Skip to main content
Log in

Adsorption of serum alpha-1-microglobulin onto biomaterials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The adsorption of alpha-1-microglobulin (alpha-1-m) from serum to the surface of polymers with different physicochemical properties was investigated. Enzyme-linked immunosorbent assay showed binding of this protein to the surface of polystyrene (PS), polyvinyl chloride (PVC) and a polyurethane, Chronoflex, after water washing, but only trace levels could be detected on two polymethacrylate derivatives, polymethyl methacrylate and poly(2-hydroxyethyl methacrylate). alpha-1-m was selectively desorbed from the five materials by sequential washes of serum-conditioned surfaces with isopropanol solutions at increasing concentrations. The presence of α-1-m in the washing supernatants was detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The relative binding strength of alpha-1-m to each surface was evaluated as the isopropanol (IsoPOH) concentration required to desorb the protein from that surface. Analysis of bound proteins by SDS-PAGE conclusively demonstrated the binding of a range of serum proteins, including alpha-1-m, to all polymer systems, but with varying binding strengths. The majority of protein was removed by water washing for the polymethacrylate polymers, while varying concentrations of IsoPOH were required to desorb proteins from PS, PVC and Chronoflex. There was a correlation between the hydrophobic nature of the material, determined by water contact angle measurements, and adsorption of alpha-1-m. Immunoblotting of isopropanol-eluted proteins by alpha-1-m antibodies showed the positive staining of a 29 kDa protein as well as selected bands within a molecular weight range of 40 200 kDa, suggesting the adsorption of this protein as both free and complexed forms. The ability of alpha-1-m to adsorb on to material surfaces and to participate in events relevant to the biocompatibility of a polymer, such as bacterial infection or inflammation control, suggests the need for further characterization of the properties of this protein. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Anderson, ASAIO 11 (1988) 101.

    Google Scholar 

  2. A. Remes and D. F. Williams, Biomaterials 13 (1992) 731.

    Google Scholar 

  3. R. Smith, D. F. Williams and C. Oliver, J. Biomed. Mater. Res. 21 (1987) 1149.

    Google Scholar 

  4. L. Lui and H. Elwing, ibid. 28 (1994) 767.

    Google Scholar 

  5. J. M. Courtney, N. M. K. Lamba, S. Sundaram and C. D. Forbes, Biomaterials 15 (1994) 737.

    Google Scholar 

  6. L. Teljer, S. Eriksson, A. O. Grubb and B. Astedt, Biochem. Biophys. Acta 542 (1978) 506.

    Google Scholar 

  7. P. Pierzchalski, H. Rokita, A. Koj, E. Fries and B. Akerstrom, FEBS Lett. 298 (1992) 165.

    Google Scholar 

  8. B. Akerstrom and L. Logdberg, TIBS 15 (1990) 249.

    Google Scholar 

  9. L. Tejler and A. O. Grubb, Biochem. Biophys. Acta 439 (1976) 82.

    Google Scholar 

  10. K. Takagi, K. Kin, Y. Itoh, H. Enomoto and T. Kawai, J. Clin. Pathol. 33 (1980) 786.

    Google Scholar 

  11. K. Takagi, K. Kin, Y. Itoh, T. Kawai, T. Kasahara, T. Shimoda and T. Shikata, J. Clin. Invest. 63 (1979) 318.

    Google Scholar 

  12. L. Odum and H. W. Nielsen, Histochem. J. 26 (1994) 799.

    Google Scholar 

  13. A. Lindqvist, T. Bratt, M. Alteri, W. Kastern and B. Akerstrom, Biochem. Biophys. Acta 1130 (1992) 63.

    Google Scholar 

  14. B. Ekstrom and I. Berggard, J. Biol. Chem. 252 (1977) 8048.

    Google Scholar 

  15. E. H. Cooper, M. A. Forbes, A. Crockson and I. C. M. Maclennan, Protides Biological Fluids 32 (1985) 39.

    Google Scholar 

  16. E. H. Cooper, E. A. Johns, Y. Itoh and J. R. Webb, J. Chrom. 327 (1985) 179.

    Google Scholar 

  17. C. Falkenberg, J. J. Enghild, I. B. Thorensen, G. Salvesen and B. Akerstrom, Biochem. J. 301 (1994) 745.

    Google Scholar 

  18. M. Santin, M. A. Wassall, G. Peluso, S. P. Denyer, Biomaterials 18 (1997) 823.

    Google Scholar 

  19. M. A. Wassall, M. Santin, S. P. Denyer, J. Pharm. Pharmacol. 47 (1995) 1064.

    Google Scholar 

  20. U. K. Laemmli, Nature 277 (1970) 680.

    Google Scholar 

  21. M. Gottlieb and M. Chavko, Anal. Biochem. 165 (1987) 33.

    Google Scholar 

  22. W. N. Brunette, ibid. 112 (1981) 195.

    Google Scholar 

  23. A. W. Neumann and R. J. Good, Surface Colloid Sci. 11 (1979) 31.

    Google Scholar 

  24. T. Ueda, K. Ishihara and N. Nakabayashi, J. Biomed. Mater. Res. 29 (1995) 381.

    Google Scholar 

  25. P. Rouet, G. Raguenez, F. Tronche, M. Yaniv, C. Nõguyen and J. P. Salier, J. Biol. Chem. 267 (1992) 20765.

    Google Scholar 

  26. M. Morra, E. Occhiello and F. Garbassi, J. Coll. Interface Sci. 149 (1992) 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santin, M., Cannas, M., Wassall, M.A. et al. Adsorption of serum alpha-1-microglobulin onto biomaterials. Journal of Materials Science: Materials in Medicine 9, 135–140 (1998). https://doi.org/10.1023/A:1008863518572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008863518572

Keywords

Navigation