Skip to main content
Log in

Synaptic terminals in the ventroposterolateral nucleus of the thalamus from neurons in the dorsal column and lateral cervical nuclei: an electron microscopic study in the cat

  • Published:
Journal of Neurocytology

Summary

The afferent fibres to the ventroposterolateral nucleus (VPL) of the contralateral thalamus from neurons in the dorsal column nuclei (DCN) and the lateral cervical nucleus (LCN) were labelled by anterograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and subsequent histochemical processing with tetramethyl benzidine. In accordance with the results of previous light microscopical studies using the degeneration method or autoradiographic tracing technique, the distribution of the afferents from the DCN and LCN in the VPL differed considerably. Thus the DCN terminals, which were calculated to constitute about 7–8% of the total number of boutons in the VPL, were found throughout the entire VPL, whereas the LCN terminals were mainly located in its dorsal and dorsolateral parts, where they made up about 1% of the total number of boutons. However, the morphology and synaptic organization of the terminals from the DCN and LCN were virtually identical. Thus the synaptic terminals of the two afferent pathways seemed to be represented by large boutons of a similar type, which had large, slightly oval and loosely packed synaptic vesicles and contained numerous mitochondria. Both DCN and LCN terminals synapsed preferentially on medium-sized to large dendrites, but were also presynaptic to other vesicle-containing profiles, probably of internuncial origin, which in turn were in synaptic contact with the same dendrites as the labelled ones.

It is suggested that the differences in physiological properties between the somatosensory information that is transmitted to the somatosensory cortex via the dorsal column-medial lemniscus pathway and the spino-cervico-thalamic tract do not seem to have a counterpart in differences in the synaptic organization of their relay in the VPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkley, K. J. (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon.Journal of Comparative Neurology 193, 283–317.

    PubMed  Google Scholar 

  • Blomqvist, A., Flink, R., Bowsher, D., Griph, S. &Westman, J. (1978) Tectal and thalamic projections of dorsal column and lateral cervical nuclei: a quantitative study in the cat.Brain Research 141, 335–41.

    PubMed  Google Scholar 

  • Blomqvist, A. &Westman, J. (1970) An electron microscopical study of the gracile nucleus in the cat.Acta Societatis Medicorum Upsaliensis 75, 241–52.

    PubMed  Google Scholar 

  • Blomqvist, A., Westman, J. &Wiberg, M. (1983) The ultrastructure of axon terminals from the dorsal column nuclei in the feline ventrobasal thalamus as demonstrated by anterograde transport of lectin-conjugated horseradish peroxidase.Neuroscience Letters Suppl. 14, S32.

    Google Scholar 

  • Boivie, J. (1970) The termination of the cervicothalamic tract in the cat. An experimental study with silver impregnation methods.Brain Research 19, 333–60.

    PubMed  Google Scholar 

  • Boivie, J. (1971) The termination in the thalamus and the zona incerta of fibres from the dorsal column nuclei (DCN) in the cat. An experimental study with silver impregnation methods.Brain Research 28, 459–90.

    PubMed  Google Scholar 

  • Boivie, J. (1983) Anatomic and physiologic features of the spino-cervico-thalamic pathway. InSomatosensory Integration in the Thalamus (edited byMacchi, G., Rustioni, A. &Spreafico, R.), pp. 63–106. Amsterdam: Elsevier.

    Google Scholar 

  • Boivie, J. &Westman, J. (1968) Electron microscopy of medial lemniscal terminal degeneration in the ventral posterolateral thalamic nucleus of the cat.Experientia 24, 159–60.

    PubMed  Google Scholar 

  • Brown, A. G. &Gordon, G. (1977) Subcortical mechanisms concerned in somatic sensation.British Medical Bulletin 33, 121–8.

    PubMed  Google Scholar 

  • Burton, H., Craig, A. D. Jr., Poulus, D. A. &Molt, J. T. (1979) Efferent projections from temperature sensitive recording loci within the marginal zone of the nucleus caudalis of the spinal trigeminal complex in the cat.Journal of Comparative Neurology 183, 753–78.

    PubMed  Google Scholar 

  • Carson, K. A. &Mesulam, M.-M. (1982) Ultrastructural evidence in mice that transganglionically transported horseradish peroxidase-wheat germ agglutinin conjugate reaches the intraspinal terminations of sensory neurons.Neuroscience Letters 29, 201–6.

    PubMed  Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L. &Woolsey, T. A. (1972) The autoradiographic demonstration of axonal connections in the central nervous system.Brain Research 37, 21–51.

    PubMed  Google Scholar 

  • Ellis, L. C. Jr &Rustioni, A. (1981) A correlative HRP, Golgi, and EM study of the intrinsic organization of the feline dorsal column nuclei.Journal of Comparative Neurology 197, 341–67.

    PubMed  Google Scholar 

  • Flink, R. &Westman, J. (1983) The fine structure of axon terminals from the lateral cervical nucleus in the feline ventrobasal thalamus as demonstrated by anterograde transport of lectin-conjugated horseradish peroxidase.Neuroscience Letters Suppl. 14, S116.

