Skip to main content
Log in

Renormalization group and high-temperature series for the two-dimensional ising model

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We employ high-temperature series to investigate a two-parameter class of renormalization group transformations for the two-dimensional Ising model on the triangular lattice. For the static case we identify an optimal organization of the high-temperature expansion and an optimal transformation matrix and thus find, in second order, ν=0.96 and the magnetic eigenvaluey=2-η/2=1.76.

From recursion relations for flip rates we find the dynamic exponent to be the same for all transformations in our two-parameter class,z=2.32.

Our fixed-point flip rates do not describe a Markov process even though the corresponding master equation for the single-event probability displays no explicit memory effects. The non-Markovian nature shows up only in a violation of the Markovian detailed balance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Betts, D., Cuthiell, D., Plieschke, M.: Physica98A, 27 (1979)

    Google Scholar 

  2. Niemeijer, Th., Leeuwen, J.M.J. van: Physica71A, 17 (1974)

    Google Scholar 

  3. Kadanoff, L.P., Houghton, A.: Phys. Rev. B11, 377 (1975)

    Google Scholar 

  4. Deker, U., Haake, F.: Z. Phys. B-Condensed Matter36, 379 (1980)

    Google Scholar 

  5. Takano, H., Suzuki, M.: Prog. Theor. Phys.67, 1332 (1982)

    Google Scholar 

  6. The numerical result (1.2) is reasonably close to other recent results:

  7. Tobochnik, J., Sarker, S., Cordery, R.: Phys. Rev. Lett.46, 1417 (1981);

    Google Scholar 

  8. Bausch, R., Dohm, V., Janssen, H.K., Zia, R.K.P.: Phys. Rev. Lett.47, 1837 (1981);

    Google Scholar 

  9. Chakrabarti, B.K., Baumgärtel, H.G., Stauffer, D.: Z. Phys. B-Condensed Matter44, 333 (1981);

    Google Scholar 

  10. Jan, N., Moseley, L.M., Stauffer, D.: J. Stat. Phys. (in press)

  11. Haake, F., Lewenstein, M.: Phys. Rev. A28, 3606 (1983)

    Google Scholar 

  12. Geigenmüller, U., Titulaer, U.M., Felderhof, B.U.: Physica119A, 41 (1983);119A, 53 (1983)

    Google Scholar 

  13. Mazenko, G.F., Nolan, M.J., Valls, O.T.: Phys. Rev. B22, 1263 (1980); B22, 1275 (1980)

    Google Scholar 

  14. Achiam, Y., Kosterlitz, J.M.: Phys. Rev. Lett.41, 128 (1978);

    Google Scholar 

  15. Achiam, Y.: J. Physics A11, L129 (1978); Achiam, Y.: Phys. Rev. B19, 376 (1979)

    Google Scholar 

  16. Indekeu, J.O., Stella, A.L., Zhang, L.: Preprint 1983; see also Indekau, J.O., Stella, A.L.: Phys. Lett.78A, 160 (1980)

  17. Haake, F., Lewenstein, M.: Phys. Rev. B27, 5868 (1983)

    Google Scholar 

  18. Glauber, R.J.: J. Math. Phys.4, 294 (1963)

    Google Scholar 

  19. Note thatR exp (Lt)\(\hat R\) is not, in general, a conditional probability. Actually, none of our arguments make use of (expLt)σ σ′ having that meaning

  20. A simple analogy may serve to illustrate this point. Consider the everdamped harmonic oscillator,\(\dot q = p, \dot p = - \gamma p - q\), for γ≫1. The two eigenvalues are\( - \Gamma _ \pm = - (\gamma /2 \pm \sqrt {\gamma ^2 /4 - 1} )\). The ratio\(\dot q/q\) is somewhat similar in nature to the matrix quotientl(t) since the displacementq is the slow variable. The ratio\(\dot q/q\) assumes the time independent limit −ν on the fast time scale, 1/ν +, and this limit is independent of the initial displacement as well as of the initial momentum. The asymptotic relation\(\dot q = - \Gamma _ - q\) may be understood as resulting from an adiabatic elimination of the momentum. Closer analogies exist with multidimensional stoachastic processes like the Ornstein-Uhlenbeck process [16] and the laser [17]

  21. Haake, F.: Z. Phys. B-Condensed Matter48, 31 (1982)

    Google Scholar 

  22. Haake, F., Lewenstein, M.: Phys. Rev. A27, 1013 (1983)

    Google Scholar 

  23. Our summation convention is to count all equivalent pairs (and triples) of spins once

  24. We could allot the configuration-independent flips of first-neighbor pairs of spins toL 1, i.e. takeψ 0 to be of first order. This modification is discussed in Sect. 9

  25. For appropriate choices ofp andf these relations include the corresponding ones of [1, 5, 12]

  26. See, e.g., Niemeijer, Th., Leeuwen, J.M.J., van: In: Physe transitions and critical phenomena. Domb, C., Green, M.S. (eds.). London: Academic Press 1976

    Google Scholar 

  27. It is because of the linearity of the magnetic recursion relations and because ofh * i =0 that we need not modify theh i

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haake, F., Lewenstein, M. & Wilkens, M. Renormalization group and high-temperature series for the two-dimensional ising model. Z. Physik B - Condensed Matter 54, 333–350 (1984). https://doi.org/10.1007/BF01485831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01485831

Keywords

Navigation