Skip to main content
Log in

Activity-dependent deformations of presynaptic grids at central synapses

  • Published:
Journal of Neurocytology

Summary

In the CNS, the exocytosis which accompanies transmitter releases occurs at the level of a resynaptic grid. Possible alterations in the grid as a function of this phenomenon were searched for at the synapses established by unmyelinated club endings on the Mauthner cell of teleosts. The number of vesicle openings generated by aldehyde fixation was diminished by cooling the preparation and enhanced after perfusion with a high-KCl Ringer solution. Morphometric analysis of the grid showed that under these conditions the mean distance between its constituent elements, the presynaptic dense projections, increased with the number of exocytotic events. Parallel changes were observed for the mean diameter of the spaces left free between these dense projections, suggesting that vesicle exocytosis produces a transient enlargement of the space where it takes place. These observations indicate that the presynaptic grid is more dynamically involved in the secretory process than previously conceived. It is therefore hypothesized that (i) the movement of the dense projections is a consequence of their interaction with the plasma membrane, and (ii) the distortion of the grid could underlie regulatory mechanisms by which the number of released vesicles is limited after each impulse. It is also proposed that the dense projections contribute to the stabilization of the plasma membrane, thereby preventing its randomization following intense release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K. &Pfenninger, K. (1969) Synaptic fine structure and neural dynamics.Symposium of the International Society for Cell Biology 8, 245–60.

    Google Scholar 

  • Blitz, A. L. &Fine, R. E. (1974) Muscle-like contractile proteins and tubulin in synaptosomes.Proceedings of the National Academy of Sciences USA 71, 4472–6.

    Google Scholar 

  • Bloom, F. E. &Aghajanian, G. K. (1966) Cytochemistry of synapses: selective staining for electron microscopy.Science 154, 1575–7.

    PubMed  Google Scholar 

  • Buckley, K. M. &Landis, C. S. (1983) Morphological studies of neurotransmitter release and membrane recycling in sympathetic nerve terminals in culture.Journal of Neurocytology 12, 93–116.

    PubMed  Google Scholar 

  • Buckley, K. M., Schweitzer, E. S., Miljanich, G. P., Clift-o'grady, L., Drosden Kushner, P., Reichardt, L. F. &Kelly, R. B. (1983) A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane.Proceedings of the National Academy of Sciences USA 80, 7342–6.

    Google Scholar 

  • Ceccarelli, B., Grohovaz, F. &Hurlbut, W. P. (1979) Freeze fracture studies of frog neuromuscular junction during intense release of neurotransmitter. II. Effects of electrical stimulation and high potassium.Journal of Cell Biology 81, 178–92.

    Google Scholar 

  • Ceccarelli, B., Hurlbut, W. P. &Mauro, A. (1972) Depletion of vesicles from frog neuromuscular junctions by polarized tetanic stimulation.Journal of Cell Biology 54, 30–8.

    PubMed  Google Scholar 

  • Ceccarelli, B., Hurlbut, W. P. &Mauro, A. (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction.Journal of Cell Biology 57, 499–524.

    PubMed  Google Scholar 

  • Cooke, J. D. &Quastel, D. M. J. (1973) The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium.Journal of Physiology (London) 228, 435–58.

    Google Scholar 

  • Couteaux, R. &Pecot-Dechavassine, M. (1970) Vésicules synaptiques et poches au niveau des ‘zones actives’ de la jonction neuromusculaire.Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris), Série D 271, 2346–9.

    Google Scholar 

  • Couteaux, R. &Pecot-Dechavassine, M. (1974) Les zones spécialisées des membranes pré-synaptiques.Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris), Série D 280, 299–301.

    Google Scholar 

  • Dickinson-Nelson, A. &Reese, T. S. (1983) Structural changes during transmitter release at synapses in the frog sympathetic ganglion.Journal of Neuroscience 3, 42–52.

    PubMed  Google Scholar 

  • Faber, D. S. &Korn, H. (1982) Binary mode of transmitter release at central synapses.Trends in Neurosciences 5, 157–9.

