Skip to main content
Log in

Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Values ofK m were determined for three purified sialyltransferases and the corresponding recombinant enzymes. The enzymes were Galβ1-4GlcNAc α2-6sialyltransferase and Galβ1-3(4)GlcNAc α2-3sialyltransferase from rat liver; these enzymes are responsible for the attachment of sialic acid to N-linked oligosaccharide chains; and the Galβ1-3GalNAc α2-3sialyltransferase from porcine submaxillary gland that is responsible for the attachment of sialic acid to O-linked glycoproteins and glycolipids. A procedure for the large scale expression of active sialyltransferases from recombinant baculovirus-infected insect cells is described. For the liver enzymes values ofK m were determined using rat and human asialoα1 acid glycoprotein andN-acetyllactosamine as variable substrates; lacto-N-tetraose was also used with the Galβ1-3(4)GlcNAc α2-3sialyltransferase. Antifreeze glycorprotein was used as the macromolecular acceptor for the porcine enzyme. Values forK m were also determined using CMP-NeuAc as the variable substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NeuAc:

N-acetylneuraminic acid

Gal:

galactose

GlcNAc:

N-acetylglucosamine

References

  1. Hesford FJ, Berger EG, Van Halbeek H (1984)Glycoconjugate J 1: 141–53.

    Google Scholar 

  2. Higa HH, Paulson JC (1985)J Biol Chem 260: 8838–49.

    Google Scholar 

  3. Josiasse DH, Bergh MLE, ter Hart HGJ, Koppen PL, Hooghwinkel GJM, Van den Eijnden DH (1985)J Biol Chem 260: 4941–51.

    Google Scholar 

  4. Melkerson-Watson LJ, Sweeley CC (1991)J Biol Chem 266: 4448–57.

    Google Scholar 

  5. Miyagi T, Tsuiki S (1982)Eur J Biochem 126: 253–61.

    Google Scholar 

  6. Paulson JC, Beranek WE, Hill RL (1977)J Biol Chem 252: 2356–62.

    Google Scholar 

  7. Sadler JE, Rearick JI, Paulson JC, Hill R (1979)J Biol Chem 254: 4434–43.

    Google Scholar 

  8. Sadler JE, Rearick JI, Hill R (1979)J Biol Chem 254: 5934–41.

    Google Scholar 

  9. Sticher V, Gross HJ, Brossmer R (1988)Biochem J 253: 577–80.

    Google Scholar 

  10. Weinstein J, Sousa-e-Silva U de Paulson JC (1982)J Biol Chem 257: 13845–53.

    Google Scholar 

  11. Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC (1987)J Biol Chem 262: 17735–43.

    Google Scholar 

  12. Bast BJEG, Zhou L-J, Freeman GJ, Colley KJ, Ernst TJ, Munro JM, Tedder TF (1992)J Cell Biol 116: 1423–35.

    Google Scholar 

  13. Eckhardt M, Muhlenhoff M, Bethe A, Koopman J, Frosch M, Gerardy-Schahn R (1995)Nature 373: 715–18.

    Google Scholar 

  14. Gillespie W, Kelm S, Paulson JC (1992)J Biol Chem 267: 21004–10.

    Google Scholar 

  15. Hamamoto T, Kawasaki M, Kurosawa N, Nakaoka T, Lee Y-C, Tsugi S (1993)Bioorg Med Chem Lett 1: 141–45.

    Google Scholar 

  16. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K (1994)Proc Natl Acad Sci USA 91: 10455–59.

