Skip to main content
Log in

Halotolerance of the yeast Arxula adeninivorans LS3

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The non-pathogenic, dimorphic, ascomycetous yeast Arxula adeninivorans LS3 is halotolerant. It can grow in a minimal medium containing up to 20% NaCl. The growth parameters are only weakly influenced by 10% NaCl. However, NaCl in a concentration higher than 10% causes a decrease in the specific growth rate, a longer adaptation phase and a lower cell count in the stationary growth phase. Concentrations of glycerol and trehalose, which differed 100-fold in magnitude in a salt free medium, are also influenced differently by salt. NaCl induces accumulation of intracellular glycerol in exponentially growing cells but a reduced concentration of intracellular trehalose in stationary cells. Transcripts of the genes ARFC3, encoding a component of the replication factor C, and GAA, encoding a secretory glucoamylase, can be detected only in cells cultured in media with NaCl concentrations below 10%. Furthermore, NaCl in high concentration reduces the level of secreted proteins including glucoamylase end invertase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler L & Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch. Microbiol. 124: 123–130

    Google Scholar 

  • Adler L, Blomberg A & Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J. Bacteriol. 162: 300–306

    PubMed  Google Scholar 

  • Araujo PS, Panek AC, Ferreira R & Panek AD (1989) Determination of trehalose in biological samples by simple and stable trehalase preparation. Anal. Biochem. 176: 432–436

    PubMed  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 225: 259–263

    PubMed  Google Scholar 

  • Blomberg A & Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NADC) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171: 1087–1092

    PubMed  Google Scholar 

  • Blomberg A & Adler L (1992) Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 33: 145–212

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254

    Article  PubMed  Google Scholar 

  • Brown AD & Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen Microbiol. 72: 589–591

    PubMed  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv. Microbiol. Physiol. 17: 181–242

    Google Scholar 

  • Bui DM, Kunze I, Förster S, Wartmann T, Horstmann C, Manteuffel R & Kunze G (1996a) Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 44: 610–619

    Google Scholar 

  • Bui DM, Kunze I, Horstmann C, Schmidt T, Breunig KD & Kunze G (1996b) Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 45: 102–106

    PubMed  Google Scholar 

  • Buttner R, Bode R & Birnbaum D (1987) Purification and characterization of the extracellular glucoamylase from the yeast Trichosporon adeninovorans. J. Basic Microbiol. 27: 299–308

    Google Scholar 

  • Crowe JH, Crowe LM & Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701–703

    Google Scholar 

  • Davis E, Larkins BA & Knight RH (1972) Polyribosomes from peas. An improved method for their isolation in the absence of ribonuclease inhibitors. Plant Physiol. 50: 581–584

    Google Scholar 

  • Edgley M & Brown AD (1983) Yeast water relations: physiological changes induced by solute stress in Saccaromyces rouxii. J.Gen. Microbiol. 129: 3453–3463

    Google Scholar 

  • Garcia MJ, Rios G, Ali R, Belles JM & Serrano R (1997) Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 143: 1125–1131

    PubMed  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R & Hofemeister J (1990) The yeast genus Trichosporon spec. LS3: molecular characterization of genomic complexity. Zbl. Mikrobiol. 145: 3–12

    Google Scholar 

  • Gustafsson L & Norkrans B (1976) On the mechanism of salt tolerance: production of glycerol and heat during growth of Debaryomyces hansenii Arch. Microbiol. 110: 177–183

    Google Scholar 

  • Haro R, Garciadeblas B & Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291: 189–191

    PubMed  Google Scholar 

  • Hohmann S (1997) Shaping up: the response of yeast to osmotic stress. In: Hohmann S & Mager WH (Eds) Yeast stress responses (pp 101–145), RG Landes, Austin, TX

    Google Scholar 

  • Hottinger T, Boller T & Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220: 113–115

    PubMed  Google Scholar 

  • Hounda C-G, Vincent Brandt E, Thevelein J, Hohmann S & Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671–680

    PubMed  Google Scholar 

  • Kunze G & Kunze I (1994a) Characterization of Arxula adeninivorans strains from different habitats. Antonie van Leeuwenhoek 65: 29–34

    PubMed  Google Scholar 

  • Kunze G & Kunze I (1994b) Comparative study of morphological characteristics and secretory invertase activities of Arxula adeninivorans. Microbiol. Europe 2: 24–28

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during assembly of the head of bacteriophage T4. Nature (London) 227: 680–685

    Google Scholar 

  • Lages F & Lucas C (1995) Characterization of a glycerol/HC symport in the halotolerant yeast Pichia sorbitophila Yeast 11: 111–119

    Google Scholar 

  • Larsson C & Gustafsson L (1987) Glycerol production relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358–363

    PubMed  Google Scholar 

  • Larsson C & Gustafsson L (1993) The role of physiological state in osmotolerance of the salt-tolerant yeast Debaryormyces hansenii. Can. J. Microbiol. 39: 603–609

