Skip to main content
Log in

A Comparison of the Nanostructure of Lead Zirconate, Lead Titanate and Lead Zirconate Titanate Sols

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel processing has been widely used for the fabrication of lead zirconate titanate (PZT) thin films. To successfully and consistently make high quality thin films for different applications, we must develop a fundamental understanding of the structures of the sols. In this study, the characters of lead titanate (PT) and lead zirconate (PZ)sols were studied by measuring the rheological properties and particle sizes in them and comparing their behaviours. The average particle sizes in unhydrolysed PT, PZ and PZT sols are 11.5, 1.0, and 6.0 nm, respectively. PT sol has the highest rate of hydrolysis. It gels at about 24 h after hydrolysis. PZ and PZT sols have a quite similar feature in hydrolysis. The reasons for the differences in the hydrolysis behaviour of the different types of sol are discussed in terms of a model which indicates that the inhomogeneous sols consist of 5 to 6 nm PT particles surrounded by much smaller PZ particles, which tend to dominate the sol behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Lin, B.W. Scanlan, J.D. Mcnell, J.S. Webb, and L. Li, J. Mater. Res. 7, 2546 (1992).

    Google Scholar 

  2. S. Yokoyama, Y. Ito, K. Ishihara, K. Hamada, S. Ohnishi, J. Kudo, and K. Sakiyama, Jpn. J. Appl. Phys. 34, 767 (1995).

    Google Scholar 

  3. N. Neumann, R. KÖhler, and G. Hofmann, Integrated Ferroelectrics 6, 213 (1995).

    Google Scholar 

  4. D.L. Polla and P.J. Schiller, Integrated Ferroelectrics 7, 359 (1995).

    Google Scholar 

  5. R.W. Whatmore, P. Kirby, A. Patel, N.M. Shorrocks, T. Bland, and M. Walker, “Ferroelectric thin films for capacitor and sensor applications,” Proc. NATO advanced Research Workshop on Science and Technology of Electroceramic Thin Films, edited by O. Guciello and R. Waser, Villa del Mare, Italy, June 20–24th, 1994, pp. 383–397, ISBN 0-7923-3332-2 (Kluwer Academic Publishers, Dordrecht, The Netherlands).

    Google Scholar 

  6. R.W. Schwartz, B.C. Bunker, D.B. Dimos, R.A. Assink, B.A. Tuttle, D.R. Tallant, and I.A. Weinstock, Proc. 3rd Int. Symp. Integ. Ferroelect. (Colorado Springs, CO, 1992), p. 535.

  7. R.W. Schwartz, R.A. Assink, and T.J. Headley, in Ferroelectric Thin Films II, edited by G.I. Kingon, E.R. Myers, and B. Tuttle (Mater Res. Soc. Symp. Proc. 243, Pittsburgh, PA 1992), p. 245.

  8. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 64(5), 2717 (1988).

    Google Scholar 

  9. J. Livage and C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992).

    Google Scholar 

  10. H. Chen, K. Udayakumar, C. Gaskey, and L. Cross, J. Am. Ceram. Soc. 79(8), 2189 (1990).

    Google Scholar 

  11. D. Sporn, S. Merklein, W. Grond, S. Seifert, S. Wahl, and A. Berger, Microelectronic Eng. 29, 161 (1995).

    Google Scholar 

  12. Y.L. Tu, M.L. Calzada, N.J. Phillips, and S.J. Milne, J. Am. Ceram. Soc. 79(2), 441 (1996).

    Google Scholar 

  13. Q. Zhang, M.E. Vickers, A. Patel, and R.W. Whatmore, J. SolGel Sci. & Tech. 11, 141 (1998).

    Google Scholar 

  14. C.G. Vonk, J. Appl. Cryst. 8, 341 (1975).

    Google Scholar 

  15. M.L. Huggins, J. Am. Chem. Soc. 64, 2716 (1942).

    Google Scholar 

  16. A. Einstein, Ann. Phys. 19, 289 (1906).

    Google Scholar 

  17. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. NonCryst. Solids 100, 65 (1987).

    Google Scholar 

  18. P.I. Laaziz, A Larbot, C. Guizard, J. Durand, and L. Cot, Acta Cryst. 46, 2332 (1990).

    Google Scholar 

  19. S. Doeuff, Y. Dromzee, F. Taulelle, and C. Sanchez, Inorg. Chem. 28, 4439 (1989).

    Google Scholar 

  20. L. Spiccia, B.O. West, and Q. Zhang, Polyhedron 17(11/12), 1851 (1998).

    Google Scholar 

  21. P. Löbmann, W. Glaubitt, J. Gross, and J. Fricke, J. Non-Cryst. Solids 186, 59 (1995).

    Google Scholar 

  22. D. Peter, T.S. Ertel, and H. Bertagnolli, J. of Sol-gel Sci. & Technol. 5, 5 (1995).

    Google Scholar 

  23. G. Yi and M. Sayer, J. of Sol-gel Sci. & Technol. 6, 65 (1996).

    Google Scholar 

  24. L.G. Hubert-Pfalzgraf, S. Daniele, R. Papiernik, M.C. Massiani, B. Septe, J. Vaissermann, and J.C. Daran, J. Mater. Chem. 7(5), 753 (1997).

    Google Scholar 

  25. G.D. Fallon, L. Spiccia, B.O. West, and Q. Zhang, J. of Sol-gel Sci. and Technol, 1998, submitted.

  26. L. Ma and D.A. Payne, Chem. Mater. 6, 875 (1994).

    Google Scholar 

  27. C.J. Brinker and G.W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-Gel Processing, Chap. 3 (Academic Press, 1990).

  28. D.W. Schaefer, J.E. Martin, and K.D. Keefer, Physics of Finely Matter, edited by N. Bocarra and M. Daoud (Springer-Verlag, Berlin, 1985), p. 31.

    Google Scholar 

  29. A. Guinier, Ann. Phys. 12, 161 (1939).

    Google Scholar 

  30. C. Chen, D.F. Ryder, and W.A. Spurgeon, J. Am. Ceram. Soc. 72, 1495 (1989).

    Google Scholar 

  31. T.W. Dekleva, J.M. Hayes, L.E. Cross, and G.L. Geoffroy, J. Am. Ceram. Soc. 71, C-280-C-282 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Whatmore, R. & Vickers, M. A Comparison of the Nanostructure of Lead Zirconate, Lead Titanate and Lead Zirconate Titanate Sols. Journal of Sol-Gel Science and Technology 15, 13–22 (1999). https://doi.org/10.1023/A:1008759520087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008759520087

Navigation