Skip to main content
Log in

Structure Design of Double-Pore Silica and Its Application to HPLC

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Utilizing the concurrence of polymerization-induced phase separation and sol-gel transition in the hydrolytic polycondensation of alkoxysilanes, a well-defined macroporous structure is formed in a monolithic wet gel. By exchanging the fluid phase of the wet gel with an appropriate external solution, the nanometer-range structure of the wet gel can be reorganized into structures with larger median pore size essentially without affecting the macroporous framework. The double-pore structure thus prepared is characterized by open pores distributed in discrete size ranges of micrometers and nanometers. A new type of chromatographic column (silica rod) has been developed using monolithic double-pore silica instead of packed spherical gel particles. Typical silica rod columns had significantly reduced pressure drops and improved analytical efficiencies which do not deteriorate even at higher sample flow rates, both arising from a greater macropore volume than particle packed columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979), chap. 5.

    Google Scholar 

  2. S. Liu and L.L. Hench, in Sol-Gel Optics II, edited by J.D. Mackenzie (SPIE—The International Society for Optical Engineering, Washington, 1992), Vol. 1758, p. 14.

    Google Scholar 

  3. K. Nakanishi, H. Kaji, and N. Soga, Ceramic Transactions—“Porous Materials,” edited by K. Ishizaki et al. (The American Ceramic Society, Ohio, 1993), Vol. 31, pp. 51–60.

    Google Scholar 

  4. K. Nakanishi, J. Porous Mater. 4, 67–112 (1997).

    Article  Google Scholar 

  5. N. Tanaka, H. Kinoshita, M. Arakiand, and T. Tsuda, J. Chromatogr. 332, 57–69 (1985).

    Google Scholar 

  6. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, Anal. Chem. 68, 3498–3501 (1996).

    Google Scholar 

  7. K. Nakanishi, H. Komura, R. Takahashi, and N. Soga, Bull Chem. Soc. Jpn. 67, 1327–1335 (1994).

    Google Scholar 

  8. K. Nakanishi and N. Soga. J. Am. Ceram. Soc. 74, 2518–2530 (1991).

    Google Scholar 

  9. K. Nakanishi and N. Soga. J. Non-Cryst. Solids 139, 1–24 (1992).

    Google Scholar 

  10. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, J. Chromatogr. A 762, 135–146 (1997).

    PubMed  Google Scholar 

  11. K. Nakanishi, N. Koheiya, and N. Soga, unpublished data.

  12. G. Guiochon, in Cs. Horvath (Ed.), High Performance Liquid Chromatography—Advances and Perspectives Academic Press, New York, 1980), Vol. 2, pp. 1–56.

    Google Scholar 

  13. S. Hjerten, J.-L. Liao, and R. Zhang, J. Chromatogr. 473, 273–275 (1989).

    Google Scholar 

  14. Q.-C. Wang, F. Svec, and J.M.J. Frechet, Anal. Chem. 65, 2243–2248 (1993).

    PubMed  Google Scholar 

  15. R.P.W. Scott, Liquid Chromatography Column Theory (John Wiley & Sons, Chichester, 1992), chap. 7.

    Google Scholar 

  16. P.A. Bristow and J.H. Knox, Chromatographia 10, 279–289 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, K., Minakuchi, H., Soga, N. et al. Structure Design of Double-Pore Silica and Its Application to HPLC. Journal of Sol-Gel Science and Technology 13, 163–169 (1998). https://doi.org/10.1023/A:1008644514849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008644514849

Navigation