Skip to main content
Log in

CD95/CD95L interactions and their role in autoimmunity

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

CD95 (Fas/Apo-1) is a broadly expressed death receptor involved in a variety of physiological and pathological apoptotic processes. Since its discovery, defects in CD95/CD95L system have been proposed as major pathogenic factors responsible for impaired immunological tolerance to self antigens and autoimmunity. Later, analysis of altered sensitivity to CD95-induced apoptosis in cells targeted by the immune response has revealed an unexpected role for CD95 and CD95L in organ-specific autoimmunity. CD95 has been shown to be expressed and functional in virtually all cell types that are target of the organ-specific autoimmune response. Here we review some of the major findings concerning the role of CD95 in autoimmunity, in dysfunctions due to increased or decreased CD95-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–243.

    Google Scholar 

  2. Leithauser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 1993; 69: 415–429.

    Google Scholar 

  3. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1456.

    Google Scholar 

  4. Takahashi T, Tanaka M, Inazawa J, Abe T, Suda T, Nagata S. Human Fas ligand: Gene structure, chromosomal location and species specificity. Int Immunol 1994; 6: 1567–1574.

    Google Scholar 

  5. Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–1178.

    Google Scholar 

  6. Griffith TS, Ferguson TA. The role of FasL-induced apoptosis in immune privilege. Immunol Today 1997; 18: 240–244.

    Google Scholar 

  7. De Maria R, Testa U, Luchetti L, et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 1999; 93: 796–803.

    Google Scholar 

  8. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 1995; 14: 5579–5588.

    Google Scholar 

  9. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–827.

    Google Scholar 

  10. Van Parijs L, Abbas AK. Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol 1996; 8: 355–361.

    Google Scholar 

  11. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317.

    Google Scholar 

  12. Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994; 76: 969–976.

    Google Scholar 

  13. McNally J, Yoo DH, Drappa J, et al. Fas ligand expression and function in systemic lupus erythematosus. J Immunol 1997; 159: 4628–4636.

    Google Scholar 

  14. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996; 98: 1107–1113.

    Google Scholar 

  15. Vaishnaw AK, Orlinick JR, Chu JL, Krammer PH, Chao MV, Elkon KB. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J Clin Invest 1999; 103: 355–363.

    Google Scholar 

  16. FisherGH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–946.

    Google Scholar 

  17. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–1349.

    Google Scholar 

  18. Vaishnaw AK, Toubi E, Ohsako S, et al. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum 1999; 42: 1833–1842.

    Google Scholar 

  19. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 1996; 335: 1643–1649.

    Google Scholar 

  20. Shustov A, Nguyen P, Finkelman F, Elkon KB, Via CS. Differential expression of Fas and Fas ligand in acute and chronic graft-versus-host disease: Up-regulation of Fas and Fas ligand requires CD8+ T cell activation and IFN-gamma production. J Immunol 1998; 161: 2848–2855.

    Google Scholar 

  21. Via CS, Nguyen P, Shustov A, Drappa J, Elkon KB. A major role for the Fas pathway in acute graft-versus-host disease. J Immunol 1996; 157: 5387–5393.

    Google Scholar 

  22. De Maria R, Testi R. Fas-FasL interactions: A common pathogenetic mechanism in organ-specific autoimmunity. Immunol Today 1998; 19: 121–125.

    Google Scholar 

  23. Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell 1996; 85: 291–297.

    Google Scholar 

  24. Bach MA, Chin E, Bondy CA. The effects of subcutaneous insulin-like growth factor-I infusion in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1994; 79: 1040–1045.

    Google Scholar 

  25. Wicker LS, Todd JA, Peterson LB. Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 1995; 13: 179–200.

    Google Scholar 

  26. Lowin B, Hahne M, Mattmann C, Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–652.

    Google Scholar 

  27. Kagi D, Vignaux F, Ledermann B, et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530.

    Google Scholar 

  28. Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM, Hengartner H. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 1996; 183: 2143–2152.

