Skip to main content
Log in

Effects of 2-picoline on zinc electrowinning from acidic sulfate electrolyte

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The behaviour of 2-picoline with and without antimony during electrowinning of zinc from acidic sulfate solutions was studied and was compared with that of gum arabic which is commonly used in industry as a levelling agent. The effects of these additives on current efficiency, power consumption, deposit quality, polarization behaviour, crystallographic orientation and surface morphology were determined. The addition of 2-picoline reduced current efficiency, increased power consumption and lowered the surface quality of electrowon zinc. Addition of antimony increased current efficiency, reduced power consumption and produced improved surface morphology and crystal orientations, (101) (112) (102) (103) (114) over a wide range of their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mansfield and S. Gilman, J. Electrochem. Soc. 117 (1970) 1521.

    Google Scholar 

  2. Idem, ibid.. 117 (1970) 1150.

    Google Scholar 

  3. [2]|Idem, ibid.. 117 (1970) 588.

    Google Scholar 

  4. J. W. Diggle and A. Damjanovic, ibid.. 119 (1972) 1649.

    Google Scholar 

  5. V. V. Romanov, Sov. Electrochem. 7 (1971) 1400.

    Google Scholar 

  6. S. Higuchi and Y. Miyake, Denki Kagaku. (Japan) 39 (1971) 896.

    Google Scholar 

  7. S. Higuchi, S. Takahashi and Y. Miyake, ibid.. 39 (1971) 522.

    Google Scholar 

  8. I. N. Justinijanovic, J. N. Jovicevic and A. R. Despic, J. Appl. Electrochem. 3 (1973) 193.

    Google Scholar 

  9. J. Bressan and R. Wiart, ibid.. 7 (1977) 505.

    Google Scholar 

  10. Idem, ibid.. 9 (1979) 43.

    Google Scholar 

  11. D. L. Piron, D. Mathieu and M. D'Amboise, Canad. J. Chem. Engg. 65 (1981) 685.

    Google Scholar 

  12. D. J. MacKinnon, J. M. Brannen and R. M. Morrison, J. Appl. Electrochem. 18 (1988) 212.

    Google Scholar 

  13. D. J. MacKinnon and J. M. Brannen, ibid.. 12 (1982) 21.

    Google Scholar 

  14. D. J. MacKinnon, J. N. Brannen and R. M. Morrison, ibid.. 12 (1982) 39.

    Google Scholar 

  15. B. K. Thomas and D. J. Fray, ibid.. 11 (1981) 677.

    Google Scholar 

  16. A. Hosny, Hydrometallurgy 32 (1993) 261.

    Google Scholar 

  17. M. Karavasteva and St. Karaivanov, J. Appl. Electrochem. 23 (1993) 763.

    Google Scholar 

  18. M. Karavasteva, Hydrometallurgy 35 (1994) 391.

    Google Scholar 

  19. R. S. Dubey, S. N. Upadhyay and J. S. Choudhary, J. Electrochem. Soc. India 42 (1993) 239.

    Google Scholar 

  20. Kirk-Othmer, ‘Encyclopedia of Chemical Technology’, vol. 7, Corrosion and Corrosion Inhibitors, Wiley Interscience, New York, (1982) p. 135.

    Google Scholar 

  21. H. C. Brown, Trans. Inst. Met. Finish 43 (1969) 63.

    Google Scholar 

  22. W. Gundel and W. Strauss, US Patent 2876177 (1959).

  23. N. Hackerman and H. Haeshe, J. Electrochem. Soc. 105 (1958) 191.

    Google Scholar 

  24. D. J. MacKinnon, R. M. Morrison, J. E. Mouland and P. E. Warren, J. Appl. Electrochem. 20 (1990) 728.

    Google Scholar 

  25. D. J. Robinson and T. J. O'Keefe, ibid.. 6 (1976) 1.

    Google Scholar 

  26. S. E. Afifi, A. R. Ebaid, M. M. Hegazy and A. K. Barakat, J. Metals 44 (1992) 32.

    Google Scholar 

  27. R. C. Kerby and T. R. Ingraham, Mines Branch Research Report, R. 243, Department of Engineering, Mines and Resources, Ottawa (1971).

    Google Scholar 

  28. U. F. Turomshina and V. V. Stender, J. Appl. Chem., USSR 28 (1955) 347.

    Google Scholar 

  29. N. Matsuura and M. Kojima, Tokyo Univ. Coll. Gen. Ed. Sci. Pap. 11 (1952) 47.

    Google Scholar 

  30. D. R. Fosnacht and T. J. O'Keefe, Met. Trans. 14B (1983) 645.

    Google Scholar 

  31. O. Veenesland, H. Holtan and S. Solhjell, Acta Chem. Scand. 27 (1973) 846.

    Google Scholar 

  32. D. J. MacKinnon and J. M. Brannen, J. Appl. Eletrochem. 7 (1977) 451.

    Google Scholar 

  33. A. R. Ault and E. J. Frazer, ibid.. 18 (1988) 583.

    Google Scholar 

  34. C. L. Mantell, ‘Electrochemical Engineering’ 4th edn., McGraw-Hill, New York (1960) p. 210.

    Google Scholar 

  35. G. T. Wever, J. Metals 11 (1959) 130.

    Google Scholar 

  36. P. A. Adcock, A. R. Ault and O. M. G. Newman, J. Appl. Electrochem. 15 (1985) 865.

    Google Scholar 

  37. C. Cachet and R. Wiart, ibid.. 20 (1990) 1009.

    Google Scholar 

  38. U. F. Turomshina and V. V. Stender, J. Appl. Chem. USSR 28 (1955) 151, 447.

    Google Scholar 

  39. B. A. Lamping and T. J. O'Keefe, Met. Trans. 7B (1976) 551.

    Google Scholar 

  40. T. N. Andersen, R. C. Kerby and T. J. O'Keefe, J. Metals 37 (1985) 36.

    Google Scholar 

  41. T. Biegler, ‘Application of Polarisation Measurements in the Control of Metal Deposition’ (edited by I. H. Warren), Elsevier Science, Amsterdam (1984) p. 32.

  42. M. Sanchez Cruz, F. Alonso and J. M. Palacios, J. Appl. Electrochem. 20 (1990) 611.

    Google Scholar 

  43. R. Sato, J. Electrochem. Soc. 106 (1959) 206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.C., Singh, P. & Hefter, G.T. Effects of 2-picoline on zinc electrowinning from acidic sulfate electrolyte. J Appl Electrochem 26, 1245–1252 (1996). https://doi.org/10.1007/BF00249926

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249926

Keywords

Navigation