Skip to main content
Log in

Complement activation by cellulose: investigation of the effects of time, area, flow rate, shear rate and temperature on C3a generation in vitro, using a parallel plate flow cell

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development and utilization of a parallel plate flow system to study the blood response to flat sheet biomaterials, is described. Unlike most other parallel plate flow systems, which have been used to study cellular interactions with biomaterials, the controlled flow test cell described below employs the test materials on both sides of the channel through which the blood flows. The flow cell is used to conduct an investigation into the in vitro generation of C3a by a regenerated cellulose membrane, Cuprophan. The effects of experimental variables such as temperature, blood flow rate, contact area and wall shear rate on C3a generation by Cuprophan were studied. The results show that C3a generation by Cuprophan is lower at 12 °C than at 22 °C, which is in turn lower than C3a generation at 37 °C. Furthermore, a decrease in contact area, and increase in wall shear rate and blood flow rate, can produce a decrease in C3a concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Olijslager, in “Blood compatible materials and their testing”, edited by S. Dawids and A. Bantjes (Martinus Nijhoff, Dordrecht, The Netherlands, 1986) pp. 123–8.

    Google Scholar 

  2. H. Klinkmann, in “Biomaterials in Artificial Organs”, edited by J. P. Paul, J. D. S. Gaylor, J. M. Courtney and T. Gilchrist (Macmillan, London, 1984) pp. 1–8.

    Google Scholar 

  3. J. M. Courtney, N. M. K. Lamba, S. Sundaram, and C. D. Forbes, Biomaterials 15 (1994) 737.

    Google Scholar 

  4. P. D. Richardson, S. F. Mohammad, and R. G. Mason, Proc. Eur. Soc. Artif. Organs 4 (1977) 175.

    Google Scholar 

  5. N. Kawagoishi, C. Nojiri, K. Senshu, T. Kido, H. Nagai, T. Kanamori, K. Sakai, H. Koyanagi, and T. Akutsu, Artif. Organs 18 (1994) 588.

    Google Scholar 

  6. T. G. V. Kooten, J. M. Schakenraad, H. C. V. D. Mei, and H. J. Busscher, J. Biomed. Mater. Res. 26 (1992) 725.

    Google Scholar 

  7. S. Usami, H. Chen, Y. Zhao, S. Chien, and R. Skalak, Ann. Biomed. Eng. 21 (1993) 77.

    Google Scholar 

  8. D. Weng, J. D. S. Gaylor, J. M. Courtney, and G. D. O. Lowe, Artif. Organs 15 (1991) 307.

    Google Scholar 

  9. J. S. Hele-Shaw, Nature 588 (1898) 556.

    Google Scholar 

  10. D. Weng, unpublished results (1991).

  11. L. M. Robertson, J. M. Courtney, L. Irvine, C. Jones, and G.D.O. Lowe, Artif. Organs 14 (1990) 41.

    Google Scholar 

  12. S. Wark, MSc University of Strathclyde, Glasgow (1993) p. 66.

  13. G. Chang, D. R. Absolom, A. B. Strong, G. D. Stubley, and W. Zingg, J. Biomed. Mater. Res. 22 (1988) 13.

    Google Scholar 

  14. J. Vienken, and U. Baurmeister, Artif. Organs 11 (1987) 272.

    Google Scholar 

  15. A. Mahiout, H. Meinhold, M. Kessel, M. Schulze, and U. Baurmeister, ibid. 11 (1987) 149.

    Google Scholar 

  16. M. Goldman, N. Lietaer, P. Lambert, C. Thayse, and J.-L. Vanherweghem, Life Support Systems 5 (1987) 317.

    Google Scholar 

  17. D. E. Chenoweth, and L. W. Henderson, Artif. Organs 11 (1987) 155.

    Google Scholar 

  18. R. M. Schaefer, W. Rautenberg, S. Neumann, A. Heidland, W. H. HÖrl, Clin. Nephrol. 26 (1986) 535.

    Google Scholar 

  19. A. T. Nguyen, C. Lethias, J. Zingraff, A. Herbelin, C. Narel, and B. Descamps-Latscha, Kidney Int. 28 (1985) 158.

    Google Scholar 

  20. L. I. Friedman, and E. F. Leonard, Fed. Proc. 30 (1971) 1641.

    Google Scholar 

  21. H. L. Goldsmith, and V. T. Turitto, Thromb. Haemost 55 (1986) 415.

    Google Scholar 

  22. R. S. Wilson, M. D. Lelah, and S. L. Cooper, in “Techniques of biocompatibility testing”, Vol. 11, (edited by D. F. Williams (CRC Press, Boca Raton, FL, 1986) pp. 151–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamba, N.M.K., Gaylor, J.D.S., Courtney, J.M. et al. Complement activation by cellulose: investigation of the effects of time, area, flow rate, shear rate and temperature on C3a generation in vitro, using a parallel plate flow cell. Journal of Materials Science: Materials in Medicine 9, 409–414 (1998). https://doi.org/10.1023/A:1013287614418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013287614418

Keywords

Navigation