    Google Scholar 

  29. Benoist C, Mathis D. Cell death mediators in autoimmune diabetes-No shortage of suspects. Cell 1997; 89: 1–3.

    Google Scholar 

  30. Stassi G, De Maria R, Trucco G, et al. Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulindependent diabetes mellitus. J Exp Med 1997; 186: 1193–1200.

    Google Scholar 

  31. Weetman AP, Mcgregor AM. Autoimmune thyroid disease: Further developments in our understanding.Endocr Rev 1994; 15: 788–830.

    Google Scholar 

  32. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med 1996; 335: 99–107.

    Google Scholar 

  33. Dremier S, Golstein J, Mosselmans R, Dumont JE, Galand P, Robaye B. Apoptosis in dog thyroid cells. Biochem Biophys Res Commun 1994; 200: 52–58.

    Google Scholar 

  34. Kotani T, Aratake Y, Hirai K, Fukazawa Y, Sato H, Ohtaki S. Apoptosis in thyroid tissue from patients with Hashimoto's thyroiditis. Autoimmunity 1995; 20: 231–236.

    Google Scholar 

  35. Giordano C, Stassi G, De Maria R, et al. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 1997; 275: 960–963.

    Google Scholar 

  36. Martin SJ, Green DR. Protease activation during apoptosis: Death by a thousand cuts? Cell 1995; 82: 349–352.

    Google Scholar 

  37. Peng SL, Robert ME, Hayday AC, Craft J. A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. J Exp Med 1996; 184: 1149–1154.

    Google Scholar 

  38. Hammond LJ, LowdellMW, Cerrano PG, GoodeAW, Bottazzo GF, Mirakian R. Analysis of apoptosis in relation to tissue destruction associated with Hashimoto's autoimmune thyroiditis. J Pathol 1997; 182: 138–144.

    Google Scholar 

  39. Tanimoto C, Hirakawa S, Kawasaki H, Hayakawa N, Ota Z. Apoptosis in thyroid diseases: A histochemical study. Endocr J 1995; 42: 193–201.

    Google Scholar 

  40. Kawakami A, Eguchi K, Matsuoka N, et al. Modulation of Fas-mediated apoptosis of human thyroid epithelial cells by IgG from patients with Graves' disease (GD) and idiopathic myxoedema. Clin Exp Immunol 1997; 110: 434–439.

    Google Scholar 

  41. Martin R, McFarlandHF, McFarlin DE. Immunological aspects of demyelinating diseases.Annu Rev Immunol 1992; 10: 153–187.

    Google Scholar 

  42. Steinman L. Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 1996; 85: 299–302.

    Google Scholar 

  43. D'Souza SD, Bonetti B, Balasingam V, et al. Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 1996; 184: 2361–2370.

    Google Scholar 

  44. Lee SC, Raine CS. Multiple sclerosis: Oligodendrocytes in active lesions do not express class II major histocompatibility complex molecules. J Neuroimmunol 1989; 25: 261–266.

    Google Scholar 

  45. Bauer J, Ruuls SR, Huitinga I, Dijkstra CD. The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 1996; 28: 83–97.

    Google Scholar 

  46. Olsson T. Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1995; 144: 245–268.

    Google Scholar 

  47. Malipiero U, Frei K, Spanaus KS, et al. Myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis is chronic/relapsing in perforin knockout mice, but monophasic in Fas-and Fas ligand-deficient lpr and gld mice. Eur J Immunol 1997; 27: 3151–3160.

    Google Scholar 

  48. Sabelko KA, Kelly KA, Nahm MH, Cross AH, Russell JH. Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J Immunol 1997; 159: 3096–3099.

    Google Scholar 

  49. Waldner H, Sobel RA, Howard E, Kuchroo VK. Fas-and FasLdeficient mice are resistant to induction of autoimmune encephalomyelitis. J Immunol 1997; 159: 3100–3103.