    Google Scholar 

  • Gerfen, C. R., O'leary, D. D. M. &Cowan, W. M. (1982) A note on the transneuronal transport of wheat germ agglutinin-conjugated horseradish peroxidase in the avian and rodent visual systems.Experimental Brain Research 48, 443–8.

    Google Scholar 

  • Gonatas, N. K., Harper, C., Mizutani, T. &Gonatas, J. O. (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport.Journal of Histochemistry and Cytochemistry 27, 728–34.

    Google Scholar 

  • Gordon, G. &Paine, C. H. (1960) Functional organization in nucleus gracilis of the cat.Journal of Physiology 153, 331–49.

    PubMed  Google Scholar 

  • Hanker, J. S., Yates, P. E., Metz, C. B. &Rustioni, A. (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase.Histochemical Journal 9, 789–92.

    PubMed  Google Scholar 

  • Haug, H. (1967) Probleme und Methoden der Strukturzählung im Schnittpräparat. InQuantitative Methods in Morphology (edited byWeibel, E. R. &Elias, H.), pp. 58–78. Berlin: Springer-Verlag.

    Google Scholar 

  • Itaya, S. K. &Van Hoesen, G. W. (1982) Wga-Hrp as a transneuronal marker in the visual pathways of monkey and rat.Brain Research 236, 199–204.

    PubMed  Google Scholar 

  • Jones, E. G. (1981) Functional subdivision and synaptic organization of the mammalian thalamus. InInternational Review of Physiology: Neurophysiology IV (edited byPorter, R.), pp. 173–245. Baltimore: University Park Press.

    Google Scholar 

  • Jones, E. G. &Burton, H. (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat.Journal of Comparative Neurology 154, 395–432.

    PubMed  Google Scholar 

  • Jones, E. G. &Powell, T. P. S. (1969a) Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat.Proceedings of the Royal Society of London, Series B 172, 153–71.

    Google Scholar 

  • Jones, E. G. &Powell, T. P. S. (1969b) An electron microscopic study of the mode of termination of cortico-thalamic fibres within the sensory relay nuclei of the thalamus.Proceedings of the Royal Society of London, Series B 172, 173–85.

    Google Scholar 

  • Jones, M. W., Hodge, C. J. Jr., Apkarian, A. V. &Stevens, R. T. (1985) A dorsolateral spinothalamic pathway in cat.Brain Research 335, 188–93.

    PubMed  Google Scholar 

  • Loewy, A. D. &Burton, H. (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat.Journal of Comparative Neurology 181, 421–50.

    PubMed  Google Scholar 

  • Mantyh, P. W. (1983) The terminations of the spinothalamic tract in the cat.Neuroscience Letters 38, 119–24.

    PubMed  Google Scholar 

  • Mesulam, M. -M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents.Journal of Histochemistry and Cytochemistry 26, 106–17.

    PubMed  Google Scholar 

  • Mesulam, M. -M. (1982) Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neuronal pathways — axonal transport, enzyme histochemistry and light microscopic analysis. InTracing Neuronal Connections with Horseradish Peroxidase (edited byMesulam, M.-M.), pp. 1–151. New York: John Wiley.

    Google Scholar 

  • Morest, D. K. (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat.Zeitschrift für Anatomie und Entwicklungsgeschichte 133, 216–46.

    Google Scholar 

  • Mountcastle, V. B. (1984) Central nervous mechanisms in mechanoreceptive sensibility. InHandbook of Physiology. The Nervous System, Vol. III (edited byDarian-Smith, I.), pp. 789–878. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Penny, G. R., Fitzpatrick, D., Schmechel, D. E. &Diamond, I. T. (1983) Glutamic acid decarboxylase-immunoreactive neurons and horseradish peroxidase-labeled projection neurons in the ventral posterior nucleus of the cat and galago senegalensis.Journal of Neuroscience 3, 1868–87.

    PubMed  Google Scholar 

  • Peschanski, M., Lee, C. L. &Ralston, H. J. III. (1984) The structural organization of the ventrobasal complex of the rat as revealed by the analysis of physiologically characterized neurons injected intracellularly with horseradish peroxidase.Brain Research 297, 63–74.

    PubMed  Google Scholar 

  • Rainey, W. T. &Jones, E. G. (1983) Spatial distribution of individual medial lemniscal axons in the thalamic ventrobasal complex of the cat.Experimental Brain Research 49, 229–46.

    Google Scholar 

  • Ralston, H. J. III. (1969) The synaptic organization of lemniscal projections to the ventrobasal thalamus of the cat.Brain Research 14, 99–115.

    PubMed  Google Scholar 

  • Ralston, H. J. III. (1985) The fine structure of the ventrobasal thalamus of the monkey and cat. InD. Albe-Fessard, K. J. Berkley, L. Kruger, H. J. Ralston, III, andW. D. Willis, Diencephalic mechanisms of pain sensation.Brain Research Review,9, 217–96.

  • Ralston, H. J. III. &Herman, M. M. (1969) The fine structure of neurons and synapses in the ventrobasal thalamus of the cat.Brain Research 14, 77–97.

