a cracked solid. Math. Camb. Phil. Soc.88, 371–384.

    Google Scholar 

  • Hudson, J. A. (1982),Use of stochastic models in seismology. Geophys. J. Roy. Astr. Soc.69, 649–657.

    Google Scholar 

  • Hudson, J. A. andHeritage, J. R. (1981).The use of the Born approximation in seismic scattering problems Geophys. J. Roy. Astr. Soc.66, 221–240.

    Google Scholar 

  • Karal, F. C. andKeller, J. B. (1964),Elastic, electrodynamic and other waves in a random medium. J. Math. Phys.5, 537–547.

    Google Scholar 

  • Kelley, K. R., Ward, R. W., Treitel, S., andAlford, R. M. (1976),Synthetic seismograms, a finite difference approach. Geophysics41, 2–27.

    Google Scholar 

  • Kikuchi, M. (1981a),Dispersion and attenuation of elastic waves due to multiple scattering from inclusions. Phys. Earth Planet. Int.25, 159–162.

    Google Scholar 

  • Kikuchi, M. (1981b),Dispersion and attenuation of elastic waves due to multiple scattering from cracks. Phys. Earth Planet. Int.27, 100–105.

    Google Scholar 

  • Kuster, G. T. andToksoz, M. N. (1974a),Velocity and attenuation of seismic waves in two-phase media: Pt. I. Theoretical formulations. Geophys.39, 587–606.

    Google Scholar 

  • Kuster, G. T. andToksoz, M. N. (1974b),Velocity and attenuation of seismic waves in two-phase media: Pt. II. Experimental results. Geophys.39, 607–618.

    Google Scholar 

  • Lerche, I. (1979).Scintillations in astrophysics: I. An analytic solution of the second order moment equation. Astrophys. J.234, 262–274.

    Google Scholar 

  • Levander, A. R. andHill, N. R. (1985),P-SV resonance in irregular low-velocity surface layers. Bull. Seism. Soc. Am.75, 847–864.

    Google Scholar 

  • Mavko, G. M., andNur, A. (1979),Wave attenuation in partially saturated rocks. Geophys.44, 161–178.

    Google Scholar 

  • McLaughlin, K. L. (1983),Coherency of seismic waveforms. Ph.D. Thesis, Univ. Calif. Berkeley.

  • Menke, W. (1983a),On the effect of P-S coupling on the apparent attenuation of elastic waves in randomly layered media. Geophys. Res. Lett.10, 1145–1147.

    Google Scholar 

  • Menke, W. (1983b).A formula for the apparent attenuation of acoustic waves in randomly layered media. Geophys. J. Roy. Astr. Soc.75, 541–544.

    Google Scholar 

  • Menke, W. (1984),Asymptotic formulas for the apparent Q of weakly scattering three-dimensional media. Bull. Seis. Soc. Am.74, 1079–1081.

    Google Scholar 

  • Menke, W. (1986), private communication.

  • Morse, P. M., andFeshbach, H. (1953),Methods of Theoretical Physics, Vol. 1 and 2. McGraw-Hill, New York.

    Google Scholar 

  • Nagatani, T. (1980),Effective permittivity in random anisotropic media. J. Appl. Phys.51, 4944–4949.

    Google Scholar 

  • Nordberg, H. E. (1981), Paper NSE/8: ‘Seismic hydrocarbon indicators in the North Sea)’ inNorwegian Symposium on Exploration. Bergen, Norway.

  • O'Connell, R. J. andBudiansky, B. (1977),Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res.82, 5719–5735.

    Google Scholar 

  • Resnick, J. R., Lerche, I. andShuey, R. T. (1986),Reflection, Transmission and the Generalized Primary Wave. Geopys. J. Roy. Astr. Soc.87, 349–377.

    Google Scholar 

  • Richards, P. G. andMenke, W. (1983),The apparent attenuation of a scattering medium. Bull. Seis. Soc. Am.73, 1005–1021.

    Google Scholar 

  • Sato, H. (1982a),Attenuation of S waves in the lithosphere due to scattering by its random velocity structure. J. Geophys. Res.87, 7779–7786.

    Google Scholar 

  • Sato, H. (1982b),Amplitude attenuation of impulsive waves in random media on the travel time corrected wave formalism. J. Acoust. Soc. Am.71, 559–564.

    Google Scholar 

  • Schoenberger, M. andLevin, F. K. (1974),Apparent attenuation due to intrabed multiples. Geophys.39, 1221–1241.

    Google Scholar 

  • Schoenberger, M. andLevin, F. K. (1978),Apparent attenuation due to intrabed multiples: II Geophys.43, 730–737.

    Google Scholar 

  • Schoenberger, M. andLevin, F. K. (1979),The effect of subsurface sampling on one-dimensional synthetic seismograms. Geophys.44, 1813–1829.

    Google Scholar 

  • Shuey, R. T. (1982), personal communication.

  • Tartarskii, V. I. (1971),The effect of the turbulent atmosphere on wave propagation. Israel Progr. Sci. Translation, Jerusalem.

  • Toksoz, M. N., Cheng, C. H. andTimur, A. (1976),Velocities of seismic waves in porous rocks. Geophys.41, 621–645.

    Google Scholar 

  • Uscinski, B. J. (1977),The Elements of Wave Propagation in a Random Medium, McGraw-Hill.

  • Walsh, J. B. (1968),Attenuation in partially melted material. J. Geophys. Res.73, 2209–2216.

    Google Scholar 

  • Walsh, J. B. (1969),New Analysis of attenuation in partially melted rocks. J. Geophys. Res.74, 4333–4337

    Google Scholar 

  • Wu, R-S. (1982a),Attenuation of short period seismic waves due to scattering. Geophys. Res. Lett.9, 9–12.

    Google Scholar 

  • Wu, R.-S. (1982b),Mean field attenuation and amplitude attenuation due to wave scattering. Wave Motion4, 305–316.

    Google Scholar 

  • Wu, T. T. (1966),The effect of inclusion shape on the elastic moduli of a two-phase material. Intern. J. Solids Structures2, 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerche, I., Petroy, D. Multiple scattering of seismic waves in fractured media: Velocity and effective attenuation of the coherent components ofP waves andS waves. PAGEOPH 124, 975–1019 (1986). https://doi.org/10.1007/BF00879928

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879928

Key words

Navigation