    Google Scholar 

  • Gordon-Weeks, P. R., Burgoyne, R. D. &Gray, E. G. (1982) Presynaptic microtubules: organization and assembly/disassembly.Neuroscience 7, 739–49.

    PubMed  Google Scholar 

  • Gray, E. G. (1963) Electron microscopy of presynaptic organelles of the spinal cord.Journal of Anatomy 97, 101–6.

    PubMed  Google Scholar 

  • Gray, E. G. (1975) Presynaptic microtubules and their association with synaptic vesicles.Proceedings of the Royal Society, London B 190, 369–72.

    Google Scholar 

  • Gray, E. G. (1983) Neurotransmitter release mechanisms and microtubules.Proceedings of the Royal Society, London B 218, 253–8.

    Google Scholar 

  • Heuser, J. E. &Reese, T. S. (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.Journal of Cell Biology 57, 315–44.

    PubMed  Google Scholar 

  • Heuser, J. E. &Reese, T. S. (1981) Structural changes following transmitter release at the frog neuromuscular junction.Journal of Cell Biology 88, 564–80.

    PubMed  Google Scholar 

  • Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. &Evans, L. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal release.Journal of Cell Biology 81, 275–300.

    PubMed  Google Scholar 

  • Heuser, J. E., Reese, T. S. &Landis, D. M. D. (1974) Functional changes in frog neuromuscular junctions studied with freeze-fracture.Journal of Neurocytology 5, 109–31.

    Google Scholar 

  • Hubbard, J. I., Jones, S. F. &Landau, E. M. (1971) The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation.Journal of Physiology (London) 216, 591–610.

    Google Scholar 

  • Hubbard, J. L. &Laskowski, M. B. (1972) Spontaneous transmitter release and ACh sensitivity during glutaraldehyde fixation of rat diaphragm.Life Sciences 11, 781–5.

    Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy.Journal of Cell Biology 27, 137A.

    Google Scholar 

  • Katz, B. &Miledi, R. (1965) The effect of temperature on the synaptic delay at the neuromuscular junction.Journal of Physiology (London) 181, 656–70.

    Google Scholar 

  • Korn, H. &Faber, D. S. (1975) An electrically mediated inhibition in goldfish medulla.Journal of Neurophysiology 38, 452–71.

    PubMed  Google Scholar 

  • Korn, H., Mallet, A., Triller, A. &Faber, D. S. (1982) Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate of binomial n.Journal of Neurophysiology 48, 679–707.

    PubMed  Google Scholar 

  • Korn, H., Triller, A., Mallet, A. &Faber, D. S. (1981) Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons.Science 213, 898–901.

    PubMed  Google Scholar 

  • Miller, T. M. &Heuser, J. E. (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction.Journal of Cell Biology 98, 685–98.

    Google Scholar 

  • Nakajima, Y. (1974) Fine structure of the synaptic ending on the Mauthner cell of goldfish.Journal of Comparative Neurology 156, 375–402.

    Google Scholar 

  • Nakajima, Y. &Reese, T. S. (1983) Inhibitory and excitatory synapses in crayfish stretch receptor organs studied with direct rapid freezing and freeze substitution.Journal of Comparative Neurology 213, 66–73.

    PubMed  Google Scholar 

  • Neale, E. A., Nelson, P. G., McDonald, R. L., Christian, C. N. &Bowers, L. M. (1983) Synaptic transmission between mammalian central neurons in cell culture. III. Morphological correlates of quantal synaptic transmission.Journal of Neurophysiology 49, 1459–68.

    PubMed  Google Scholar 

  • Palade, G. E. (1982)Problems in Intracellular Membrane Traffic in Membrane Recycling (edited byEvered, D. &Collins, G. M.), pp. 1–14. London: Pitman Books.

    Google Scholar 

  • Pecot-Dechavassine, M. (1982) Synaptic vesicle openings captured by cooling and related to transmitter release at the frog neuromuscular junction.Biology of the Cell 46, 43–50.

