Skip to main content
Log in

Mechanical Properties of Gel-Derived Materials

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The mechanical behaviour of xerogels and aerogels is generally described in terms of brittle and elastic materials, like glasses or ceramics. The main difference compared to silica glass is the order of magnitude of the elastic and rupture moduli which are 104 times lower. However, if this analogy is pertinent when gels are under a tension stress (bending test) they exhibit a more complicated response when the structure is submitted to a compressive stress. The network is linearly elastic under small strains, then exhibits yield followed by densification and plastic hardening. As a consequence of the plastic shrinkage it is possible to densify and stiffen the gel at room temperature. These opposite behaviours (elastic and plastic) are surprisingly related to the same two kinds of gel features: the silanol content and the pore volume. Both elastic modulus and plastic shrinkage depend strongly on the volume fraction of pores and on the condensation reaction between silanols. On the mechanical point of view (rupture modulus and toughness), it is shown that pores and silanols play also an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size, calculated from rupture strength and toughness is related to the pore size distribution. Different kinds of gels structure (fractal or not fractal) have been synthesized by a control of the different steps of transformation such as sintering and plastic compaction. The relationships between structural and the elastic properties are discussed in terms of the percolation theory and fractal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Calemczuk, A.M. de Goer, B. Salce, R. Maynard, and A. Zarembovitch, Europhys. Lett. 3, 1205 (1987).

    Google Scholar 

  2. J. Gross, G. Reichenauer, and J. Fricke, J. Phys. D21, 1447 (1988).

    Google Scholar 

  3. J.D. Lemay, T.M. Tillotson, H.W. Hrubesch, and R.W. Pekala, Mater. Res. Soc. Symp. Proc. 180, 321 (1990).

    Google Scholar 

  4. T. Woignier and J. Phalippou, J. Non-Cryst. Solids 100, 404 (1988).

    Google Scholar 

  5. G.W. Scherer, J. Non-Cryst. Solids 144, 210 (1992).

    Google Scholar 

  6. R. Pirard, S. Blacher, F. Brouers, and J.P. Pirard, J. Mater. Res. 10, 1 (1995).

    Google Scholar 

  7. L. Duffours, T. Woignier, and J. Phalippou, J. Non-Cryst. Solids 194, 283 (1996).

    Google Scholar 

  8. G.W. Scherer, D.M. Smith, X. Qiu, and J. Anderson, J. Non-Cryst. Solids 186, 316 (1995).

    Google Scholar 

  9. T. Woignier, J. Phalippou, and M. Prassas, J. Mater. Sci. 25, 3118 (1990).

    Google Scholar 

  10. P. Etienne, J. Phalippou, T. Woignier, and A. Alaoui, J. Non-Cryst. Solids 188, 19 (1995).

    Google Scholar 

  11. J.L. Chermant, F. Osterstock, and G. Vadam, Verres Refract. 33(6), 843 (1979).

    Google Scholar 

  12. C. Janssen, Ceram. Soc. Japan 10, 23 (1974). Proc. 10th Int. Cong. on Glass (Kyoto), 1974.

    Google Scholar 

  13. C.E. Inglis, Inst. National Architects Trans. 55 (1913).

  14. A.A. Griffith, Phil. Trans. Roy. Soc. Lon. 221A, 163 (1920).

    Google Scholar 

  15. G.E. Irwin, Trans. ASM 40A, 47 (1948).

    Google Scholar 

  16. I. Beurroies, Ph.D. thesis, Montpellier, 1995.

  17. A. Alaoui, T. Woignier, F. Pernot, and J. Phalippou, J. Non-Cryst. Solids 265, 29 (2000).

    Google Scholar 

  18. T. Woignier, J. Phalippou, J.F. Quinson, M. Pauthe, and G.W. Scherer, J. Sol-gel Sci. and Tech. 2, 277 (1994).

    Google Scholar 

  19. M. Wiederhorn, J. Amer. Ceram. Soc. 55, 81 (1972).

    Google Scholar 

  20. T.A. Mischalske, W.L. Smith, and B.C. Bunker, J. Amer. Ceram. Soc. 74, 1993 (1991).

    Google Scholar 

  21. B. Gauthier-Manuel and E. Guyon, J. Phys. Lett. France 41, L–503 (1980).

    Google Scholar 

  22. M. Tokita, R. Niki, and J. Nikichi, J. Chem. Phys. 83, 2583 (1985).

    Google Scholar 

  23. M. Adam, M. Delsanti, D. Durand, G. Hild, and J.P. Munch, Pure Appl. Chem. 53, 1489 (1981).

    Google Scholar 

  24. Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984).

    Google Scholar 

  25. B.I. Halperin, S. Feng, and P.N. Sen, Rev. Phys. Lett. 54, 2391 (1985).

    Google Scholar 

  26. J.W. Essam, Rep. Prog. Phys. 43, 904 (1980).

    Google Scholar 

  27. A. Emmerling and J. Friche, J. Sol-gel Sci. and Tech. 8, 781 (1997).

    Google Scholar 

  28. T. Woignier, J. Reynes, A. Alaoui, J. Beurroies, and J. Phalippau, J. Non-Cryst. Solids 241, 45 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woignier, T., Despetis, F., Alaoui, A. et al. Mechanical Properties of Gel-Derived Materials. Journal of Sol-Gel Science and Technology 19, 163–169 (2000). https://doi.org/10.1023/A:1008763616716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008763616716

Navigation