Skip to main content
Log in

A Branch & Cut Algorithm for the Asymmetric Traveling Salesman Problem with Precedence Constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this article we consider a variant of the classical asymmetric traveling salesman problem (ATSP), namely the ATSP in which precedence constraints require that certain nodes must precede certain other nodes in any feasible directed tour. This problem occurs as a basic model in scheduling and routing and has a wide range of applications varying from helicopter routing (Timlin, Master's Thesis, Department of Combinatorics and Optimization, University of Waterloo, 1989), sequencing in flexible manufacturing (Ascheuer et al., Integer Programming and Combinatorial Optimization, University of Waterloo, Waterloo, 1990, pp. 19–28; Idem., SIAM Journal on Optimization, vol. 3, pp. 25–42, 1993), to stacker crane routing in an automatic storage system (Ascheuer, Ph.D. Thesis, Tech. Univ. Berlin, 1995). We give an integer programming model and summarize known classes of valid inequalities. We describe in detail the implementation of a branch&cut-algorithm and give computational results on real-world instances and benchmark problems from TSPLIB. The results we achieve indicate that our implementation outperforms other implementations found in the literature. Real world instances with more than 200 nodes can be solved to optimality within a few minutes of CPU-time. As a side product we obtain a branch&cut-algorithm for the ATSP. All instances in TSPLIB can be solved to optimality in a reasonable amount of computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ascheuer, “Ein Schnittebenenverfahren für ein Reihenfolgeproblem in der flexiblen Fertigung,” Master's Thesis, Universität Augsburg, Germany, 1989.

    Google Scholar 

  2. N. Ascheuer, “Hamiltonian path problems in the on-line optimization of flexible manufacturing systems,” PhD Thesis, Tech. Univ. Berlin, 1995. Avail. at URL http://www.zib.de/ZIBbib/Publications/.

  3. N. Ascheuer, L. Escudero, M. Grötschel, and M. Stoer, “On identifying in polynomial time violated subtour elimination and precedence forcing constraints for the sequential ordering problem,” in Integer Programming and Combinatorial Optimization, R. Kannan and W.R. Pulleyblank (Eds.), University ofWaterloo: Waterloo, 1990, pp. 19-28.

    Google Scholar 

  4. N. Ascheuer, L. Escudero, M. Grötschel, and M. Stoer, “A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing),” SIAM Journal on Optimization, vol. 3, pp. 25-42, 1993.

    Google Scholar 

  5. N. Ascheuer, M. Jünger, and G. Reinelt, “Heuristic algorithms for the ATSP with precedence constraints-A computational comparison,” In preparation.

  6. E. Balas and M. Fischetti, “A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets,” Mathematical Programming, vol. 58, pp. 325-352, 1993.

    Google Scholar 

  7. E. Balas, M. Fischetti, and W. Pulleyblank, “The precedence constrained asymmetric traveling salesman polytope,” Math. Prog., vol. 68, pp. 241-265, 1995.

    Google Scholar 

  8. S. Chen and S. Smith, “Commonality and genetic algorithms,” Technical Report CMU-RI-TR-96-27, Carnegie Mellon University, Pittsburgh, 1996.

    Google Scholar 

  9. L.F. Escudero, “An inexact algorithm for the sequential ordering problem,” European Journal of Operational Research, vol. 37, pp. 236-253, 1988.

    Google Scholar 

  10. L.F. Escudero, “On the implementation of an algorithm for improving a solution to the sequential ordering problem,” Trabajos de Investigacion-Operativa, vol. 3, pp. 117-140, 1988.

    Google Scholar 

  11. L.F. Escudero, M. Guignard, and K. Malik, “A Lagrangean relax-and-cut approach for the sequential ordering problem with precedence constraints,” Annals of Operations Research, vol. 50, pp. 219-237, 1994.

    Google Scholar 

  12. M. Fischetti, “Facets of the asymmetric traveling salesman polytope,” Mathematics of Operations Research, vol. 16, pp. 42-56, 1991.

    Google Scholar 

  13. M. Fischetti and P. Toth, “Apolyhedral approach to the asymmetric traveling salesman problem,” Management Science, vol. 43, no. 11, pp. 1520-1536, 1997.

    Google Scholar 

  14. L.M. Gambardella and M. Dorigo, “HAS-SOP: Hybrid ant system for the sequential ordering problem,” Technical Report IDSIA-11-97, IDSIA, Lugano, Switzerland, 1997.

    Google Scholar 

  15. M. Grötschel, “Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme,” Hain: Meisenheim am Glan, 1977.

    Google Scholar 

  16. M. Grötschel and M. Padberg, “Polyhedral theory,” in The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (Eds.), John Wiley & Sons, New York, 1985.

    Google Scholar 

  17. M. Jünger, G. Reinelt, and G. Rinaldi, “The traveling salesman problem,” in Handbooks in Operations Research and Management Science, vol. 7: Network Models, M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser (Eds.), Elsevier Sci. B.V., Amsterdam, 1995, Ch. 4, pp. 225-330.

    Google Scholar 

  18. M. Jünger, G. Reinelt, and S. Thienel, “Provably good solutions for the traveling salesman problem,” Zeitschrift für Operations Research, vol. 22, pp. 83-95, 1998.

    Google Scholar 

  19. M. Jünger and S. Thienel. “Introduction toABACUS-Abranch and cut system,” Operations Research Letters, vol. 40, no. 2, pp. 183-217, 1994.

    Google Scholar 

  20. M. Jünger and S. Thienel, “Introduction to ABACUS-A branch and cut system,” Technical Report No. 97.263, Institut für Informatik, Universität zu Köln, 1997. See on-line documentation under URL http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html.

  21. M. Padberg and G. Rinaldi, “An efficient algorithm for the minimum capacity cut problem,” Mathematical Programming, vol. 47, pp. 19-36, 1990.

    Google Scholar 

  22. M. Padberg and G. Rinaldi, “Facet identification for the symmetric traveling salesman polytope,” Mathematical Programming, vol. 47, pp. 219-257, 1990.

    Google Scholar 

  23. M. Padberg and M.R. Rao, “Odd minimum cut-sets and b-matchings,” Math. of OR, vol. 7, pp. 67-80, 1982.

    Google Scholar 

  24. G. Reinelt, “TSPLIB-A traveling salesman problem library,” ORSA Journal on Computing, vol. 3, pp. 376-384, 1991. See http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.

    Google Scholar 

  25. M. Timlin, “Precedence constrained routing,” Master's Thesis, Department of Combinatorics and Optimization, University of Waterloo, 1989.

  26. M.T. FialaTimlin and W.R. Pulleyblank, “Precedence constrained routing and helicopter scheduling: Heuristic design,” Interfaces, vol. 22, no. 3, pp. 100-111, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascheuer, N., Jünger, M. & Reinelt, G. A Branch & Cut Algorithm for the Asymmetric Traveling Salesman Problem with Precedence Constraints. Computational Optimization and Applications 17, 61–84 (2000). https://doi.org/10.1023/A:1008779125567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008779125567

Navigation