    Google Scholar 

  17. Kitagawa H, Paulson JC (1993)Biochem Biophys Res Comm 194: 375–82.

    Google Scholar 

  18. Kitagawa H, Paulson JC (1994)J Biol Chem 269: 1349–1401.

    Google Scholar 

  19. Kurosawa N, Kawasaki N, Hamamoto T, Nakaoka T, Lee Y-C, Arita M, Tsuji S (1994)Eur J Biochem 219: 375–81.

    Google Scholar 

  20. Kurosawa N, Hamamoto T, Lee Y-C, Nakaoka T, Kojima N, Tsuji S (1994)J Biol Chem 269: 1402–9.

    Google Scholar 

  21. Kurosawa N, Kojima N, Inoue M, Hamamoto T, Tsuji S (1994)J Biol Chem 269: 19048–53.

    Google Scholar 

  22. Lee EU, Roth J, Paulson JC (1989)J Biol Chem 264: 13848–55.

    Google Scholar 

  23. Lee YC, Kojima N, Wada E, Kurosawa N, Nakaoka T, Hamamoto T, Tsuji S (1994)J Biol Chem 269: 10028–33.

    Google Scholar 

  24. Lee YC, Kurosawa N, Hamamoto T, Nakaoka T, Tsuji S (1993)Eur J Biochem 216: 377–85.

    Google Scholar 

  25. Livingston BD, Paulson JC (1993)J Biol Chem 268: 11504–7.

    Google Scholar 

  26. Nara K, Watanabe Y, Maruyama K, Kasahara K, Nagai Y, Sanai Y (1994)Proc Natl Acad Sci USA 91: 7952–56.

    Google Scholar 

  27. Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M (1993)J Biol Chem 268: 22782–87.

    Google Scholar 

  28. Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S (1994)J Biol Chem 269: 15950–56.

    Google Scholar 

  29. Wen DX, Livingston BD, Medzihradszky KF, Kelm S, Burlingame AL, Paulson JC (1992)J Biol Chem 267: 21011–19.

    Google Scholar 

  30. Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC (1989)J Biol Chem 264: 17619–22.

    Google Scholar 

  31. Kaplan HA, Woloski BMRNJ, Hellman M, Jamieson JC (1983)J Biol Chem 258: 11505–9.

    Google Scholar 

  32. Weinstein J, Sousa-e-Silva U de, Paulson JC (1982)J Biol Chem 257: 13835–44.

    Google Scholar 

  33. DeVries AL, Komatsu SK, Feeney RE (1970)J Biol Chem 254: 2901–8.

    Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning: A Laboratory Manual 2nd ed. Plainview, NY:Cold Spring Harbor Laboratory Press.

    Google Scholar 

  35. Ichikawa Y, Lin Y-C, Dumas DP, Shen G-J, Garcia-Junceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong CH (1992)J Am Chem Soc 114: 9283–98.

    Google Scholar 

  36. Rearick JI, Sadler EJ, Paulson JC, Hill RL (1979)J Biol Chem 254: 4444–51.

    Google Scholar 

  37. Yoshima H, Matsumoto A, Mizuochi T, Kawasaki T, Kobata A (1981)J Biol Chem 256: 8476–84.

    Google Scholar 

  38. O'Reilly DR, Miller LK, Luckow V (1992)Baculovirus Expression Vectors: A Laboratory Manual. New York:W.H. Freeman Co.

    Google Scholar 

  39. Ichikawa S, Nasrin S, Nagatsu T (1991)Biochem Biophys Res Comm 178: 664–71.

    Google Scholar 

  40. Ribeiro P, Wang Y, Citron BA, Kaufman S (1992)Proc Natl Acad Sci USA 89: 9593–97.

    Google Scholar 

  41. Smith SM, Gottesman MM (1989)J Biol Chem 264: 20487–95.

    Google Scholar 

  42. Lammers G, Jamieson JC (1988)Biochem J 256: 623–31.

    Google Scholar 

  43. Varki A (1993)Glycobiology 3: 97–130.

    Google Scholar 

  44. Fast D, Jamieson JC, McCaffrey G (1993)Biochim Biophys Acta 1202: 325–30.

    Google Scholar 

  45. Hamamoto T, Lee YC, Kurosawa N, Nakaoka T, Kojima N, Tsuji S (1994)Bioorg Med Chem 2: 79–84.

    Google Scholar 

  46. Krezdorn CH, Kleene RB, Watzele M, Ivanov SX, Hokke CH, Kamerling JP, Berger EG (1994)Euro J Biochem 220: 809–17.

    Google Scholar 

  47. Jamieson JC, Friesen AD, Ashton FE, Chou B (1972)Can J Biochem 50: 856–70.

    Google Scholar 

  48. Gross HJ, Rose U, Krause JM, Paulson JC, Schmid K, Feeney RE, Brossmer R (1989)Biochemistry 28: 7386–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Enzymes: Galβ1-4GlcNAc α2-6sialyltransferase, EC 2.4.99.1; Galβ1-3(4)GlcNAc α2-3sialyltransferase, EC 2.4.99.5; Galβ1-3GalNAc α2-3sialyltransferase, EC 2.4.99.4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.A., Kitagawa, H., Datta, A.K. et al. Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes. Glycoconjugate J 12, 755–761 (1995). https://doi.org/10.1007/BF00731235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731235

Keywords

Navigation