Skip to main content
Log in

Heat transfer in turbulent pipe flow based on a new mixing length model

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A new model for the heat transfer in turbulent pipe flow is presented based on a modified form of the mixing length theory developed by Cebeci [1] for boundary layer flow problems. The model predicts the velocity and temperature distributions and the Nusselt number for fluids with low, medium and high Prandtl numbers (Pr=.02 to 15) and fits the available experimental data very accurately for values of Reynolds number exceeding 104. Expressions for the eddy conductivity and for the turbulent Prandtl number are presented and shown to be dependent upon the Reynolds number, the Prandtl number, and the distance from the tube wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A + :

damping factor for eddy viscosity

a :

tube radius, \(a^ + = a\sqrt {\tau _{\text{W}} /\rho /\upsilon }\)

B + :

damping factor for eddy conductivity

C p :

specific heat at constant pressure

k :

thermal conductivity

k m , k n :

mixing length constants for momentum and heat, respectively

l :

mixing length, \(l^ + = l\sqrt {\tau _{\text{W}} /\rho /\upsilon }\)

N u :

Nusselt number

Pr, PR :

Prandtl number, ν/2

Pe :

Péclet number, Pe=Re Pr

p :

static pressure

q :

heat flux

Re, RE :

Reynolds number, u(2a)/ν

r :

radial coordinate

St :

Stanton number

T :

temperature, \(T^ + = \frac{{(T_{\text{W}} - T)C_{p\tau {\text{w}}} }}{{q\sqrt {\tau _{\text{w}} /} \rho }}\)

u :

axial velocity, \(u^ + = u/\sqrt {\tau _{\text{w}} /\rho }\)

x :

axial coordinate

y :

transverse coordinate normal to the wall, \(y^ + = y\sqrt {\tau _{\text{w}} /\rho /\upsilon }\)

α :

thermal diffusivity

μ :

viscosity

ε m, ε h :

kinematic eddy viscosity and eddy conductivity, respectively

ν :

kinematic viscosity

ρ :

density

τ :

shear stress

b :

bulk

h:

heat

m:

mixed mean

w:

at wall

References

  1. Dittus, F. W. and L. M. K. Boelter, University of California Publication in Engineering, 2 (1930) 443.

    MATH  Google Scholar 

  2. McEligot, D. M., L. W. Ormand, and H. C. Perkins, J. of Heat Transfer, Trans. ASME, Series C, 88 (1966) 239.

    Google Scholar 

  3. Martinelli, R. C. Trans. ASME, 69 (1947) 947.

    Google Scholar 

  4. Kinney, R. B. and E. M. Sparrow, J. of Heat Transfer, Trans. ASME, Series C, 92 (1970) 117.

    Google Scholar 

  5. Cebeci, T., “A Model for eddy-conductivity and Turbulent Prandtl number,” Rept. No. MDC — JO747101, Douglas Aircraft Company, Long Beach, California, May 1970.

  6. Reynolds, O., Scientific Papers of Osborne Reynolds, Vol. ii, Cambridge, University Press, London, 1901.

    Google Scholar 

  7. Prandtl, L., Z. Physik, 11 (1910) 1072.

    MATH  Google Scholar 

  8. Jenkins, R., “Variation of the Eddy Conductivity with Prandtl Modulus and Its Use in Prediction of Turbulent Heat Transfer Coefficients,” Proc. Heat Transfer and Fluid Mechanics Institute, 1951, pp. 147–158.

  9. Rohsenow, W. M. and H. Y. Choi, Heat, Mass and Momentum Transfer, Prentice-Hall, New Yersey, 1961.

    Google Scholar 

  10. Deissler, R. G., “Analysis of Turbulent Heat Transfer, Mass Transfer and Fluid Friction in Smooth Tubes at High Prandtl Number and Schmidt Number,” NACA Rep. 1210, 1955.

  11. Tyldesley, J. R. and R. S. Silver, International J. of Heat and Mass Transfer, 11 (1968) 1325.

    Article  Google Scholar 

  12. Nikuradse, J., Gesetzmâsigkeit der Turbulenten Strömung in glatten Röhren, Forsch. Arb. Ing.-Wes., No. 356, 1932.

  13. Merkine, L., A. Solan and Y. Winograd, J. of Heat Transfer, Trans. ASME, Series C, 93 (1971) 242.

    Google Scholar 

  14. Thomas, L. C., J. of Heat Transfer, Trans. ASME, 92 (1970) 565.

    Google Scholar 

  15. Simpson, R. L., D. G. Whitton and R. J. Moffat, “An Experimental Study of the Turbulent Prandtl Number of Air with Injection and Suction,” International J. of Heat and Mass Transfer 13 (1970) 125.

    Article  Google Scholar 

  16. McAdams, W. H., Heat Transmission, 3rd Edition, McGraw-Hill Book Co., 1954, Fig. 9.8.

  17. Lawn, C. J., J. of Heat Transfer, Trans. ASME, Series C, 91, (1969) 532; see Figs. 1 and 2.

    Google Scholar 

  18. Gowen, R. A. and J. W. Smith, Chem. Eng. Sci. 22 (1967) 1701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, T.Y., Habib, I.S. Heat transfer in turbulent pipe flow based on a new mixing length model. Appl. Sci. Res. 28, 302–314 (1973). https://doi.org/10.1007/BF00413075

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413075

Keywords

Navigation