Skip to main content
Log in

Hydrolytic degradation of PCL/PEO copolymers in alkaline media

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

PCL/PEO copolymers with different compositions were obtained from ring opening polymerization of ε-caprolactone in the presence of ethylene oxide and characterized by various analytical techniques. Data collected from DSC and X-ray diffractometry suggested that the copolymer chains possess a blocky structure, leading to both PCL and PEO-type crystalline structures. Hydrolytic degradation of these copolymers was carried out in a pH=10.6 carbonate buffer solution at 37 °C. Comparison was made with a PCL homopolymer and a PCL/PEG blend which had the same gross composition as one of the copolymers. The results showed that the presence of PEO sequences considerably enhanced the hydrophilicity of the copolymers as compared with PCL homopolymer. Nevertheless, the degradability of PCL chains was not enhanced due to the phase separation between the two components. These materials should be of great interest for biomedical uses such as matrices for sustained drug delivery because of the presence of both hydrophilic and hydrophobic microdomains. ©2000 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. HOLLAND, B. J. TIGHE and P. L. GOULD, J.Control.Rel. 4 (1986) 155.

    Google Scholar 

  2. M. VERT, S. M. LI and H. GARREAU, J.Control.Rel. 16 (1991) 15.

    Google Scholar 

  3. R. L. DUNN in “Biomedical applications of synthetic biodegradable polymers”, edited by J.O. Hollinger (CRC Press, Boca Raton, 1995) p. 17.

    Google Scholar 

  4. S. M. LI and M. VERT, in “Degradable polymers: principles and applications”, edited by G. Scott and D. Gilead (Chapman and Hall, London, 1995) p. 43.

    Google Scholar 

  5. S. M. LI, H. GARREAU and M. VERT, J.Mater.Sci.: Mater.Med. 1 (1990) 123.

    Google Scholar 

  6. H. GARREAU and M. VERT Idem., ibid. 1 (1990) 131.

    Google Scholar 

  7. H. GARREAU and M. VERT Idem., ibid. 1 (1990) 198.

    Google Scholar 

  8. M. THEÂRIN, P. CHRISTEL, S. M. LI, H. GARREAU and M. VERT, Biomaterials 13 (1992) 594.

    Google Scholar 

  9. S. M. LI and M. VERT, Macromolecules 27 (1994) 3107.

    Google Scholar 

  10. C. G. PITT, A. R. JEFFCOAT, R. A. ZWEIDINGER and A. SCHINDLER, J.Biomed.Mater.Res. 13 (1979) 497.

    Google Scholar 

  11. C. G. PITT, in Biodegradable polymers and plastics”, edited by M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini (The Royal Society of Chemistry, Cambridge, 1992) p. 1.

    Google Scholar 

  12. K. J. ZHU, X. Z. LIN and S. L. YANG, J.Appl.Polym.Sci. 39 (1990) 1.

    Google Scholar 

  13. Y. X. LI, C. VOLLAND and T. KISSEL, J.Control.Rel. 32 (1994) 121.

    Google Scholar 

  14. X. M. DenG, C. D. XIONG, L. M. CHENG and R. P. XU, J.Polym.Sci., Part C, Polym.Lett. 28 (1990) 411.

    Google Scholar 

  15. Z. JEDLINSKI, P. KURCOK, W. WALACH, H. JANECZEK and I. RADECKA, Makromol.Chem. 194 (1993) 1681.

    Google Scholar 

  16. H. YOUNES and D. COHN, J.Biomed.Mater.Res. 21 (1987) 1301.

    Google Scholar 

  17. P. CERRAI, M. TRICOLI, L. LELLI, G. D. GUERRA, R. SBARBATI DEL GUERRA, M. G. CASONE and P. GIUSTI, J.Mater Sci.: Mater.Med. 5 (1994) 308.

    Google Scholar 

  18. I. RASHKOV, N. MANOLOVA, S. M. LI, J. L. ESPARTERO and M. VERT, Macromolecules 29 (1995) 50.

    Google Scholar 

  19. S. M. LI, I. RASHKOV, J. L. ESPARTERO, N. MANOLOVA and M. VERT, ibid. 29 (1995) 57.

    Google Scholar 

  20. S. G. WANG and B. QIU, Polymers for Advanced Technologies 4 (1993) 363.

    Google Scholar 

  21. D. A. HEROLD, K. KEIL and D. E. BRUNS, Biochem.Pharmacol. 38 (1989) 73.

    Google Scholar 

  22. A. W. RICHTER and E. AKERBLOM, Int.Arch.Allergy Appl.Immunol. 70 (1983) 124.

    Google Scholar 

  23. J. M. HARRI S, J.Macromol.Sci.Rev.Macromol.Chem.Phys. C25 (1985) 325.

    Google Scholar 

  24. S. ZALIPSKY, C. GILON and A. ZILKHA, Eur.Polym.J. 19 (1983) 1177.

    Google Scholar 

  25. N. MANOLOVA, V. BARANOVSKY, I. RASHKOV and V. MAXIMOVA, ibid. 29 (1993) 721.

    Google Scholar 

  26. T. PETROVA, N. MANOLOVA, I. RASHKOV, S. M. LI and M. VERT, Polym.Inter. 45 (1998) 419.

    Google Scholar 

  27. S. M. LI, H. GARREAU, M. VERT, T. PETROVA, N. MANOLOVA and I. RASHKOV, J.Appl.Polym.Sci. 68 (1998) 989.

    Google Scholar 

  28. X. H. CHEN, S. P. MCCARTHY and R. A. GROSS, to be published.

  29. D. R. PAUL in “Polymer blends” (Academic Press, New York, 1978) p. 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S.M., Chen, X.H., Gross, R.A. et al. Hydrolytic degradation of PCL/PEO copolymers in alkaline media. Journal of Materials Science: Materials in Medicine 11, 227–233 (2000). https://doi.org/10.1023/A:1008920326988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008920326988

Keywords

Navigation