Skip to main content
Log in

Preferred conformations and dynamics of five core structures of mucin typeO-glycans determined by NMR spectroscopy and force field calculations

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosyltransferases acting onO-glycans have been shown to exhibit distinct specificity for the carbohydrate and the peptide moiety of their substrates. As an approach to study the 3-dimensional interactions between enzymes andO-glycan substrates, we determined the preferred conformations of five oligosaccharide-core structures of mucin type glycoproteins by NMR spectroscopy and by static and dynamic force field calculations. Seven oligosaccharides, representing five basic core structures, were investigated: Galβ(1–3)GalNAcαBzl (1, core 1), GlcNAcβ(1–6)[Galβ(1–3)]GalNAcαBzl (2, core 2), GlcNAcβ(1–3)GalNacαBzl (3, core 3), GlcNAcβ(1–6)[GlcNAcβ(1–3)]GalNAcαBzl (4, core 4), GlcNAcβ(1–6)GalNAcαBzl (5, core 6), the elongated core 2, Galβ(1–4)GlcNAcβ(1–6)[Galβ(1–3)]GalNAcαpNp (6) and GalNAcα-Bzl (7). The dynamic behaviour of the molecules was studied by Metropolis Monte Carlo (MMC) simulations. Experimental coupling constants, chemical shift changes, and NOEs were compared with results from static energy minimizations and dynamic MMC simulations and show a good agreement. MMC simulations show that the (1–6) linkage is much more flexible than the (1–3) or the (1–4) linkages. The preferred conformations of the disaccharides (1) and (3) show only slight differences due to the additionalN-acetyl group in (3). The conformational equilibrium of β(1–3) glycosidic bonds of1 and3 was not affected by attaching a β(1–6) linked GlcNAc unit to the GalNAc residue in2 and4. However, experimental and theoretical data show that the β(1–6) linkages of the trisaccharides2 and4, which carry an additional β(1–3) linked glycosyl residue, change their preferred conformations when compared with (5). The 6-branch also shows significant interactions with the benzyl aglycon altering the preferred conformation of the hydroxymethyl group of the GalNAc to a higher proportion of the gt conformer. The (1–6) linkage of2, 4, and6 can have two different families of conformations of which the lower energy state is populated only to about 20% of the time whereas the other state with a relative enthalpy of ≈4 kcal mol−1 is populated to 80%. This fact demonstrates that the two conformational states have different entropy contents. Entropy is implicitly included in MMC simulations but cannot be derived from energy minimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bzl:

benzyl

COSY:

correlation spectroscopy

Gal:

d-galactose

GalNAc:

N-acetyl-d-galactosamine

GalNAc-ol:

N-acetylgalactosaminitol

GlcNAc:

N-acetyl-d-glucosamine

HOHAHA:

homonuclear Hartmann-Hahn-spectroscopy

MMC:

metropolis Monte Carlo

NOE:

nuclear Overhauser enhancement

pNp:

p-nitrophenyl

ROESY:

rotating frame Overhauser enhancement spectroscopy

TOCSY:

totally correlated spectroscopy

References

  1. Schachter H, Brockhausen I (1992) InGlycoconjugates, Composition, Structure and Function (Allen H, Kisailus EC, Eds), pp 263–332. New York: Marcel Dekker.

    Google Scholar 

  2. Brockhausen I, Möller G, Merz G, Adermann K, Paulsen H (1990)Biochemistry 29:10206.

    Google Scholar 

  3. Carver JP, Cummings D (1987)Pure Appl Chem 59:1465.

    Google Scholar 

  4. Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao SVR (1980)Can J Chem 58:631.

    Google Scholar 

  5. Thøgersen H, Lemieux RU, Bock K, Meyer B (1982)Can J Chem 60:44.

    Google Scholar 

  6. Duben AJ, Bush CA (1983)Arch Biochem Biophys 225:1.

    Google Scholar 

  7. Rao BN, Dua VK, Bush CA (1985)Biopolymers 24:2207.

    Google Scholar 

  8. Bush CA, Yan Z-Y, Rao BN (1986)J Am Chem Soc 108:6168.

    Google Scholar 

  9. Rao BN, Bush CA (1987)Biopolymers 26:1227.

    Google Scholar 

  10. Nishida Y, Hori H, Meguro H (1988)Agric Biol Chem 52:887.

    Google Scholar 

  11. Bechtel B, Wand AJ, Wroblewski K, Koprowski H, Thurin J (1990)J Biol Chem 265:2028.

    Google Scholar 

  12. Shogren R, Gerken TA, Jentoft N (1989)Biochemistry 28:5525.

    Google Scholar 

  13. Gerken TA, Jentoft N (1987)Biochemistry 26:4689.

    Google Scholar 

  14. Vliegenthart JFG, van Halbeek H, Dorland L (1981)Pure Appl Chem 53:70.

    Google Scholar 

  15. Klein A, Carnoy C, Lamblin G, Roussel P, van Kuik JA, de Waard P, Vliegenthart JFG (1991)Eur J Biochem 198:151.

    Google Scholar 

  16. Klein A, Carnoy C, Wieruszeski, Strecker G, Strang A-M, van Halbeek H, Roussel P, Lamblin G (1992)Biochemistry 31:6152.

