Skip to main content
Log in

Immunoreactive Endozepine-like Peptides in the Brain and Pituitary of the Atlantic Hagfish, Myxine Glutinosa

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Endozepines are a family of peptides capable of displacing benzodiazepines from their specific binding sites, to which belong the diazepam-binding inhibitor and the octadecaneuropeptide (ODN). This paper reports the distribution of ODN-related peptides, investigated for the first time by immunocytochemistry, in different brain and pituitary regions of the Atlantic hagfish, Myxine glutinosa. Immunoreactive ODN-like material was found in the telencephalon at the level of bundles of different olfactory nerve fibres. Moreover, at the level of the pallium, immunoreactive multipolar neurons were observed in the pars parvocellularis of the stratum griseum superficialis. Similar immunopositive nerve cell bodies were found in the nucleus medialis of the central prosencephalic complex. In the mesencephalon, few immunoreactive neurons lining and contacting the mesencephalic ventricle were detected; such nerve cells could be involved in the regulation of cerebrospinal fluid homeostasis. Dorsally in the mesencephalon, numerous ODN-containing cell bodies were present in the area praetectalis. The rhomboencephalon was immunostained only in the octavolateral area and in the nucleus motorius magnocellularis of the trigeminal nerve. Furthermore, ODN immunoreactivity was also present in the nerve cells of ganglia of the ophthalmic division of the trigeminal nerve complex. The immunocytochemical patterns described here in the brain of M. glutinosa suggest an involvement of ODN-like peptides as neuromodulators in sensory pathways, such as olfactory and visual. Finally, ODN-like substances were localized in discrete populations of adenohypophysial cells and in tanycytes lining the neurohypophyseal walls, suggesting for endozepines a paracrine and/or endocrine control of pituitary hormones release and a neurohormone role respectively. These results could give new insights into the chemioarchitecture of the brain of myxinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alho E, Costa E, Ferrero P, Fujimoto M, Cosenza-Murphy D, Guidotti A (1985) Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science 229: 179-181.

    Google Scholar 

  • Alho H, Vaalasti A, Podkletnova I, Rechardt L (1993) Expression of diazepam-binding inhibitor peptide in human skin: an immunohistochemical and ultrastructural study. J Invest Dermatol 101: 800-803.

    Google Scholar 

  • Ball JA, Burnet PWJ, Fountain BA, Ghatei MA, Bloom SR (1986) Octadecaneuropeptide, benzodiazepine ligand, like immunoreactivity in rat central nervous system, plasma, and peripheral tissues. Neurosci Lett 72: 183-188.

    Google Scholar 

  • Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall PF, Shively JE (1989) Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sci USA 86: 4897-4901.

    Google Scholar 

  • Bovolin P, Schlichting J, Miyata M, Ferrarese C, Guidotti A, Alho H (1990) Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul Peptides 29: 267-281.

    Google Scholar 

  • Chen ZW, Agerberth B, Gell K, Andersson M, Mutt V, Ostenson CG, Efendic S, Barros-Soderling J, Persson B, Jornvall H (1988) Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release. Eur J Biochem 174: 239-245.

    Google Scholar 

  • Chiba A, Honma Y, Oka S (1993) Immunohistochemical localization of neuropeptide Y-like substance in the brain and hypophysis of the brown hagfish, Paramyxine atami. Cell Tissue Res 271: 289-295.

    Google Scholar 

  • DeBernardi M, Crowe R, Mocchetti I, Shows T, Eddy R, Costa E (1988) Chromosomal localization of the human diazepam binding inhibitor gene. Proc Natl Acad Sci USA 85: 6561-6565.

    Google Scholar 

  • Donald JA, Vomachka AJ, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the brain and hearts of the spiny dogfish Squalus acanthias and the atlantic hagfish Myxine glutinosa. Cell Tissue Res 270: 535-545.

    Google Scholar 

  • Dores RM, Gorbman A (1990) Detection of met-enkephalin and leu-enkephalin in the brain of the hagfish, Eptatretus stouti, and the lamprey, Petromyzon marinus. Gen Comp Endocrinol 77: 489-499.

