Skip to main content
Log in

Monolayer-Mediated Patterning of Integrated Electroceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Integrated electroceramic thin-film devices on semiconducting or insulating substrate materials offer a wide variety of attractive attributes, including high capacitance density, nonvolatile memory, sensor/actuator ability, and other unique electrical, electromechanical, magnetic and optical functions. Thus the ability to pattern such electroceramic thin films is a critical technology for future device realization. Patterned oxide thin-film devices are typically formed by uniform film deposition followed by somewhat complicated post-deposition ion-beam or chemical etching in a controlled environment i.e., a subtractive method. We review here an upset technology, a different way of patterning, by an additive approach, which allows for the selective deposition of electroceramic thin layers without such post-deposition etching. In this method, substrate surfaces are selectively functionalized with hydrophobic self-assembled monolayers to modify the adhesion of subsequently deposited solution-derived electroceramics. The selective functionalization is achieved through microcontact printing (μ-CP) of self-assembled monolayers of the chemical octadecyltrichlorosilane on substrates of current technical interest. Subsequent sol-gel deposition of ceramic oxides on these functionalized substrates, followed by lift-off from the monolayer, yields high quality, patterned oxide thin layers only on the unfunctionalized regions. A variety of micron-scale dielectric oxide devices have been fabricated by this method, with lateral resolution as fine as 0.5 μm. In this paper, we review the monolayer patterning and electrical behavior of several patterned electroceramic thin films, including Pb(Zr,Ti)O3 [PZT], LiNbO3, and Ta2O5. A multilevel example is also given which combines selective MOCVD deposition of metal electrodes and sol-gel patterned PZT for Pt//PZT//Pt//Si(100) ferroelectric memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D.E. Lakeman and D.A. Payne, Mater. Chem. Phys., 38, 305 (1994).

    Google Scholar 

  2. R.E. Jones and S.B. Desu, MRS Bull, 21, 55 (1996).

    Google Scholar 

  3. Properties of Lithium Niobate. EMIS Datareview Series, 5, edited by S.C. Abrahams (INSPEC, New York, 1989).

    Google Scholar 

  4. J. Sagiv, J. Am. Chem. Soc., 102, 92 (1980).

    Google Scholar 

  5. A. Ulman, An Introduction to Ultrathin Organic Films, (Academic, Boston, 1991).

    Google Scholar 

  6. R.G. Nuzzo and D.L. Allara, J. Am. Chem. Soc., 105, 4481 (1983).

    Google Scholar 

  7. A. Kumar and G.M. Whitesides, Appl. Phys. Lett., 63, 2002 (1993).

    Google Scholar 

  8. K.K. Berggren, A. Bard, J.L. Wilbur, J.D. Gillaspy, A.G. Helg, J.J. McClelland, S.L. Rolston, W.D. Phillips, M. Prentiss, and G.M. Whitesides, Science, 269, 1225 (1995).

    Google Scholar 

  9. Y. Xia, E. Kim, M. Mrksich, and G.M. Whitesides, Chem. Mater., 8, 601 (1996).

    Google Scholar 

  10. R.J. Jackman, J.L. Wilbur, and G.M. Whitesides, Science, 269, 664 (1995).

    Google Scholar 

  11. Y. Xia and G.M. Whitesides, Angew. Chem. Int. Ed., 37, 550 (1998).

    Google Scholar 

  12. S. Brittain, K. Paul, X.M. Zhao, and G. Whitesides, Physics World, 11, 31 (1998).

    Google Scholar 

  13. Y. Xia, D. Qin, and G.M. Whitesides, Adv. Mat., 8, 1015 (1996).

    Google Scholar 

  14. L. Yan, X.M. Zhao, and G.M. Whitesides, J. Am. Chem. Soc., 120, 6179 (1998).

    Google Scholar 

  15. B.C. Bunker, P.C. Rieke, B.J. Tarasevich, A.A. Campbell, G.E. Fryxell, G.L. Graff, L. Song, J. Liu, J.W. Virden, and G.L. McVay, Science, 264, 48 (1994).

    Google Scholar 

  16. R.J. Collins, H. Shin, M.R. DeGuire, A.H. Heuer, and C.N. Sukenik, Appl. Phys. Lett., 69, 860 (1996).

    Google Scholar 

  17. C.D.E. Lakeman and D.A. Payne, J. Am. Ceram. Soc., 75, 3091 (1992).

    Google Scholar 

  18. N.L. Jeon, P. Clem, D.Y. Jung, W. Lin, G. Girolami, D.A. Payne, and R.G. Nuzzo, Adv. Mat., 9, 891 (1997).

    Google Scholar 

  19. P.G. Clem and D.A. Payne, in Ferroelectric Thin Films IV, edited by S.B. Desu, B.A. Tuttle, R. Ramesh, and T. Shiosaki, MRS Symp. Proc. 361, (Pittsburgh, PA, 1995) p. 179.

  20. P.G. Clem, Ph.D. Thesis, (University of Illinois, Urbana, IL, 1996).

    Google Scholar 

  21. N.L. Jeon, P.G. Clem, R.G. Nuzzo, and D.A. Payne, J. Mater. Res., 10, 2996 (1995).

    Google Scholar 

  22. P.G. Clem, N.L. Jeon, R.G. Nuzzo, and D.A. Payne, J. Am. Ceram. Soc., 80, 2821 (1997).

    Google Scholar 

  23. G.G. Stoney, Proc. Royal Soc. of London, A42, 172 (1909).

    Google Scholar 

  24. S.S. Sengupta, Ph.D. Thesis, (University of Illinois, Urbana IL, 1996).

    Google Scholar 

  25. S.S. Sengupta, S.M. Park, D.A. Payne, and L.H. Allen, J. Appl. Phys., 83, 2291 (1998).

    Google Scholar 

  26. J.F. Scott and C.A.P. Araujo, Science, 246, 1400 (1989).

    Google Scholar 

  27. N.L. Jeon, R.G. Nuzzo, Y. Xia, M. Mrksich, and G.M. Whitesides, Langmuir, 11, 3024 (1995).

    Google Scholar 

  28. N.L. Jeon, P.G. Clem, R.G. Nuzzo, and D.A. Payne, Langmuir, 12, 5350 (1996).

    Google Scholar 

  29. N.L. Jeon, W.B. Lin, M.K. Erhardt, G.S. Girolami, and R.G. Nuzzo, Langmuir, 13, 3833 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, D.A., Clem, P.G. Monolayer-Mediated Patterning of Integrated Electroceramics. Journal of Electroceramics 3, 163–172 (1999). https://doi.org/10.1023/A:1009947211056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009947211056

Navigation