    PubMed  Google Scholar 

  • Ralston, H. J. III., Peschanski, M. &Ralston, D. D. (1984) Fine structure of spinothalamic tract axons and terminals in the rat, cat and monkey demonstrated by the orthograde transport of lectin conjugated to HRP.Pain Suppl. 2, S282.

    Google Scholar 

  • Rastad, J. (1981) Morphology of synaptic vesicles in axo-dendritic and axo-somatic collateral terminals of two feline spinocervical tract cells stained intracellularly with horseradish peroxidase.Experimental Brain Research 41, 390–8.

    Google Scholar 

  • Ricardo, J. A. &Koh, E. T. (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat.Brain Research 153, 1–26.

    PubMed  Google Scholar 

  • Rinvik, E. (1968a) The corticothalamic projection from the gyrus proreus and the medial wall of the rostral hemisphere in the cat. An experimental study with silver impregnation methods.Experimental Brain Research 5, 129–52.

    Google Scholar 

  • Rinvik, E. (1968b) The corticothalamic projection from the second somatosensory cortical area in the cat. An experimental study with silver impregnation methods.Experimental Brain Research 5, 153–72.

    Google Scholar 

  • Rosene, D. L. &Mesulam, M.-M. (1978) Fixation variables in horseradish peroxidase neurohistochemistry. I. The effect of fixation time and perfusion procedures upon enzyme activity.Journal of Histochemistry and Cytochemistry 26, 28–39.

    PubMed  Google Scholar 

  • Rustioni, A. &Sotelo, C. (1974) Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents.Journal of Comparative Neurology 155, 441–68.

    Google Scholar 

  • Rustioni, A., Schmechel, D. E., Cheema, S. &Fitzpatrick, D. (1984) Glutamic acid decarboxylase-containing neurons in the dorsal column nuclei of the cat.Somatosensory Research 1, 329–57.

    PubMed  Google Scholar 

  • Sakumoto, T., Nagai, T., Kimura, H. &Maeda, T. (1980) Electron microscopic visualization of tetramethyl benzidine reaction product on horseradish peroxidase neurohistochemistry.Cellular and Molecular Biology 26, 211–6.

    PubMed  Google Scholar 

  • Salpeter, M. M., Bachmann, L. &Salpeter, E. E. (1969) Resolution in electron microscope autoradiography.Journal of Cell Biology 41, 1–20.

    Google Scholar 

  • Schönitzer, K. &Holländer, H. (1981) Anterograde tracing of horseradish peroxidase (HRP) with the electron microscope using the tetramethylbenzidine reaction.Journal of Neuroscience Methods 4, 373–83.

    PubMed  Google Scholar 

  • Spreafico, R., Schmechel, D. E., Ellis, L. C. Jr. &Rustioni, A. (1983) Cortical relay neurons and interneurons in the n. ventralis posterolateralis of cats: a horseradish peroxidase, electron-microscopic, Golgi and immunocytochemical study.Neuroscience 9, 491–509.

    PubMed  Google Scholar 

  • Stewart, W. A. &King, R. B. (1963) Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus.Journal of Comparative Neurology 121, 271–86.

    PubMed  Google Scholar 

  • Walberg, F. (1965) Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization.Experimental Neurology 13, 218–31.

    PubMed  Google Scholar 

  • Walberg, F. (1966) The fine structure of the cuneate nucleus in normal cats and following interruption of afferent fibres — an electron microscopical study with particular reference to findings made in Glees and Nauta sections.Experimental Brain Research 2, 107–28.

    Google Scholar 

  • Weibel, E. R. &Elias, H. (1967) Introduction to stereological principles. InQuantitative Methods in Morphology (edited byWeibel, E. R. &Elias, H.), pp. 89–98. Berlin: Springer-Verlag.

    Google Scholar 

  • Westman, J. (1968) The lateral cervical nucleus in the cat. II. An electron microscopical study of the normal structure.Brain Research 11, 107–23.

    PubMed  Google Scholar 

  • Westman, J. (1969) The lateral cervical nucleus in the cat. III. An electron microscopical study after transection of spinal afferents.Experimental Brain Research 7, 32–50.

    Google Scholar 

  • Westman, J. (1985) Stereological studies of tmb reacted terminals after axonal transport of WGA-HRP — a possibility to characterize different bouton populations.Acta stereologica (in press).

  • Westman, J., Blomqvist, A., Köhler, C. &Wu, J.-Y. (1984) Light and electron microscopic localization of glutamic acid decarboxylase and substance P in the dorsal column nuclei of the cat.Neuroscience Letters 51, 347–52.

    PubMed  Google Scholar 

  • Willis, W. D. &Coggeshall, R. E. (1978)Sensory Mechanisms of the Spinal Cord. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomqvist, A., Flink, R., Westman, J. et al. Synaptic terminals in the ventroposterolateral nucleus of the thalamus from neurons in the dorsal column and lateral cervical nuclei: an electron microscopic study in the cat. J Neurocytol 14, 869–886 (1985). https://doi.org/10.1007/BF01224802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01224802

Keywords

Navigation