Skip to main content
Log in

A theoretical and experimental study of non-perfect grain boundary dislocations

  • Published:
Interface Science

Abstract

The aim of this paper is to discuss the possible appearance of non-perfect grain boundary dislocations in grain boundaries in a variety of materials. To begin with, we survey some of the different theoretical treatments which enable grain boundary dislocations and grain boundary structures to be described. The emphasis is put on more recent ideas, and on illustrating the power of group theory in identifying non-perfect grain boundary dislocations. A derivation of the geometric characteristics of interfacial dislocations is carried out in a simple and tutorial way, in a number of representative examples. It is shown that grain boundary dislocations may be divided into three classes: (1) perfect grain boundary dislocations, (2) imperfect grain boundary dislocations, and (3) partial grain boundary dislocations. Experimental transmission electron microscope evidence is then presented for boundaries in the diamond cubic structure, and it is shown that imperfect and partial grain boundary dislocations play an important role in this system. Finally, a comparison of some grain boundary dislocation types in different materials is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Veriag, Berlin. 1970).

    Google Scholar 

  2. L. Sagalowicz, Ph.D. Thesis, The Ohio State University, 1992.

  3. R.C. Pond, in Inst. of Physics Conf. Ser. no. 67 (Institute of Physics, London, 1983), p. 59.

  4. F.C. Frank, Proc. Phys. Soc. 52, 23 (1940).

    Google Scholar 

  5. W.L. Bragg, Proc. Phys. Soc. 52, 54 (1940).

    Google Scholar 

  6. J. Friedel, Leçons de Cristallographie (A. Hermann et Fils, Paris, 1926).

    Google Scholar 

  7. W. Bollmann, Philos, Mag. 16, 363 (1967).

    Google Scholar 

  8. D.H. Warrington and H. Grimmer, Philos. Mag. 30, 461 (1974).

    Google Scholar 

  9. R.C. Pond and W. Bollmann. Philos. Trans. R. Soc. 292, 449 (1979).

    Google Scholar 

  10. R.C. Pond, in Dislocations and Properties of Real Materials (Institute of Metals, London, 1985), p. 71.

    Google Scholar 

  11. T. Hahn, International Tables for Crystallography (Reidel, Dordrecht, 1983), Vol. A.

    Google Scholar 

  12. R.C. Pond, in Dislocations in Solids, edited by F. R. N. Nabarro (North-Holland, New York, 1989), Vol. 8, Chap. 38.

    Google Scholar 

  13. P.B. Hirch, A. Howie, R.B. Nicholson, M.J. Whelan, and D.W. Pashley, Electron Microscopy of Thin Crystals (Butterworths, London, 1965).

    Google Scholar 

  14. W.A.T. Clark, D. Phil. Thesis, University of Oxford (1976).

  15. L. Sagalowicz and W.A.T. Clark, Philos, Mag. A73, 545 (1995).

    CAS  PubMed  Google Scholar 

  16. J.J. Bacmann, G. Silvestre, M. Petit, and W. Bollmann, Philos. Mag. A43, 697 (1981).

    Google Scholar 

  17. W. Bollmann, G. Silvestre, and J.J. Bacmann, Philos. Mag. A43, 201 (1981).

    Google Scholar 

  18. J.J. Bacmann, G. Silvestre, and M. Petit, Philos. Mag. A51, 189 (1985).

    Google Scholar 

  19. R. Bonnet, J. de Phys. C4, 61 (1985).

    Google Scholar 

  20. D. Gratias and R. Portier, in Microscopie Electronique en Science des Matériaux, edited by B. Jouffrey, A. Bourret, and C. Colliex (CNRS, Bombanes), p. 229.

  21. D.A. Smith, Scripta Metall. 14, 49 (1982).

    Google Scholar 

  22. A.A. Levi, D.A. Smith, and J.T. Wetzel, J. Appl. Phys. 69(4), 2048 (1991).

    Google Scholar 

  23. R.C. Pond and V. Vitek, Proc. R. Soc. B357, 453 (1977).

    Google Scholar 

  24. C.T. Forwood and L.M. Clarebrough, Philos, Mag. A53, 863 (1986).

    Google Scholar 

  25. S.E. Babcock and R.W. Balluffi, Philos. Mag. A55, 643 (1987).

    Google Scholar 

  26. C. P. Sun and R.W. Baluffi, Philos. Mag. A46, 49 (1982).

    Google Scholar 

  27. W. Skrotzki, H. Wendt, C.B. Carter, and D.L. Kohlstedt, Philos. Mag. A57, 383 (1988).

    Google Scholar 

  28. W. Skrotzki, H. Wendt, C. B. Carter, and D. L. Kohlstedt, Acta Metall. 4, 983 (1987).

    Google Scholar 

  29. M. Elkajbaji and J. Thiabult-Desseaux, Philos. Mag. A58, 325 (1988).

    Google Scholar 

  30. A. Garg, W.A.T. Clark, and J.P. Hirth, Philos. Mag. A59, 1205 (1989).

    Google Scholar 

  31. W.A.T. Clark and D.A. Smith, Philos. Mag. 38, 367 (1978).

    Google Scholar 

  32. L. Sagalowicz and W.A.T. Clark, Philos. Mag. A73, 561 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagalowicz, L., Clark, W.A.T. A theoretical and experimental study of non-perfect grain boundary dislocations. Interface Sci 4, 29–45 (1997). https://doi.org/10.1007/BF00200837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200837

Keywords

Navigation