Skip to main content
Log in

The Ising square lattice in aL×M geometry: A model for the effect of surface steps on phase transitions in adsorbed monolayers

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Critical phenomena in adsorbed monolayers on surfaces are influenced by limited substrate homogeneity, such as surface steps. We consider the resulting finite-size and boundary effects in the framework of a lattice gas system with nearest neighbor attraction in aL×M geometry, with two free boundaries of lengthM≫L, and periodic boundary conditions in the other direction (along the direction of the steps). This geometry thus models a “terrace” of the stepped surface, and adatoms adsorbed on neighboring terraces are assumed to be non-interacting. Also the effect of boundary “fields” is considered (describing the effects of missing neighbors and changed binding energy to the substrate near the boundary). Extensive Monte Carlo calculations on this model performed on a multi-transputer system are presented and analyzed in terms of phenomenological finite size scaling concepts. The fact that two scaling variables occur (ζ/L,L/M, with ζ being the correlation length in the bulk) is demonstrated explicitly. In the absence of boundary fields, the system forM≫L orders nearT c in a domain state, with domain walls running across the terrace, while at some temperature belowT c a transition to a monodomain state occurs. This domain state slightly belowT c is suppressed, however, by rather weak boundary fields. These results are interpreted in terms of exact theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dash, J.G.: Films on solid surfaces. New York: Academic Press 1975

    Google Scholar 

  2. Dash, J.G., Ruvalds, J. (eds.): Phase transitions in surface films. New York: Plenum Press 1979

    Google Scholar 

  3. Dash, J.G.: Phys. Rep.38C, 177 (1978)

    Google Scholar 

  4. Sinha, S. (ed.): Ordering in two dimensions. Amsterdam: North-Holland 1980

    Google Scholar 

  5. Marx, R.: Phys. Rep.125, 1 (1985)

    Google Scholar 

  6. Bauer, E.: Phase transitions on single crystal surfaces and in chemisorbed layers. In: Topics in Current Physics. Vol. 43: Structure and dynamics of surfaces II. Schommers, W., Blanckenberg, P. von (eds.). Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  7. Schick, M.: Prog. Surf. Sci.11, 245 (1981)

    Google Scholar 

  8. Villain, J.: In: Ordering in strongly-fluctuating condensed-matter systems. Riste, T. (ed.), p. 222. New York: Plenum Press 1980

    Google Scholar 

  9. Cardy, J.L.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. XI, p. 55. New York: Academic Press 1987

    Google Scholar 

  10. Nienhuis, B.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. XI, p. 1. New York: Academic Press 1987

    Google Scholar 

  11. Fisher, M.E.: J. Stat. Phys.34, 667 (1984); J. Chem. Soc. Faraday Trans. 2,82, 1569 (1986)

    Google Scholar 

  12. Binder, K., Landau, D.P.: In: Molecule-surface interaction. Lawley, K. (ed.) New York: Wiley 1989

    Google Scholar 

  13. Roelofs, L.D.: Chemistry and physics of solid surfaces IV. In: Springer Series in Chemical Physics. Vansclow, R., Howe, R. (eds.). Vol. 20, p. 219. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  14. Fisher, M.E.: Rev. Mod. Phys.46, 597 (1974)

    Google Scholar 

  15. McCoy, B.M., Wu, T.T.: The two-dimensional Ising model. Cambridge: Harvard Univ. Press 1973

    Google Scholar 

  16. Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press 1983

    Google Scholar 

  17. Unertl, W.N.: Comm. Cond. Mat. Phys.12, 289 (1986)

    Google Scholar 

  18. Bretz, M.: Phys. Rev. Lett.38, 501 (1977)

    Google Scholar 

  19. Roelofs, L.D., Kortan, A.R., Einstein, T.L., Park, R.: Phys. Rev. Lett.46, 1465 (1981);

    Google Scholar 

  20. Taylor, D.E., Williams, E.D., Park, R.L., Bartelt, N.C., Einstein, T.L.: Phys. Rev. B32, 4653 (1985);

    Google Scholar 

  21. Piercy, P., Pfnür, H.: Phys. Rev. Lett.59, 1124 (1987)

    Google Scholar 

  22. Wendelken, F.J., Wang, G.-C.: Phys. Rev. Lett. B32, 7542 (1985)

    Google Scholar 

  23. Fisher, M.E.: J. Phys. Soc. Jpn. Suppl.26, 87 (1969)

    Google Scholar 

  24. Ferdinand, A.E., Fisher, M.E.: Phys. Rev.185, 832 (1969)

    Google Scholar 

  25. Fisher, M.E.: In: Critical phenomena. Green, M.S. (ed.), p. 1. New Ylrk: Academic Press 1971

    Google Scholar 

  26. Fisher, E.M., Barber, M.N.: Phys. Rev. Lett.28, 1516 (1972)

    Google Scholar 

  27. Au-Yang, H., Fisher, M.E.: Phys. Rev. B11, 3469 (1975)

    Google Scholar 

  28. Landau, D.P.: Phys. Rev. B13, 2997 (1976)

    Google Scholar 

  29. Au-Yang, H., Fisher, M.E.: Phys. Rev. B21, 3956 (1980);

    Google Scholar 

  30. Fisher, M.E., Au-Yang, H.: Physica101A, 255 (1980)

    Google Scholar 

  31. Binder, K.: Z. Phys. B — Condensed Matter43, 119 (1981)

    Google Scholar 

  32. Barber, M.N.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. VIII, p. 146. New York, London: Academic Press 1983

