Skip to main content
Log in

Determination of Particle Size and Shape during the Hydrolysis of Pb(Zr0.3Ti0.7)O3 Precursor Solutions

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The formation and growth of polymeric particles during the hydrolysis and condensation of PbZr0.3Ti0.7 O3 (PZT 30/70) sol-gel precursor solutions have been investigated by using photon correlation spectroscopy (PCS), small angle X-ray scattering (SAXS) and by measuring their rheological properties. The measurements showed that the growth of the particles in the transition of PZT sol to gel followed a simple polymerisation process. Solution A (containing ‘by-products’) and Solution B (‘by-products’ removed) displayed a similar plot of logarithmic viscosity against logarithmic time, indicating that the particles in both solutions have similar structures after hydrolysis. The changes in viscosity and particle size with time were described by single logarithmic growth models. However, the increasing rate of logarithmic particle size in Solution B is higher than that in Solution A. A model for the form of the aggregates is discussed which is applicable to PZT organometal-particle aggregation process in systems with acetic acid as a modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott and C.A. Paz de Araujo, Science: Ferroelectric Memories 19, 400 (1989).

    Google Scholar 

  2. P. Lesaicherre, S. Yamamichi, K. Takemura, H. Yamaguchi, K. Tokashiki, Y. Miyasaka, M. Yoshida, and H. Ono, Intergrated Ferroelectrics 11, 81 (1995).

    Google Scholar 

  3. P. Muralt, A. Kholkin, M. Kohli, T. Maeder, K.G. Brooks, and R. Luthier, Intergrated Ferroelectrics 11, 213 (1995).

    Google Scholar 

  4. R.W. Whatmore, P. Kirby, A. Patel, N.M. Shorrocks, T. Bland, and M. Walker, Science and Technology of Electroceramic Thin Films, 383 (1995).

  5. G. Teowee and C.D. Baetlein, Intergrated Ferroelectrics 11, 47 (1995).

    Google Scholar 

  6. S.J. Chae, S.S. Park, and S.G. Yoon, Intergrated Ferroelectrics 10, 63 (1995).

    Google Scholar 

  7. D.A. Tossell, N.M. Shorrocks, and R.W. Whatmore, Intergrated Ferroelectrics 3, 301 (1993).

    Google Scholar 

  8. C.J. Brierlcy, C. Trundle, L. Considine, R.W. Whatmore, and F.W. Ainger, Ferroelectrics 91, 181 (1989).

    Google Scholar 

  9. A.S. Nickles, R. Ramesh, R.M. White, and E.E. Haller, Integrated Ferroelectrics 10, 89 (1995).

    Google Scholar 

  10. R.W. Schwartz, T.J. Boyle, S.J. Lockwood, M.B. Sinclair, D. Dimos, and C.D. Bucheit, Intergrated Ferroelectrics 7, 259 (1995).

    Google Scholar 

  11. M. Klee, R. Eusemann, R. Waser, and W. Brand, J. Appl. Phys. 72(4), 1566 (1992).

    Google Scholar 

  12. Ferroelectricity Newsletter, 3 (Fall 1996).

    Google Scholar 

  13. R.W. Schwartz, R.A. Assink, and T.J. Headley, in Ferroelectric Thin Films II Symposium, edited by A.I. Kingon, E.R. Myers, and B.A. Tuttle (Materials Research Society, Pittsburgh, PA, 1992), vol. 243, p. 345.

    Google Scholar 

  14. U. Kolb, I. Abraham, D. Gutwerk, T.S. Ertel, W. Hörner, H. Bertagnolli, S. Merklein, and D. Sporn, Physica B 208/209, 601 (1995).

    Google Scholar 

  15. P.R. Coffman and S.K. Dey, J. Sol-Gel Sci. Tech. 1, 251 (1994).

    Google Scholar 

  16. S.R. Gurkovich and J.B. Blum, in Ultrastructure Processing of Glasses, Ceramic and Composite, edited by L.L. Hench and D.R. Ulrich (John Wiley, New York, 1984), p. 152.

    Google Scholar 

  17. K.D. Budd, S.K. Dey, and D.A. Payne, Br. Ceram. Proc. 36, 107 (1985).

    Google Scholar 

  18. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 75(5), 2717 (1988).

    Google Scholar 

  19. K.C. Chen, A. Janah, and J.D. Mackensie, in Better Ceramics Through Chemistry II, Materials Research Society Symposium Proceedings, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, PA, 1986), vol. 73, p. 731.