    Google Scholar 

  50. Dowling P, Shang G, Raval S, Menonna J, Cook S, Husar W. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J Exp Med 1996; 184: 1513–1518.

    Google Scholar 

  51. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 1990; 172: 1025–1033.

    Google Scholar 

  52. Nguyen KB, McCombe PA, Pender MP. Macrophage apoptosis in the central nervous system in experimental autoimmune encephalomyelitis. J Autoimmun 1994; 7: 145–152.

    Google Scholar 

  53. Ashany D, Song X, Lacy E, Nikolik-Zugic J, Friedman SM, Elkon KB. Lymphocytes delete activated macrophages through the Fas/APO-1 pathway. Proc Natl Acad Sci 1995; 92: 11225–11229.

    Google Scholar 

  54. Firestein GS, Yeo M, Zvaifler NJ. Apoptosis in rheumatoid arthritis synovium. J Clin Invest 1995; 96: 1631–1638.

    Google Scholar 

  55. Nakajima T, Aono H, Hasunuma T, et al. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis Rheum 1995; 38: 485–491.

    Google Scholar 

  56. Tsuboi M, Eguchi K, Kawakami A, et al. Fas antigen expression on synovial cells was down-regulated by interleukin 1 beta. Biochem Biophys Res Commun 1996; 218: 280–285.

    Google Scholar 

  57. Kawakami A, Eguchi K, Matsuoka N, et al. Inhibition of Fas antigen-mediated apoptosis of rheumatoid synovial cells in vitro by transforming growth factor beta 1. Arthritis Rheum 1996; 39: 1267–1276.

    Google Scholar 

  58. Hasunuma T, Kayagaki N, Asahara H, et al. Accumulation of soluble Fas in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 1997; 40: 80–86.

    Google Scholar 

  59. Sugiyama M, TsukazakiT, Yonekura A, Matsuzaki S, Yamashita S, Iwasaki K. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis 1996; 55: 442–449.

    Google Scholar 

  60. Salmon M, Scheel-Toellner D, Huissoon AP, et al. Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest 1997; 99: 439–446.

    Google Scholar 

  61. TheofilopoulosAN, Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol 1985; 37: 269–390.

    Google Scholar 

  62. Miyasaka N, Nakamura T, Russell IJ, Talal N. Interleukin 2 deficiencies in rheumatoid arthritis and systemic lupus erythematosus. Clin Immunol Immunopathol 1984; 31:109–117.

    Google Scholar 

  63. Kong L, Ogawa N, Nakabayashi T, et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjogren's syndrome. Arthritis Rheum 1997; 40: 87–97.

    Google Scholar 

  64. Strater J, Wellisch I, Riedl S, et al. CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: A possible role in ulcerative colitis. Gastroenterology 1997; 113: 160–167.

    Google Scholar 

  65. Strater J, Koretz K, Gunthert AR, Moller P. In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut 1995; 37: 819–825.

    Google Scholar 

  66. Eastwood GL. Gastrointestinal epithelial renewal. Gastroenterology 1977; 72: 962–975.

    Google Scholar 

  67. Hall PA, Coates PJ, Ansari B, Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: The importance of apoptosis. J Cell Sci 1994; 107: 3569–3577.

    Google Scholar 

  68. Iwamoto M, Koji T, Makiyama K, Kobayashi N, Nakane PK. Apoptosis of crypt epithelial cells in ulcerative colitis. J Pathol 1996; 180: 152–159.

    Google Scholar 

  69. De Maria R, Boirivant M, Cifone MG, et al. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest 1996; 97: 316–322.

    Google Scholar 

  70. Ueyama H, Kiyohara T, Sawada N, et al. High Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut 1998; 43: 48–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricci-Vitiani, L., Conticello, C., Zeuner, A. et al. CD95/CD95L interactions and their role in autoimmunity. Apoptosis 5, 419–424 (2000). https://doi.org/10.1023/A:1009668212375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009668212375

Navigation