    Google Scholar 

  33. Kleban, P., Akinci, G.: Phys. Rev. Lett.51, 1058 (1983)

    Google Scholar 

  34. Kleban, P., Akinci, G.: Phys. Rev. B28, 1466 (1983)

    Google Scholar 

  35. Fisher, M.E., Privman, V.: J. Statist. Phys.33, 385 (1983)

    Google Scholar 

  36. Cardy, J.L.: J. Phys. A17, L385 (1984); Ref. 9, p. 84

    Google Scholar 

  37. Kleban, P., Akinci, G., Hentschke, R., Brownstein, R.: J. Phys. A19, 437 (1986); Surface Sci.166, 159 (1986)

    Google Scholar 

  38. Bartelt, N.C., Einstein, T.L.: J. Phys. A19, 1429 (1986)

    Google Scholar 

  39. Binder, K.: Ferroelectrics73, 43 (1987)

    Google Scholar 

  40. Binder, K., Wang, J.-S.: J. Stat. Phys.55, 87 (1989)

    Google Scholar 

  41. Fink, H.W., Ehrlich, G.: Surface Sci.143, 125 (1984); Wandelt, K., Hulse, J., Küppers, J.: Surface Sci.104, 212 (1981);

    Google Scholar 

  42. Miranda, R., Daiser, S., Wandelt, K., Ertl, G.: Surface Sci.131, 61 (1983)

    Google Scholar 

  43. Davies, P.W., Quiland, M.A., Somorjai, G.A.: Surface Sci.121, 290 (1982)

    Google Scholar 

  44. Burton, W.K., Cabrera, N., Frank, F.C.: Philos. Trans. Soc. London, Ser. A243, 229 (1951)

    Google Scholar 

  45. Leeuwen, C. van, Rosmalen, R. van, Bennema, P.: Surface Sci.44, 213 (1974)

    Google Scholar 

  46. Angus, J.C., Ponton, J.W.: Surface Sci.61, 451 (1976)

    Google Scholar 

  47. Gates, A.D., Robins, J.L.: Surface Sci.116, 188 (1982)

    Google Scholar 

  48. Albano, E.V., Martin, H.: Phys. Rev. B35, 7820 (1987);38, 7932 (1988)

    Google Scholar 

  49. Wagner, H.: In: Physical and chemical properties of stepped surfaces. In: Springer Tracts in Modern Physics. Höhler, G. (ed.), Vol. 85. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  50. Desai, R.C., Heermann, D.W.: Comput. Phys. Commun.50, 297 (1988)

    Google Scholar 

  51. Paul, W., Heermann, D.W., Desai, R.C.: J. Comp. Phys.82, 489 (1989)

    Google Scholar 

  52. Desai, R.C., Heermann, D.W., Binder, K.: J. Stat. Phys.53, 795 (1988)

    Google Scholar 

  53. This is discussed in details in Binder, K., Landau, D.P.: Surface Sci.108, 503 (1981), for instance, where also the generalization to triplet interactions is discussed

    Google Scholar 

  54. Binder, K., Hohenberg, P.C.: Phys. Rev. B6, 3461 (1972); B9, 2194 (1974;

    Google Scholar 

  55. Barber, M.N.: Phys. Rev. B8, 407 (1973)

    Google Scholar 

  56. For a review, see Binder, K.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. VIII, p. 1. New York: Academic Press 1983

    Google Scholar 

  57. TDS Manual. INMOS (1987)

  58. OCCAM Programming Manual. London: Prentice Hall 1984

  59. Heermann, D.W., Burkitt, A.N.: Parallel computations in Physics. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  60. Burkitt, A.N., Heermann, D.W.: Comput. Phys. Commun.54, 201 (1989)

    Google Scholar 

  61. Widom, B.: In: Phase transitions and critical phenomena. Comb, C., Green, M.S. (eds.), Vol. 2. New York: Academic Press 1972

    Google Scholar 

  62. Graim, T., Landau, D.P.: Phys. Rev. B24, 5156 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, E.V., Binder, K., Heermann, D.W. et al. The Ising square lattice in aL×M geometry: A model for the effect of surface steps on phase transitions in adsorbed monolayers. Z. Physik B - Condensed Matter 77, 445–460 (1989). https://doi.org/10.1007/BF01453796

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453796

Keywords

Navigation