    Google Scholar 

  • Fernholm B (1972) Ultrastructure of the adenohypophysis of Myxine glutinosa. Z Zellforsch Mikrosk Anat 132: 451-472.

    Google Scholar 

  • Ferrarese C, Appollonio I., Bianchi G, Frigo M, Marzorati C, Pecora N, Perego M, Pierpaoli C, Frattola L (1993) Benzodiazepine receptors and diazepam binding inhibitor: a possible link between stress, anxiety and the immune system. Psychoneuroendocrinology 18: 3-22.

    Google Scholar 

  • Givalois L, Li S, Pelletier G (1999) Differential involvement of adrenal and gonadal steroids in anterior and intermediate pituitary pro-opiomelanocortin mRNA expression induced by the endogenous benzodiazepine, octadecaneuropeptide, in adult male rats. J Endocrinol 161: 307-316.

    Google Scholar 

  • Gorbman A, Kobayashi H, Uemura H (1963) The vascularisation of the hypophysial structures of the hagfish. Gen Comp Endocrinol 3: 505-514.

    Google Scholar 

  • Henderson EN (1972) Ultrastructure of the neurohypophysial lobe of the hagfish Epatretus stouti (Cyclostomata). Acta Zool (Stockh.) 53: 243-266.

    Google Scholar 

  • Jansen J (1930) The brain of Myxine glutinosa. J Comp Neurol 49: 359-507.

    Google Scholar 

  • Jirikowski G, Erhart G, Grimmelikhuijzen CJP, Triepel J, Patzner RA (1984) FMRF-amide-like immunoreactivity in brain and pituitary of the hagfish Eptatretus burgeri (Cyclostomata). Cell Tissue Res 237: 363-366.

    Google Scholar 

  • Johansson O, Hilliges M, Ostenson CG, Sandberg E, Efendic S, Mutt V (1991) Immunohistochemical localization of porcine diazepam-binding inhibitor (DBI) to rat endocrine pancreas. Cell Tissue Res 263: 395-398.

    Google Scholar 

  • Kavaliers M, Hirst M (1986) An octadecaneuropeptide (ODN) derived from diazepam binding inhibitor increases aggressive interactions in mice. Brain Res 383: 343-349.

    Google Scholar 

  • Knudsen J, Hojrup P, Hansen HO, Hansen HF, Roepstroff P (1989) Acyl-CoA-binding protein in the rat. Purification, binding characteristics, tissue concentrations and amino acid sequence. Biochem J 26: 513-519.

    Google Scholar 

  • Kobayashi H, Uemura H (1972) The neurohypophysis of the hagfish, Eptatretus burgeri (Girard). Gen Comp Endocrinol 3 (suppl): 114-124.

    Google Scholar 

  • Kuhlenbeck H (1975) The Central Nervous System of Vertebrates. Vol. 5, Part I: Derivatives of the Prosencephalon: Diencephalon and Telencephalon. Basel: S. Karger press.

    Google Scholar 

  • Malagon M, Vallarino M, Tonon MC, Vaudry H (1992a) Localization and characterization of diazepam-binding inhibitor (DBI)-like peptides in the brain and pituitary of the trout (Salmo gairdneri). Brain Res 576: 208-214.

    Google Scholar 

  • Malagon M, Vaudry H, Vallarino M, Gracia-Navarro F, Tonon MC (1992b) Distribution and characterization of endozepine-like immunoreactivity in the central nervous system of the frog Rana ridibunda. Peptides 13: 99-107.

    Google Scholar 

  • Marquardt H, Todaro GJ, Shoyab M (1986) Complete amino acid sequences of bovine and human endozepines. J Biol Chem 261: 9727-9731.

    Google Scholar 

  • Mocchetti I, Einstein R, Brosius J (1986) Putative diazepam binding inhibitor peptide: cDNA clones from rat. Proc Natl Acad Sci USA 83: 7221-7225.