    Google Scholar 

  17. Chai W, Hounsell E, Cashmore GC, Rosankiewicz JR, Feeney J, Lawson AM (1992)Eur J Biochem 207:973.

    Google Scholar 

  18. Chai W, Hounsell E, Cashmore GC, Rosankiewicz JR, Bauer CJ, Feeney J, Feizi T, Lawson AM (1992)Eur J Biochem 203:257.

    Google Scholar 

  19. Meyer B (1990)Topics Current Chem 154:141.

    Google Scholar 

  20. Poppe L, von der Lieth C-W, Dabrowski J (1990)J Am Chem Soc 112:7762.

    Google Scholar 

  21. Struike-Prill R, Meyer B (1990)Eur J Biochem 194:903.

    Google Scholar 

  22. Meyer B, Zsiska M, Struike-Prill R (1993)Computer Simulations in Condensed Matter Physics IV (Landau DP, Mon KB, Schuttler HB eds), Berlin: Springer-Verlag.

    Google Scholar 

  23. Brockhausen I, Williams D, Matta KL, Orr J, Schachter H (1983)Can J Biochem Cell Biol 61:1322.

    Google Scholar 

  24. Brockhausen I, Matta KL, Orr J, Schachter H (1985)Biochemistry 24:1866.

    Google Scholar 

  25. Brockhausen I, Matta KL, Orr J, Schachter H, Koenderman AHL, van den Eijnden DH (1986)Eur J Biochem 157:463.

    Google Scholar 

  26. Yazawa S, Abbas SA, Madiyalakan R, Barlow JJ, Matta KL (1986)Carbohydr Res 149:241.

    Google Scholar 

  27. Yousefi S, Higgins E, Doaling Z, Pollex-Krüger A, Hindsgaul O, Dennis J (1991)J Biol Chem 265:1772.

    Google Scholar 

  28. Flowers HM, Shapiro D (1965)J Org Chem 30:2041.

    Google Scholar 

  29. Piscorz CF, Abbas SA, Matta KL (1984)Carbohydr Res 126:115.

    Google Scholar 

  30. Abbas SA, Barlow JJ, Matta KL (1983)Carbohydr Res 112:201.

    Google Scholar 

  31. Abbas SA, Barlow JJ, Matta KL (1983)Carbohydr Res 113:63.

    Google Scholar 

  32. Kumar A, Wagner G, Ernst RR, Wüthrich K (1980)Biochem Biophys Res Commun 96:1156.

    Google Scholar 

  33. Davis DG, Bax A (1985)J Am Chem Soc 107:7197.

    Google Scholar 

  34. Summers MF, Marzilli LG, Bax A (1986)J Am Chem Soc 108:4285.

    Google Scholar 

  35. Bax A, Davis DG (1985)J Magn Reson 63:207.

    Google Scholar 

  36. Bax A, Davis DG (1985)J Magn Reson 65:355.

    Google Scholar 

  37. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)J Chem. Phys 21:1087.

    Google Scholar 

  38. Peters T, Meyer B, Struike-Prill R, Somorjai R, Brisson J-R (1993)Carbohydr Res 238:49.

    Google Scholar 

  39. Fletcher R, Powell MJD (1963)Computer J 6:163.

    Google Scholar 

  40. Brisson J-R, Carver JP (1983)J Biol Chem 258:1431.

    Google Scholar 

  41. Bush CA, Feeney RE (1986)Int J Peptide Protein Res 28:386.

    Google Scholar 

  42. Ohrui H, Nishida Y, Hori H, Meguro H (1988)J Carbohydr Chem 7:711.

    Google Scholar 

  43. Neuhaus D, Keller J (1986)J Magn Reson 68:568.

    Google Scholar 

  44. Homans SW, DeVries AL, Parker SB (1985)FEBS Lett 183:133.

    Google Scholar 

  45. Maeji NJ, Inoue Y, Chujo R (1987)Int J Peptide Protein Res 29:699.

    Google Scholar 

  46. Gerlt JA, Joungblood VA (1980)J Am Chem Soc 102:7433.

    Google Scholar 

  47. Marchessault RH, Perez S (1979)Biopolymers 18:2369.

    Google Scholar 

  48. Nishida Y, Hori H, Ohrui H, Meguro H (1987)Carbohydr Res 170:106.

    Google Scholar 

  49. Ohrui H, Nishida Y, Higushi H, Hori H, Meguro H (1987)Can J Chem 65:1145.

    Google Scholar 

  50. Breg J, Kroon-Batenburg LMJ, Strecker G, Montreuil J, Vliegenthart JFG (1989)Eur J Biochem 178:727.

    Google Scholar 

  51. Streefkerk DG, De Bie MJA, Vliegenthart JFG (1973)Tetrahedron 29:833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollex-Krüger, A., Meyer, B., Stuike-Prill, R. et al. Preferred conformations and dynamics of five core structures of mucin typeO-glycans determined by NMR spectroscopy and force field calculations. Glycoconjugate J 10, 365–380 (1993). https://doi.org/10.1007/BF00731042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731042

Keywords

Navigation