    Google Scholar 

  20. C. Hsueh and M.L. Mecartney, J. Mater. Res. 6(10), 2208 (1991).

    Google Scholar 

  21. N.M. Shorrocks, A. Patel, M.J. Walker, and A.D. Parsons, Microelectronic Engineering 29, 59 (1995).

    Google Scholar 

  22. B.E. Novich and T.A. Ring, Clays Clay Miner. 32, 400 (1984).

    Google Scholar 

  23. B.E. Novich and T.A. Ring, J. Chem. Soc., Faraday Trans. 81, 1455 (1985).

    Google Scholar 

  24. J.D.F. Ramsay, R.G. Avery, and P.J. Russel, Radiochim. Acta. 44/45, 119 (1988).

    Google Scholar 

  25. R. Amal, J.R. Coury, J.A. Raper, W.P. Walsh, and T.D. Waite, Colloid Surf. 46, 1 (1990).

    Google Scholar 

  26. U. von Gunten and W. Schneider, J. Colloid Interface Sci. 145, 127 (1991).

    Google Scholar 

  27. A. Ledin, S. Karlsson, and B. Allard, Appl. Geochem. 8, 409 (1993).

    Google Scholar 

  28. M.S. Caceci and A. Billon, Org. Geochem. 15, 335 (1991).

    Google Scholar 

  29. P.M. Reid, A.E. Wilkinson, E. Tipping, and M.N. Jones, J. Soil Sci. 42, 259 (1991).

    Google Scholar 

  30. P.M. Gschwend and M.D. Reynolds, J. Cont. Hydr. 1, 309 (1987).

    Google Scholar 

  31. K.L. Lee, H.A. Hristov, T.Y. Tien, and E. Gulari, J. Mat. Sci. 31, 1341 (1996).

    Google Scholar 

  32. D.W. Schaefer, K.D. Keefer, and C.J. Brinker, Polymer Preprints, Am. Chem. Soc., Div. of Polymer Chem. 24, 239 (1983).

    Google Scholar 

  33. C.J. Brinker, K.D. Keefer, D.W. Schaefer, and C.S. Ashley, J. Non-Cryst. Solids 48, 47 (1982).

    Google Scholar 

  34. C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, and C.S. Ashley, J. Non-Cryst. Solids 63, 45 (1984).

    Google Scholar 

  35. J.A. Jutson, R.M. Richardson, S.L. Jones, and C. Norman, Mat. Res. Soc. Symp. Proc. 180, 123 (1990).

    Google Scholar 

  36. H.M. Jang and M.K. Cho, Mat. Res. Soc. Symp. Proc. 361, 403 (1995).

    Google Scholar 

  37. K. Kezuka, Y. Hashihiro, and T. Yamaguchi, J. Am. Ceram. Soc. 72(9), 1660 (1989).

    Google Scholar 

  38. G. Floudas, A. Rizos, W. Brown, and K.L. Ngai, Macromolecules 27, 2719 (1994).

    Google Scholar 

  39. Ira N. Levine, Physical Chemistry, 3rd edition (Mcgraw-Hill Book Company, Singapore, 1988), p. 486.

    Google Scholar 

  40. O. Glatter and O. Kratky, Small Angle X-ray Scattering (Academic Press, London, 1982).

    Google Scholar 

  41. M.L. Huggins, J. Am. Chem. Soc. 64, 2716 (1942).

    Google Scholar 

  42. A. Einstein, Ann. Phys. 19, 289 (1906).

    Google Scholar 

  43. C.G. Vonk, J. Appl Cryst. 8, 341 (1975).

    Google Scholar 

  44. R.K. Iler, Chemistry of Silica (Wiley, New York, 1979), p. 345.

    Google Scholar 

  45. R.W. Schwartz, B.C. Bunker, D.B. Dimos, R.A. Assink, B.A Tuttle, D.R. Tallant, and I.A. Weinstock, Integrated Ferroelectrics 2, 243 (1992).

    Google Scholar 

  46. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).

    Google Scholar 

  47. S. Doeuff, M. Henry, and C. Sanchez, Mat. Res. Bull. 25, 1519 (1990).

    Google Scholar 

  48. S. Doeuff, Y. Dromzee, F. Taulelle, and C. Sanchez, Inorg. Chem. 28, 4439 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Vickers, M., Patel, A. et al. Determination of Particle Size and Shape during the Hydrolysis of Pb(Zr0.3Ti0.7)O3 Precursor Solutions. Journal of Sol-Gel Science and Technology 11, 141–152 (1998). https://doi.org/10.1023/A:1008641429895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008641429895

Navigation