    Google Scholar 

  • Nishizawa H, Kishida R, Kadota T, Goris RC (1988) Somatotopic organization of the primary sensory trigeminal neurons in the hagfish, Eptatretus burgeri. J Comp Neurol 267: 281-295.

    Google Scholar 

  • Nozaki M, Gorbman A (1983) Immunocytochemical localization of somatostatin and vasotocin in the brain of the pacific hagfish, Eptatretus stouti. Cell Tissue Res 229: 541-550.

    Google Scholar 

  • Ohtomi M, Fujii K, Kobayashi H (1989) Distribution of FMR Famide-like immunoreactivity in the brain and neurohypophysis of the lamprey, Lampetra japonica. Cell Tissue Res 256: 581-584.

    Google Scholar 

  • Olsson R (1959) The neurosecretory hypothalamus-system and the adenohypophysis of Myxine. Z Zellforsch Mikrosk Anat 51: 97-107.

    Google Scholar 

  • Ostenson CG, Ahren B, Karlsson S, Sandberg E, Efendic S (1990) Effects of porcine diazepam-binding inhibitor on insulin and glucagon secretion in vitro from the rat endocrine pancreas. Regul Peptides 29: 143-151.

    Google Scholar 

  • Papadopoulos V, Berkovich A, Krueger KE, Costa E, Guidotti A (1991) Diazepam binding inhibitor and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors. Endocrinology 129: 1481-1488.

    Google Scholar 

  • Pestarino M (1994) A possible immunomodulatory role of endozepinelike peptides in a tunicate. Ann NY Acad Sci 712: 365-367.

    Google Scholar 

  • Rhèaume E, Tonon MC, Smih F, Simard J, Dèsy L, Vaudry H, Pelletier G (1990) Localization of the endogenous benzodiazepine ligand octadecaneuropeptide in the rat testis. Endocrinology 127: 1986-1994.

    Google Scholar 

  • Ronan M (1988) The sensory trigeminal tract of Pacific hagfish. Primary afferent projections and neurons of the tract nucleus. Brain Behav Evol 32: 169-180.

    Google Scholar 

  • Slobodyansky E, Guidotti A, Wambebe C, Berkovich A, Costa E (1989) Isolation and characterization of a triakontatetraneuropeptide (TTN), a post-translational product of diazepam binding inhibitor: specific action at the Ro5-4864 recognition sites. J Neurochem 53: 1276-1284.

    Google Scholar 

  • Tong Y, Tonon MC, Desy L, Nicolas P, Vaudry H, Pelletier G (1990) Localization of the endogenous benzodiazepine receptor ligand octadecaneuropeptide (ODN) and peripheral type benzodiazepine receptors in the rat pituitary. J Neuroendocrinol 2: 189-192.

    Google Scholar 

  • Tonon MC, Dèsy L, Nicolas P, Vaudry H, Pelletier G (1990) Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain. Neuropeptides 15: 17-24.

    Google Scholar 

  • Tsuneki K, Adachi T, Ishii S, Oota Y (1976) Morphometric classification of neurosecretory granules in the neurohypophysis of the hagfish, Eptatretus burgeri. Cell Tissue Res 166: 145-157.

    Google Scholar 

  • Wicht H, Nieuwenhuys R (1997) Hagfishes (Myxinoidea). In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C, eds. The Central Nervous System of Vertebrates, Vol. 1. Heidelberg: Springer Press, pp 497-549.

    Google Scholar 

  • Wicht H, Northcutt RG (1990) Retinofugal and retinopetal projections in the Pacific hagfish, Eptatretus stouti. Brain Behav Evol 36: 315-328.

    Google Scholar 

  • Wicht H, Northcutt RG (1994) An immunohistochemical study of the telencephalon and the diencephalon in a myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav Evol 43: 140-161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candiani, S., Augello, A., Oliveri, D. et al. Immunoreactive Endozepine-like Peptides in the Brain and Pituitary of the Atlantic Hagfish, Myxine Glutinosa. Histochem J 32, 415–421 (2000). https://doi.org/10.1023/A:1004091204806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004091204806

Keywords

Navigation