    Google Scholar 

  • Pfenninger, K. &Rovainen, C. M. (1974) Stimulation and calcium-dependence of vesicle attachment sites in the presynaptic membrane. A freeze-cleave study on the Lamprey spinal cord.Brain Research 72, 1–23.

    PubMed  Google Scholar 

  • Pfenninger, K., Sandri, C., Akert, K. &Eugster, C. H. (1969) Contribution to the problem of structural organization of the presynaptic area.Brain Research 12, 10–18.

    PubMed  Google Scholar 

  • Puszkin, S. &Kochwa, S. (1974) Regulation of neurotransmitter release by a complex of actin with relaxing protein isolated from rat brain synaptosomes.Journal of Biological Chemistry 249, 7711–14.

    PubMed  Google Scholar 

  • Pysh, J. J. &Wiley, R. G. (1974) Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulatedin vivo.Journal of Cell Biology 60, 365–74.

    PubMed  Google Scholar 

  • Robertson, J. D., Bodenheimer, T. S. &Stage, D. E. (1963) The ultrastructure of Mauthner cell synapses and nodes in goldfish brains.Journal of Cell Biology 19, 159–99.

    Google Scholar 

  • Rose, S. J., Pappas, G. D. &Kriebel, M. E. (1978) The fine structure of identified frog neuromuscular junctions in relation to synaptic activity.Brain Research 144, 213–39.

    PubMed  Google Scholar 

  • Schaeffer, S. &Raviola, E. (1978) Membrane recycling in the cone cell endings of the turtle retina.Journal of Cell Biology 79, 802–25.

    PubMed  Google Scholar 

  • Smith, J. E. &Reese, T. S. (1980) Use of aldehyde fixatives to determine the rate of synaptic transmitter release.Journal of Experimental Biology 89, 19–29.

    PubMed  Google Scholar 

  • Snedecor, G. W. (1956)Statistical Methods (5th edn), pp. 264–75. Ames: Iowa State University Press.

    Google Scholar 

  • Streit, P., Akert, K., Sandri, O., Livingston, R. P. &Moor, H. (1972) Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats. Anaesthetized and unanaesthetized preparations compared.Brain Research 48, 11–26.

    PubMed  Google Scholar 

  • Takeuchi, A. &Takeuchi, N. (1961) Changes in potassium concentration around motor nerve terminals produced by current flow and their effects on neuromuscular transmission.Journal of Physiology (London) 155, 46–58.

    Google Scholar 

  • Triller, A. &Korn, H. (1982a) Transmission at a central inhibitory synapse. III. Ultrastructure of physiologically identified and stained terminals.Journal of Neurophysiology 48, 708–36.

    PubMed  Google Scholar 

  • Triller, A. &Korn, H. (1982b) Déformations de la grille présynaptique liées à l'exocytose dans les synapses centrales.Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris), Série III 295, 655–60.

    Google Scholar 

  • Trubatch, J., Loud, A. V. &Van Harreveld, A. (1977) Quantitative stereological evaluation of KCl-induced ultrastructural changes in frog brain.Neuroscience 2, 963–74.

    Google Scholar 

  • Venzin, M., Sandri, C., Akert, K. &Wyss, U. R. (1977) Membrane associated particles of the presynaptic active zone in rat spinal cord. A morphometric analysis.Brain Research 130, 393–404.

    Google Scholar 

  • Von Wedel, R. J., Carlson, S. J. &Kelly, R. B. (1981) Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis.Proceedings of the National Academy of Sciences, USA 78, 1014–18.

    Google Scholar 

  • Vrensen, G., Nunes, J., Cardozo, J., Muller, L. &Van der Want, J. (1980) The presynaptic grid: a new approach.Brain Research 184, 23–40.

    PubMed  Google Scholar 

  • Wood, M. R. &Cohen, M. J. (1980) Tannic acid enhances staining of the presynaptic vesicular grid in the Lamprey spinal cord.Brain Research 194, 613–15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triller, A., Korn, H. Activity-dependent deformations of presynaptic grids at central synapses. J Neurocytol 14, 177–192 (1985). https://doi.org/10.1007/BF01258446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258446

Keywords

Navigation