    Google Scholar 

  • Lillie SH & Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. J. Bacteriol. 143: 1384–1394

    PubMed  Google Scholar 

  • Londesborough J & Vuorio O (1991) Trehalose-6-phosphate synthase/ phosphatase complex from baker's yeast: purification of a proteolytically activated form. J. Gen. Microbiol. 137: 323–830

    PubMed  Google Scholar 

  • Middelhoven WJ, Hoogkamer-Te Niet MC & Kreger van Rij NJW (1984) Trichosporon adeninvorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary nalkylamines as the sole source of carbon, nitrogen and energy.Antonie van Leeuwenhoek 50: 369–387

    PubMed  Google Scholar 

  • Middelhoven WJ, de Jonge IM & de Winter M (1991) Arxula adeninivorans a yeast assimilating many nitrogenous and aromatic compounds. Antonie van Leeuwenhoek 59: 129–137

    PubMed  Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B & Gelpke MDS (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62: 181–187

    PubMed  Google Scholar 

  • Neves ML, Oliveira RP & Lucas CM (1997) Metabolic flux response to salt-induced stress in the halotolerant yeast Debaryomyces hansenii. Microbiology 143: 1133–1139

    PubMed  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC & Ramos J (1997) Physiological basis for the high salt tolerance of Dabaryomyces hansenii. Appl. Environ. Microbiol. 63: 4005–4009

    PubMed  Google Scholar 

  • Rausch T, Kirsch M, Low R, Lehr A, Viereck R & Zhigang A (1996) Salt stress responses of higher plants: the role of proton pumps and Na+/HC+-antiporters. J. Plant Physiol. 148: 425–433

    Google Scholar 

  • Rösel H & Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr. Genet. 28: 360–366

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Stoltenburg R, Wartmann T, Kunze I & Kunze G (1995) Reliable method to prepare RNA from free and membrane-bound polysomes from different yeast species. Bio/Technology 18: 564–568

    Google Scholar 

  • Stoltenburg R, Lösche O, Klapach G & Kunze G (1999) Molecular cloning and expression of the ARFC3 gene, a component of the replication factor C from the salt-tolerant, dimorphic yeast Arxula adeninivorans. Curr. Genet. 35: 8–13

    PubMed  Google Scholar 

  • Tanaka A, Ohnishi N & Fukui S (1967). Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B by Candida albicans in hydrocarbon medium. J. Ferment. Technol. 45: 617–623

    Google Scholar 

  • Thevelein JM (1988) Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Exp. Mycol. 12: 1–12

    Google Scholar 

  • Van der Walt JP, Smith MT & Yamada Y (1990) Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus. Antonie van Leeuwenhoek 57: 59–61

    PubMed  Google Scholar 

  • Wartmann T, Kunze I, Bui MD, Manteuffel R & Kunze G (1995a) Comparative biochemical, genetical and immunological studies of glucoamylase producing Arxula adeninivorans strain. Microbiol. Res. 150: 113–120

    PubMed  Google Scholar 

  • Wartmann T, Krüger A, Adler K, Bui MD, Kunze I & Kunze G (1995b) Temperature-dependent dimorphism of the yeast Arxula adeninivorans LS3. Antonie van Leeuwenhoek 68: 215–223

    PubMed  Google Scholar 

  • Wartmann T, Erdmann J, Kunze I & Kunze G (2000) Morphologyrelated effects on gene expression and protein accumulation of the yeast Arxula adeninivorans LS3.

  • Yagi T (1988) Intracellular levels of glycerol necessary for initiation of growth under salt-stressed conditions in a salt-tolerant yeast, Zygosaccharomyces rouxii. FEMS Microbiol. Lett. 49: 25–30

    Google Scholar 

  • Yagi T & Tada K (1988) Isolation and characterization of saltsensitive mutants of a salt-tolerant yeast Zygosaccharomyces rouxii. FEMS Microbiol. Lett. 49: 317–321

    Google Scholar 

  • Yagi T (1991) Effects of increases and decreases in the external salinity on the intracellular glycerol and inorganic ion content in the salt-tolerant yeast. Microbios 68: 109–117

    Google Scholar 

  • Yagi T (1992) Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii. Microbios 70: 93–102

    PubMed  Google Scholar 

  • Yagi T & Nishi T (1993) Regulation of intracellular osmotic pressure and changes in intracellular proteins during the initial stages of salt stress in Zygosaccharomyces strains exhibiting differences in salt-tolerance. Microbios 74: 155–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XX., Wartmann, T., Stoltenburg, R. et al. Halotolerance of the yeast Arxula adeninivorans LS3. Antonie Van Leeuwenhoek 77, 303–311 (2000). https://doi.org/10.1023/A:1002636606282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002636606282

Navigation