Skip to main content
Log in

Experimental measurements and modelling of the structure of the radial electric field in RFX

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The experimental determination of the radial electric fieldE r and the associatedE ×B drift velocity at the edge of RFX is presented and possible mechanisms responsible for its generation are discussed.E r measurements by means of an array of Langmuir probes and those deduced from Doppler spectroscopy of impurity lines agree fairly well. In particular the rotation velocity of the plasma edge has been determined from the Doppler shift of a C III emission line. The observation of other ions characterised by different radial positions, such as B IV and C V, has allowed an estimate of the velocity shear. Typical values of plasma rotation at the edge are around 10 km/s while the velocity shear is of the order of (105−106)s−1 in the spontaneous layer, a few cm thick, usually observed in standard discharges. Plasma rotation has been artificially modified by both positive and negative edge biasing and the associated increase or decrease of the fluid velocity is well in agreement with the radial electric field change. The modification ofE r during edge biasing and Pulsed Poloidal Current Drive (PPCD) are also reported and interpreted within a momentum balance model. Analytical and self-consistent Monte Carlo models at the plasma edge suggest that impurities have a relevant role in the generation of the radial electric field, due to their relatively large Larmor radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Burrel: Phys. Plasmas4 (1997) 1499.

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Biglari, P.H. Diamond, P.W. Terry: Phys. Fluids B2 (1990) 1.

    Article  ADS  Google Scholar 

  3. K.C. Shaing, E.C. Crume, W.A. Houlberg: Phys. Fluids B2 (1990) 1492.

    Article  ADS  Google Scholar 

  4. B.A. Carreras, et al.: Phys. Fluids B4 (1992) 3115.

    Article  ADS  Google Scholar 

  5. V. Antoni, et al.: Phys. Rev. Lett.80 (1998) 4185.

    Article  ADS  Google Scholar 

  6. B.E. Chapman, et al.: Phys. Rev. Lett.80 (1998) 2137.

    Article  ADS  Google Scholar 

  7. V. Antoni, et al.: Nucl. Fusion36 (1996) 435.

    Article  ADS  Google Scholar 

  8. V. Antoni, et al.: Phys. Rev. Lett.79 (1997) 4814.

    Article  ADS  Google Scholar 

  9. L. Carraro, et al.: Plasma Phys. Control. Fusion40 (1998) 1021.

    Article  ADS  Google Scholar 

  10. L. Carraro, et al.: Plasma Phys. Control. Fusion42 (2000) 731.

    Article  ADS  Google Scholar 

  11. R. Bartiromo: Phys. Plasmas5 (1998) 3342.

    Article  ADS  Google Scholar 

  12. F. Sattin, et al.: inProc. 25th EPS Conf. on Controlled Fusion and Plasma Physics, The European Physics Society, ECA22C (1998) 778.

    Google Scholar 

  13. D. Desideri, et al.: Czech. J. Phys.49, Suppl. S3 (1999) 119.

    Google Scholar 

  14. V. Antoni, et al.: Plasma Phys. Control. Fusion42 (2000) 83.

    Article  ADS  Google Scholar 

  15. R. Bartiromo, et al.: Phys. Rev. Lett.82 (1999) 1462.

    Article  ADS  Google Scholar 

  16. V. Antoni, et al.: Plasma Phys. Control. Fusion42 (2000) 893.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoni, V., Bartiromo, R., Carraro, L. et al. Experimental measurements and modelling of the structure of the radial electric field in RFX. Czech J Phys 50, 1387–1396 (2000). https://doi.org/10.1023/A:1022843529120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022843529120

Keywords

Navigation